RU2676309C1 - Корундовая керамика и способ ее получения - Google Patents
Корундовая керамика и способ ее получения Download PDFInfo
- Publication number
- RU2676309C1 RU2676309C1 RU2017131816A RU2017131816A RU2676309C1 RU 2676309 C1 RU2676309 C1 RU 2676309C1 RU 2017131816 A RU2017131816 A RU 2017131816A RU 2017131816 A RU2017131816 A RU 2017131816A RU 2676309 C1 RU2676309 C1 RU 2676309C1
- Authority
- RU
- Russia
- Prior art keywords
- aluminum
- corundum
- temperature
- ceramics
- vanadium pentoxide
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 26
- 229910052593 corundum Inorganic materials 0.000 title claims abstract description 24
- 239000010431 corundum Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 17
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 13
- 239000007864 aqueous solution Substances 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 10
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 8
- 238000003825 pressing Methods 0.000 claims abstract description 7
- 239000000839 emulsion Substances 0.000 claims abstract description 6
- 239000012188 paraffin wax Substances 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 4
- 239000001257 hydrogen Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 15
- 238000009713 electroplating Methods 0.000 claims description 3
- 238000005469 granulation Methods 0.000 claims description 2
- 230000003179 granulation Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000011230 binding agent Substances 0.000 abstract description 9
- 239000000243 solution Substances 0.000 abstract description 7
- 230000007797 corrosion Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 6
- 230000007547 defect Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 239000000725 suspension Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- CNGGOAOYPQGTLH-UHFFFAOYSA-N [O-2].[O-2].[Mg+2].[Al+3] Chemical compound [O-2].[O-2].[Mg+2].[Al+3] CNGGOAOYPQGTLH-UHFFFAOYSA-N 0.000 abstract 1
- OKLSWTTYHWTTRW-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].O.[Al+3].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].O.[Al+3].[V+5] OKLSWTTYHWTTRW-UHFFFAOYSA-N 0.000 abstract 1
- 238000000137 annealing Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 238000001354 calcination Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000012190 activator Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62685—Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Изобретение относится к области материалов для электронной техники, а именно к алюмооксидной керамике, используемой при изготовлении деталей СВЧ-приборов. Корундовую керамику получают из шихты, которая содержит электроплавленный корунд, оксид магния, оксисоль алюминия, легированную пентаоксидом ванадия при следующем соотношении компонентов, маc.%: оксид магния 0,08-0,30, оксисоль алюминия 1,5-3,0, пентаоксид ванадия 0,011-0,045, электроплавленный корунд – остальное. В способе получения корундовой керамики оксид алюминия, легированный оксидом магния, высушивают и прокаливают при температуре 850-950°С, оксисоль алюминия легируют пентаоксидом ванадия. Водный раствор легированной оксисоли алюминия перемешивают с легированным оксидом алюминия. Приготовленную суспензию высушивают и прокаливают при температуре 400оС, полученный порошок смешивают с временной технологической связкой (смесь раствора поливинилового спирта с парафиновой эмульсией) и гранулируют. Формование заготовок изделий осуществляют путем прессования при давлении 175-250 МПа, временную технологическую связку удаляют путем обжига на воздухе при температуре 1150-1350°С и спекают заготовку при температуре 1720-1780°С в вакууме или при температуре 1680-1720°С в атмосфере водорода с точкой росы +26°С. Технический результат изобретения – получение керамики с пониженной дефектностью поверхности и устранение коррозии пресс-форм. 2 н.п. ф-лы, 1 пр., 1 табл.
Description
Изобретение относится к области материалов для электронной техники, а именно к алюмооксидной керамике, используемой при изготовлении деталей СВЧ приборов. Этот материал может быть использован для изготовления пассивных элементов гибридных интегральных схем (ГИС) (подложек), оснований резисторов, высокочастотных изоляторов и изделий конструкционной керамики.
Известен перечень требований к подложкам из оксида алюминия с содержанием основного вещества 99,7% и относительной плотностью не менее 98,75% (Ухватова Л.С., Бржезинский Г.В. Анализ микроструктуры, качества поверхности и свойства подложек из оксида алюминия // Стекло и керамика. - 2010. - №9. - С. 9-14)
Одним из важнейших показателей качества подложек является состояние их полированной поверхности в части размера и концентрации пор, наличия макродефектов в виде «выколов» (углублений). В этой же работе даны рекомендации по получению керамики с малодефектной поверхностью. С этой целью рекомендовано стремиться к получению высокоплотной керамики с мелкокристаллической структурой.
Известна корундовая керамика (US, №6417127, МПК С04В 35/10, 2002 г.) включающая мелкодисперсный оксид алюминия (99,7%), легированный ингибитором рекристаллизации оксидом магния, с концентрацией пор на полированной поверхности порядка одного процента при относительной плотности 99.8%.
Недостатком этого технического решения является необходимость проведения затратной операции кальцинации соли алюминия с последующим помолом.
Кроме того, известна корундовая керамики с мелкокристаллической структурой (US, №3311482, МПК С04В 35/10, 1967 г.) с относительной плотностью 99,5% с величиной макродефектов порядка 10 мкм содержащая 99,7% Al2O3 и 0,3% MgO.
Недостатком этого технического решения является необходимость проведения операции кальцинации с последующим помолом.
Наиболее близкой по технической сущности и достигаемому результату (прототип) является корундовая керамика (СССР, №652146, МПК С04В 35/10, 1979 г.) состава 99,7% Al2O3 и 0,3% MgO, которая имеет средний размер пор 12,5 мкм, а их концентрация находится в пределах от 0,8 до 1,2%. Максимальный размер макродефектов при этом не превышает 250 мкм.
Недостатками этого технического решения являются коррозия металлических прессформ под воздействием водного раствора оксисоли алюминия, имеющего РН=3,0-3,5 используемого в качестве технологической связки, и относительно, высокая степень дефектности поверхности.
Известен способ получения корундовой керамики (US, №6417127, МПК С04В 35/10, 2002 г.) в котором используется вариант совмещения операций формования и спекания в одну операцию так называемый способ горячего прессования.
Недостатком этого способа является проведения затратной операции горячего прессования, требующего специального дорогостоящего оборудования и отличающегося низкой производительностью.
Известен способ получения высокоплотной корундовой керамики с относительной плотностью 99,5% (US, №3311482, МПК С04В 35/10, 1967 г.), в котором плотность достигается путем кратковременного спекания (10 мин) при температуре 1900°С.
Недостатком этого способа является использование довольно высокой температуры спекания что требует значительных материальных затрат и кратковременность выдержки при этой температуре, что не приемлемо в условиях реального производства, т.к. изделия не смогут полностью прогреться до заданной температуры за это время.
Наиболее близком по технической сущности к заявляемому (прототип) является способ (СССР, №652146, МПК С04В 35/10, 1979 г.). В этом способе исходный глинозем марки ГЛМК прокаливают при 900°С, подвергают мокрому помолу с последующей сушкой и прокаливают вновь при температуре 900°С. Затем смешивают с технологической связкой в виде водного раствора оксисоли алюминия, шихту гранулируют и прессуют, затем удаляют связку обжигом на воздухе и спекают в вакууме.
Недостатками этого способа являются применение в качестве технологической связки водного раствора оксисоли алюминия который вызывает коррозию металлической прессформы в процессе прессования заготовок и относительно высокая степень дефектности поверхности готовых изделий.
Задачей (технический результат) предлагаемого технического решения получения высокоплотной корундовой керамики заключается в получении керамики с пониженной степенью дефектности поверхности и устранение явления коррозии прессформ на операции формования заготовок изделий.
Задача достигается тем, что в качестве оксида алюминия используется электроплавленный корунд, а активатор спекания нанооксид алюминия, синтезируемый из оксисоли алюминия, дополнительно легируют пентаоксидом ванадия при следующем соотношении компонентов, %:
оксид магния | 0,08-0,30 |
оксисоль алюминия | 1,5-3,0 |
пентаоксид ванадия | 0,011 -0,045 |
электроплавленный корунд - остальное
Добавку оксисоли алюминия, легированную пентаоксидом ванадия, превращают в нанооксид алюминия до начала операции гранулирования, а в качестве временной технологической связки используют комбинированную связку состоящую из смеси раствора поливинилового спирта (ПВС) и водной эмульсии парафина (ЭП).
В предлагаемом составе оксид магния добавляется к электроплавленному корунду в виде соли, после чего порошок прокаливают при температуре 850-950°С. Уменьшение температуры прокалки не обеспечивает полного разложения соли, а ее превышение приводит к нежелательному припеканию отдельных частиц электроплавленного корунда друг к другу. Перед введением водного раствора оксисоли алюминия в порошок электроплавленного корунда, легированного оксидом магния, его легируют пентаоксидом ванадия. Суспензию, состоящую из порошка легированного электрокорунда, водного раствора оксисоли алюминия и пентаоксида ванадия высушивают и прокаливают при 400°С, что исключает коррозию прессформ на операции прессования. Эта температура прокалки является оптимальной в плане получения максимально активного к спеканию нанооксида алюминия.
Относительная плотность полученной керамики в зависимости от содержания легирующей добавки пентаоксида ванадия при различных температурах спекания представлена в таблице 1.
Подготовленный таким образом порошок смешивают с временной технологической связкой в качестве которой используют смесь поливинилового спирта и парафиновой эмульсии и гранулируют. Формование заготовок изделий осуществляют путем прессования при давлении 175-250 МПа. При уменьшении давления прессования получаются заготовки с относительной плотностью менее 55%, что приводит к увеличению температуры спекания для достижения заданной плотности, а превышение давления прессования значительно увеличивает брак по трещинам. Временную технологическую связку удаляют путем обжига на воздухе при температуре 1150-1350°С, поскольку в этом интервале температур происходит полное удаление ингредиентов временной технологической связки с достижением плотности заготовки, позволяющей перемещать ее без нарушения целостности. Затем заготовки спекают до заданной плотности при температуре 1720-1780°С в вакууме или в атмосфере водорода при температуре 1680-1720°С с точкой росы +26°С. Такая температуры спекания в сочетании с относительно невысокой скоростью рекристаллизации кристаллов электроплавленного корунда позволяет получать керамику с относительной плотностью не менее 99,5% при преимущественном размере кристаллов от 3 до 7 мкм и концентрацией пор на полированной поверхности от 0,4 до 0,6%.
Предлагаемую керамику изготавливают, а способ реализуют следующим образом.
Пример.
Навеску порошка электроплавленного корунда смешивают с водным раствором Mg (СН3СОО)2⋅6H2O из расчета 99,7 г оксида алюминия на 0,25 г оксида магния, суспензию перемешивают, затем высушивают и прокаливают при 900°С.
Приготовленный порошок смешиваютс водным раствором Al2(ОН)5Cl и добавкой пентаоксида ванадия из расчета 2,5 г оксисоли алюминия (10-ти % концентрации в пересчете на оксид алюминия) на 100 г электроплавленного корунда и 0,028 г пентаоксида ванадия на 100 г электроплавленного корунда, суспензию перемешивают, высушивают и прокаливают при температуре 400°С.
Порошок гранулируют с помощью комбинированной связки, состоящей из смеси раствора поливинилового спирта (ПВС) и водной эмульсии парафина, затем прессуют на гидравлическом прессе при давлении 200 МПа. Заготовки подвергают предварительному обжигу при температуре 1200°С для удаления технологической связки и спекают в вакууме при температуре 1750±10°С.
Аналогичный конечный результат можно получить путем спекания в атмосфере водорода при температуре 1700±10°С с точкой росы +26°С.
Спеченную керамику шлифуют и полируют по известным приемам.
Керамика, полученная заявляемым способом, имеет относительную плотностью 99,5% с уменьшенной степенью дефектности полированной поверхности при среднем размере пор 1,8 мкм и максимальном размере макродефектов (выколов) в 30 мкм, что превосходит показатели прототипа по пористости в 7 раз (12.5 мкм), а по макродефектам в 8 раз (250 км).
Такое снижение степени дефектности полированной поверхности позволит снизить брак при изготовлении микросхем возникающий из-за наличия дефектов на полированной поверхности подложек соизмеримых с размером наносимых элементов микросхем. Тем самым улучшить экономику этого производства.
Предлагаемый способ позволяет:
уменьшить степень дефектности полированной поверхности подложек, что позволит улучшить экономические показатели производства БИС СВЧ диапазона;
Производство керамики из разработанного состава предлагается осуществлять на известном оборудовании, из известных компонентов выпускаемых отечественной промышленностью, по доступным технологиям, что наряду с достигнутым положительным техническим и экономическим результатом позволяет сделать вывод о целесообразности внедрения разработанного состава в промышленном масштабе.
Claims (4)
1. Корундовая керамика, полученная из шихты, включающей оксид алюминия, оксид магния и оксисоль алюминия, отличающаяся тем, что в качестве оксида алюминия она содержит электроплавленный корунд, а оксисоль алюминия дополнительно легируется пентаоксидом ванадия, при следующем соотношении компонентов, % мас:
электроплавленный корунд - остальное
2. Способ получения корундовой керамики, включающий легирование оксида алюминия оксидом магния, введение водного раствора оксисоли алюминия, гранулирование, прессование и термическую обработку отличающийся тем, что добавку оксисоли алюминия легируют петаоксидом ванадия, в качестве временной технологической связки используют комбинированную связку, состоящую из водного раствора поливинилового спирта и водной эмульсии парафина, порошок электрокорунда, легированного оксидом магния, смешивают с водным раствором оксисоли алюминия, в свою очередь легированного пентаоксидом ванадия, высушивают, прокаливают при 400°С, гранулируют и прессуют при 175-250 МПа на комбинированной связке поливиниловый спирт + парафиновая эмульсия, затем заготовки обжигают при температуре 1150-1350°С и спекают в вакууме при температуре 1720-1780°С или в атмосфере водорода при температуре 1680-1720°С с точкой росы +26°С.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017131816A RU2676309C1 (ru) | 2017-09-11 | 2017-09-11 | Корундовая керамика и способ ее получения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017131816A RU2676309C1 (ru) | 2017-09-11 | 2017-09-11 | Корундовая керамика и способ ее получения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2676309C1 true RU2676309C1 (ru) | 2018-12-27 |
Family
ID=64753821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017131816A RU2676309C1 (ru) | 2017-09-11 | 2017-09-11 | Корундовая керамика и способ ее получения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2676309C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2730229C1 (ru) * | 2019-07-17 | 2020-08-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) | Шихта на основе оксида алюминия и способ получения прочной керамики |
RU2760662C1 (ru) * | 2020-06-10 | 2021-11-29 | Акционерное общество "Боровичский комбинат огнеупоров" | Шихта для получения полифракционного проппанта, способ его получения и применения при гидроразрыве пласта |
RU2730229C9 (ru) * | 2019-07-17 | 2023-10-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) | Шихта на основе оксида алюминия и способ получения прочной керамики |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU652146A1 (ru) * | 1976-12-30 | 1979-03-15 | Ивановский Химико-Технологический Институт | Шихта дл изготовлени вакуумно-плотной керамики |
SU1141084A1 (ru) * | 1982-07-30 | 1985-02-23 | Всесоюзный научно-исследовательский институт фарфоро-фаянсовой промышленности | Шликер дл получени керамического материала |
RU2168483C1 (ru) * | 2000-03-07 | 2001-06-10 | Институт химии Коми научного центра Уральского отделения РАН | Шихта для получения конструкционной глиноземистой керамики и способ изготовления изделий из нее |
EP2366675B1 (en) * | 2008-11-18 | 2015-05-27 | Tosoh Corporation | Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor |
-
2017
- 2017-09-11 RU RU2017131816A patent/RU2676309C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU652146A1 (ru) * | 1976-12-30 | 1979-03-15 | Ивановский Химико-Технологический Институт | Шихта дл изготовлени вакуумно-плотной керамики |
SU1141084A1 (ru) * | 1982-07-30 | 1985-02-23 | Всесоюзный научно-исследовательский институт фарфоро-фаянсовой промышленности | Шликер дл получени керамического материала |
RU2168483C1 (ru) * | 2000-03-07 | 2001-06-10 | Институт химии Коми научного центра Уральского отделения РАН | Шихта для получения конструкционной глиноземистой керамики и способ изготовления изделий из нее |
EP2366675B1 (en) * | 2008-11-18 | 2015-05-27 | Tosoh Corporation | Sintered colored alumina of high toughness and high translucency, and manufacturing method and uses therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2730229C1 (ru) * | 2019-07-17 | 2020-08-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) | Шихта на основе оксида алюминия и способ получения прочной керамики |
RU2730229C9 (ru) * | 2019-07-17 | 2023-10-17 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС) | Шихта на основе оксида алюминия и способ получения прочной керамики |
RU2760662C1 (ru) * | 2020-06-10 | 2021-11-29 | Акционерное общество "Боровичский комбинат огнеупоров" | Шихта для получения полифракционного проппанта, способ его получения и применения при гидроразрыве пласта |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI642646B (zh) | 多孔質陶瓷的製造方法、多孔質陶瓷、托架及燒製輔助具 | |
JP5060093B2 (ja) | 半導体装置用基板 | |
DE112015001562B4 (de) | Verfahren zur Herstellung eines Siliciumnitrid-Substrates | |
Zhang et al. | Gelcasting and pressureless sintering of silicon carbide ceramics using Al2O3–Y2O3 as the sintering additives | |
JP7287766B2 (ja) | 泥漿鋳込み成形によるガラスセラミック物品の製造方法およびその使用 | |
RU2676309C1 (ru) | Корундовая керамика и способ ее получения | |
CN104761274B (zh) | 碳化硅多孔陶瓷及其制备工艺 | |
Zhuang et al. | Fabrication of gel cast BN/Si3N4 composite ceramics from surface-coated BN powder | |
KR101889355B1 (ko) | 적니 및 광미를 통한 다공성 세라믹 제조방법 | |
Hao et al. | Preparation of alumina ceramic by κ-Al2O3 | |
Liu et al. | Effect of stacking pressure on the properties of Si3N4 ceramics fabricated by aqueous tape casting | |
JP6888087B2 (ja) | 複合セラミック材料、物品、および製造方法 | |
RU2632078C1 (ru) | Алюмооксидная композиция и способ получения керамического материала для производства подложек | |
CN114644525A (zh) | 添加废弃料的复合匣钵及其制备方法 | |
Ozel et al. | Production of cordierite ceramic by aqueous tape casting process | |
JPH0585821A (ja) | 希土類酸化物−アルミナ焼結体およびその製造方法 | |
RU2540674C2 (ru) | Способ изготовления изделий из нитрида кремния | |
Zhang et al. | Preparation of TiC ceramics through aqueous tape casting | |
CN109534816B (zh) | 一种制备高强度多孔碳化硅陶瓷的方法 | |
CN113045295A (zh) | 一种高强度陶瓷型材及其制备方法 | |
KR20170077972A (ko) | 고강도 도자기의 제조방법 | |
JP4065589B2 (ja) | 窒化アルミニウム焼結体及びその製造方法 | |
RU2637266C1 (ru) | Шихта для изготовления корундовых огнеупорных изделий | |
JP4564257B2 (ja) | 高熱伝導性窒化アルミニウム焼結体 | |
RU2399600C1 (ru) | Способ получения огнеупорного керамического материала на основе циркона |