RU2673801C1 - Способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия - Google Patents

Способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия Download PDF

Info

Publication number
RU2673801C1
RU2673801C1 RU2017143187A RU2017143187A RU2673801C1 RU 2673801 C1 RU2673801 C1 RU 2673801C1 RU 2017143187 A RU2017143187 A RU 2017143187A RU 2017143187 A RU2017143187 A RU 2017143187A RU 2673801 C1 RU2673801 C1 RU 2673801C1
Authority
RU
Russia
Prior art keywords
powder
oxygen
ceo
cerium
cerium oxide
Prior art date
Application number
RU2017143187A
Other languages
English (en)
Inventor
Джианфенг ЖАНГ
Ксин ЖАНГ
Хуианг КАО
Венмин ГУО
Гайе ЛИ
Юпинг ВУ
Original Assignee
Хохай Юниверсити
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хохай Юниверсити filed Critical Хохай Юниверсити
Application granted granted Critical
Publication of RU2673801C1 publication Critical patent/RU2673801C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • B01J35/19
    • B01J35/50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • B01J37/0223Coating of particles by rotation

Abstract

В изобретении раскрывается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия. Органометаллический прекурсор церия должным образом расщепляется на наночастицы CeO2 при температуре 500-700°C в условиях кислородной среды методом химического осаждения в паровой фазе, и наночастицы CeO2 равномерно наносятся на подложку из Al2O3. Расщепление прекурсора CeO2 ускоряется за счет изменения экспериментальных параметров реакции между органическими материалами и кислородом для контроля размера и микроструктуры порошка, тем самым позволяя получить и равномерно нанести наночастицы оксида церия, а также предотвратить проблему генерирования токсичного отработанного раствора во время реакции. Способ по настоящему изобретению прост, обладает коротким периодом получения, а полученные наночастицы оксида церия наносятся равномерно и могут быть использованы как каталитические и функциональные материалы, а также обладают широким потенциалом применения во многих областях. 2 н. и 7 з.п. ф-лы, 2 ил.

Description

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к области проектирования обработки материалов, в частности, к способу получения порошкообразного материала из оксида церия на подложке из оксида алюминия.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Являясь новым функциональным материалом с прекрасными характеристиками, оксид церия (CeO2) играет ключевую роль в новейших технологиях, условиях среды и вопросах в сфере энергетики, таких как удаление оксидов азота из автомобильных выхлопных газов. Кроме того, высокая подвижность кислородной вакансии и ионная проводимость оксида церия используются для производства электродов из твердооксидных топливных элементов, а уникальная электронная конфигурация оксида церия используется в косметической и стекольной промышленностях для поглощения ультрафиолетового излучения и производства светособирающих устройств и оптических дисплеев и т.д. Электродвижущая сила между электродами из Се3+/Се4+ меньше, в то время как материал из CeO2 - это полуоткрытая фтористая кристаллическая структура, и потому CeO2 может отщеплять O2 при нахождении во внешней среде с недостатком кислорода, а также поглощать О2 при нахождении в среде, обогащенной кислородом, при исходном условии сохранения устойчивости кристаллической структуры. Ввиду того, что материал из CeO2 обладает способностью удерживать и отщеплять кислород, частицы кислорода в газовой фазе могут быть перенесены на твердую поверхность посредством «респираторного эффекта» CeO2 в процессе гетерогенного катализа, тем самым стимулируя процесс катализа. Следовательно, изучение каталитических материалов, основанных на оксиде церия, очень важно. Кроме того, Хассанзадех-Табризи и соавт. из иранского университета Тарбиат Модарес в 2011 году получили композитный материал из Al2O3-CeO2 путем спекания. Исследования показывают, что в сравнении с одним Al2O3 добавление CeO2 подавляет рост кристаллических зерен Al2O3 и повышает трещиностойкость на 28%, а прочность на изгиб - на 17%, что демонстрирует, что для CeO2 также имеется предпочтительная перспектива применения в рамках усовершенствования механических свойств Al2O3 (Журнал Американского общества керамики, 2011, 94(10), с. 3488-3493).
Способ нанесения наночастиц CeO2 на керамические подложки считается предпочтительным для существенного улучшения кислородной емкости CeO2, повышения спекаемости и механических свойств композитных материалов из керамики. Общие способы нанесения включают в себя: помол в шаровой мельнице, пропитку и золь-гель, что времязатратно и зачастую приводит к неудовлетворительному распределению или образованию токсичных жидких отходов. В 2014 году Пурнаджаф и соавт. из Исламского университета Азад в Иране синтезировали порошкообразный композитный наноматериал Al2O3-CeO2 методом обратной микроэмульсии, при котором размер и форма порошка регулируются посредством изменения активности поверхности натрия додецилсульфата, гексадецилметиламмония бромида и полиоксиэтилен додецилового эфира, но что также может привести к проблемам с затратами времени и загрязнением окружающей среды. С другой стороны, воздействие прекурсора и раствора для синтеза CeO2 весьма многосложно. Следовательно, воспроизводимость очень низка (Ceramics International, 2014, 40(3), с. 4933-4937). Способ химического разложения в паровой фазе - относительно новый способ нанесения наночастиц на подложки, обеспечивающий достаточный контакт между порошком и реакционными газами во вращающейся печи для химического осаждения в паровой фазе для получения, тем самым, равномерно распределенных наночастиц. По сравнению с общим методом использования жидких реактивов преимуществом метода химического осаждения в паровой фазе является то, что не используется какой-либо раствор. Следовательно, устраняются процесс последующей обработки и проблема загрязнения окружающей среды. Важные факторы влияния способа химического осаждения в паровой фазе включают скорость подачи прекурсора, кислорода, скорость вращения или что-либо подобное ей, а также регулировку емкости и размеров частиц посредством условий, приведенных выше.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Цель изобретения: решение технических проблем, существующих на предыдущем уровне техники, цель настоящего изобретения - предложение метода получения порошкообразного материала из оксида церия на подложке из оксида алюминия, заключающегося в нанесении наночастиц оксида церия на поверхность подложки из керамического порошка из оксида алюминия, и регулировке размера частиц и микроструктуры композитного материала, получаемого посредством изменения экспериментальных параметров реакции между органическими материалами и кислородом, для снижения, тем самым, выброса ядовитых отходов.
Техническое решение: для реализации технического объекта, приведенного выше, в изобретении предлагается метод получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
(1) использование органометаллического прекурсора оксида церия в качестве материала CeO2 и разогрев этого органометаллического прекурсора в испарителе сырья для выпаривания, температура в котором составляет от 100 до 300°C;
(2) предварительная подготовка порошка Al2O3 путем сушки с последующим помещением предварительно подготовленного порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумированием при 5-20 Па, а также предварительным нагревом, причем температура предварительного нагрева составляет от 500 до 800°C;
(3) подача газовой смеси из кислорода, газообразного аргона и выпаренного материала CeO2 во вращающийся реактор и проведение химического осаждения из паровой фазы с вращением при высокой температуре для получения органометаллического прекурсора церия, подлежащего расщеплению на CeO2 и нанесению на порошок Al2O3;
(4) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
Предпочтительно, чтобы на этапе (1) органометаллический прекурсор церия представлял собой либо Ce(DPM)4, изооктаноат церия, Ce(C5H5)3, либо ацетат церия.
На этапе (2) средний размер частиц порошка Al2O3 составляет от 0,1 до 100 мкм, а чистота порошка составляет не менее 95%.
На этапе (2) скорость нагрева в процессе предварительного нагрева составляет от 2 до 10°C/мин.
На этапе (3) условия химического осаждения из паровой фазы с вращением следующие: температура реакции от 600 до 800°C, скорость вращения камеры для химического осаждения из паровой фазы от 20 до 60 об./мин, а реакция теплоизоляции составляет от 0,5 до 4 ч, причем расход газообразного аргона составляет от 80 до 100 н.м3/мин, а расход кислорода - от 10 до 100 н.м3/мин.
Полное давление подаваемой газовой смеси из кислорода и газообразного аргона составляет от 200 до 1000 Па, а парциальное давление кислорода - от 50 до 200 Па.
На этапе (2) температура предварительной подготовки порошка Al2O3 путем сушки составляет от 80 до 100°C, размер ячейки сита для просеивания порошка составляет от 50 до 200 меш, а порошок просеивается три раза.
На этапе (5) размер ячейки сита для просеивания порошка составляет от 50 до 200 меш, а порошок просеивается три раза.
Порошкообразный материал из оксида церия на подложке из оксида алюминия, полученный по предшествующему методу получения, также включен в объем правовой охраны по настоящему изобретению.
Положительные эффекты: технология химического осаждения из паровой фазы с вращением в настоящем изобретении используется для непосредственного осаждения наночастиц CeO2 на подложку из Al2O3 для синтеза композитного материала CeO2-Al2O3. Получаемый размер частиц и нанесение композитного материала регулируются посредством изменения экспериментальных параметров реакции между органическими материалами и кислородом так, чтобы CeO2 равномерно распределялся по подложке из Al2O3, что существенно улучшает коэффициент емкости материалов и надежность изделий, обладает коротким периодом получения, и при этом в настоящем методе получения не используется какой-либо раствор. Тем самым, предотвращается проблема обработки отработанного раствора. Кроме того, настоящий метод экологически безвреден и значительно снижает затраты на производство, тем самым обладая прекрасной перспективой для промышленного использования.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 представлено изображение наночастиц CeO2 на просвечивающем электронном микроскопе, полученных при экспериментальных параметрах по варианту осуществления 3; и
фиг. 2 представляет собой дифракционную рентгенограмму композитного порошкообразного материала, полученного при экспериментальных параметрах по варианту осуществления 3.
ПОДРОБНОЕ ОПИСАНИЕ
Представленное далее - предпочтительные варианты осуществления настоящего изобретения исключительно для наглядного представления о нем, но не для его ограничения, и усовершенствования, выполняемые по настоящему описанию, включены в объем правовой охраны, как приводится в прилагаемой формуле изобретения.
Вариант осуществления 1
В настоящем изобретении предлагается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
(1) использование 1 г Ce(DPM)4 в качестве органического материала и нагрев этого материала в испарителе до 250°C;
(2) сушка 5 г порошка Al2O3 (средний размер частиц порошка Al2O3 составлял 100 мкм, а чистота - не менее 95%) в течение 2 ч при 80°C, последующее помещение порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумирование при 7 Па и нагрев до 500°C при скорости предварительного нагрева 10°C/мин;
(3) подача газовой смеси из кислорода, газообразного аргона и выпаренных материалов во вращающийся реактор, расход газообразного аргона в котором составил 100 н.м3/мин, а кислорода - 10 н.м3/мин, с последующей регулировкой давления в реакционной камере, полное давление в которой составило 200 Па, а парциальное давление кислорода - 50 Па. Температура во время покрытия составила 600°C, скорость вращения реактора составила 45 об./мин, и в течение 0,5 ч проводилась теплоизоляция для расщепления и нанесения Ce(DPM)4 на порошок Al2O3;
(4) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
Полученный композитный материал CeO2-Al2O3 был взвешен, подвергнут анализу и осмотрен посредством дифракционной рентгенограммы, просвечивающего электронного микроскопа, энергетического спектра и т.д. Массовая концентрация CeO2 в полученном композитном порошке составила 0,5% масс., средний размер частиц CeO2 составил 8 нм, а вещество CeO2 было нанесено равномерно.
Вариант осуществления 2
В настоящем изобретении предлагается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
(1) использование 3 г Ce(DPM)4 в качестве органического материала и нагрев этого материала в испарителе до 100°C;
(2) сушка 5 г порошка Al2O3 (средний размер частиц порошка Al2O3 составлял 50 мкм, а чистота - не менее 95%) в течение 2 ч при 80°C, последующее помещение порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумирование при 5 Па и нагрев до 600°C при скорости предварительного нагрева 2°C/мин;
(3) подача газовой смеси из кислорода, газообразного аргона и выпаренных материалов во вращающийся реактор, расход газообразного аргона в котором составил 100 н.м3/мин, а кислорода - 10 н.м3/мин, с последующей регулировкой давления в реакционной камере, полное давление в которой составило 500 Па, а парциальное давление кислорода - 100 Па. Температура во время покрытия составила 600°C, скорость вращения реактора составила 45 об./мин, и в течение 1 ч проводилась теплоизоляция для расщепления и нанесения Ce(DPM)4 на порошок Al2O3;
(4) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
Полученный композитный материал CeO2-Al2O3 был взвешен, подвергнут анализу и осмотрен посредством дифракционной рентгенограммы, просвечивающего электронного микроскопа, энергетического спектра и т.д. Массовая концентрация CeO2 в полученном композитном порошке составила 1,2% масс., средний размер частиц CeO2 составил 6 нм, а вещество CeO2 было нанесено равномерно.
Вариант осуществления 3
В настоящем изобретении предлагается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
(1) использование 10 г Ce(DPM)4 в качестве органического материала и нагрев этого материала в испарителе до 100°C;
(2) сушка 5 г порошка Al2O3 (средний размер частиц порошка Al2O3 составлял 10 мкм, а чистота - не менее 95%) в течение 2 ч при 80°C, предварительная подготовка порошка путем троекратного просеивания через сито с ячейками размером 100 меш, последующее помещение подготовленного порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумирование при 5 Па и нагрев до 600°C при скорости предварительного нагрева 5°C/мин;
(3) подача газовой смеси из кислорода, газообразного аргона и выпаренных материалов во вращающийся реактор, расход газообразного аргона в котором составил 100 н.м3/мин, а кислорода - 10 н.м3/мин, с последующей регулировкой давления в реакционной камере, полное давление в которой составило 1000 Па, а парциальное давление кислорода - 300 Па. Температура во время покрытия составила 800°C, скорость вращения реактора составила 45 об./мин, и в течение 2 ч проводилась теплоизоляция для расщепления и нанесения Ce(DPM)4 на порошок Al2O3;
(4) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
Полученный композитный материал CeO2-Al2O3 был взвешен, подвергнут анализу и осмотрен посредством дифракционной рентгенограммы, просвечивающего электронного микроскопа, энергетического спектра и т.д. Результаты представлены на фиг. 1 и 2, причем на фиг. 1 представлено изображение наночастиц CeO2 на просвечивающем электронном микроскопе, а на фиг. 2 - дифракционная рентгенограмма полученного порошкообразного композитного материала. Массовая концентрация CeO2 в полученном композитном порошке составила 5,2% масс., средний размер частиц CeO2 составил 13 нм, а вещество CeO2 было нанесено равномерно.
Вариант осуществления 4
В настоящем изобретении предлагается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
(1) использование 10 г Ce(DPM)4 в качестве органического материала и нагрев этого материала в испарителе до 300°C;
сушка 5 г порошка Al2O3 (средний размер частиц порошка Al2O3 составлял 1 мкм, а чистота - не менее 95%) в течение 2 ч при 80°C, предварительная подготовка порошка путем троекратного просеивания через сито с ячейками размером 200 меш, последующее помещение подготовленного порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумирование при 10 Па и нагрев до 700°C при скорости предварительного нагрева 5°C/мин;
(3) подача газовой смеси из кислорода, газообразного аргона и выпаренных материалов во вращающийся реактор, расход газообразного аргона в котором составил 100 н.м3/мин, а кислорода - 10 н.м3/мин, с последующей регулировкой давления в реакционной камере, полное давление в которой составило 800 Па, а парциальное давление кислорода - 200 Па. Температура во время покрытия составила 700°C, скорость вращения реактора составила 45 об./мин, и в течение 2 ч проводилась теплоизоляция для расщепления и нанесения Ce(DPM)4 на порошок Al2O3;
(4) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
Полученный композитный материал CeO2-Al2O3 был взвешен, подвергнут анализу и осмотрен посредством дифракционной рентгенограммы, просвечивающего электронного микроскопа, энергетического спектра и т.д. Массовая концентрация CeO2 в полученном композитном порошке составила 4,5% масс., средний размер частиц CeO2 составил 10 нм, а вещество CeO2 было нанесено равномерно.
Вариант осуществления 5
В настоящем изобретении предлагается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
использование 8 г Ce(DPM)4 в качестве органического материала и нагрев этого материала в испарителе до 200°C;
сушка 5 г порошка Al2O3 (средний размер частиц порошка Al2O3 составлял 0,1 мкм, а чистота - не менее 95%) в течение 2 ч при 80°C, предварительная подготовка порошка путем троекратного просеивания через сито с ячейками размером 100 меш и 300 меш, последующее помещение подготовленного порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумирование при 8 Па и нагрев до 650°C при скорости предварительного нагрева 4°C/мин;
(3) подача газовой смеси из кислорода, газообразного аргона и выпаренных материалов во вращающийся реактор, расход газообразного аргона в котором составил 100 н.м3/мин, а кислорода - 10 н.м3/мин, с последующей регулировкой давления в реакционной камере, полное давление в которой составило 800 Па, а парциальное давление кислорода - 300 Па. Температура во время покрытия составила 650°C, скорость вращения реактора составила 45 об./мин, и в течение 2 ч проводилась теплоизоляция для расщепления и нанесения Ce(DPM)4 на порошок Al2O3;
(4) остановка вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
Полученный композитный материал CeO2-Al2O3 был взвешен, подвергнут анализу и осмотрен посредством дифракционной рентгенограммы, просвечивающего электронного микроскопа, энергетического спектра и т.д. Массовая концентрация CeO2 в полученном композитном порошке составила 4,0% масс., средний размер частиц CeO2 составил 9 нм, а вещество CeO2 было нанесено равномерно.
Предшествующее описание раскрытых вариантов осуществления позволяет специалистам использовать настоящее изобретение. Различные модификации настоящих вариантов осуществления будут очевидны для специалистов, а общие принципы, представленные в настоящем документе, могут быть воплощены в других вариантах осуществления изобретения без отступления от существа и объема настоящего изобретения. Следовательно, настоящее изобретение не будет ограничиваться вариантами осуществления, приведенными в настоящем документе, но будет максимально широко соответствовать принципам и элементам новизны, раскрытым в настоящем документе.

Claims (14)

1. Способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия, включающий следующие этапы:
(1) использование органометаллического прекурсора оксида церия в качестве материала CeO2 и разогрев этого органометаллического прекурсора в испарителе сырья для выпаривания, температура в котором составляет от 100 до 300°C;
(2) предварительную подготовку порошка Al2O3 путем сушки и просеивания через сито с последующим помещением предварительно подготовленного порошка Al2O3 в камеру для химического осаждения из паровой фазы, вакуумирование при 5-20 Па, а также предварительный нагрев, причем температура предварительного нагрева составляет от 500 до 800°C;
(3) подачу газовой смеси из кислорода, газообразного аргона и выпаренного материала CeO2 во вращающийся реактор и проведение химического осаждения из паровой фазы с вращением при высокой температуре для получения органометаллического прекурсора церия, подлежащего расщеплению на CeO2 и нанесению на порошок Al2O3;
(4) остановку вращения камеры для химического осаждения по завершении реакции, закрытие клапана, охлаждение до комнатной температуры и извлечение плакированного порошка; и
(5) измельчение и просеивание порошка, полученного на этапе (4).
2. Способ по п. 1, отличающийся тем, что на этапе (1) органометаллический прекурсор церия представляет собой либо Ce(DPM)4, изооктаноат церия, Ce(C5H5)3, либо ацетат церия.
3. Способ по п. 1, отличающийся тем, что на этапе (2) средний размер частиц порошка Al2O3 составляет от 0,1 до 100 мкм, а чистота порошка составляет не менее 95%.
4. Способ по п. 1, отличающийся тем, что на этапе (2) скорость нагрева в процессе предварительного нагрева составляет от 2 до 10°C/мин.
5. Способ по п. 1, отличающийся тем, что на этапе (3) условия химического осаждения из паровой фазы с вращением следующие: температура реакции от 600 до 800°C, скорость вращения камеры для химического осаждения из паровой фазы от 20 до 60 об/мин, а реакция теплоизоляции составляет от 0,5 до 4 ч, причем расход газообразного аргона составляет от 80 до 100 н⋅м3/мин, а расход кислорода - от 10 до 100 н⋅м3/мин.
6. Способ по п. 1, отличающийся тем, что полное давление подаваемой газовой смеси из кислорода и газообразного аргона составляет от 200 до 1000 Па, а парциальное давление кислорода - от 50 до 200 Па.
7. Способ по п. 1, отличающийся тем, что на этапе (2) температура предварительной подготовки порошка Al2O3 путем сушки составляет от 80 до 100°C, размер ячейки сита для просеивания порошка составляет от 50 до 200 меш, а порошок просеивается три раза.
8. Способ по п. 1, отличающийся тем, что на этапе (5) размер ячейки сита для просеивания порошка составляет от 50 до 200 меш, а порошок просеивается три раза.
9. Порошкообразный материал из оксида церия на подложке из оксида алюминия, полученный с помощью способа по любому из пп. 1-8.
RU2017143187A 2015-07-03 2016-05-06 Способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия RU2673801C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510388899.3A CN105126808A (zh) 2015-07-03 2015-07-03 一种氧化铝担载型二氧化铈粉体材料的制备方法
CN2015103888993 2015-07-03
PCT/CN2016/081282 WO2017005042A1 (zh) 2015-07-03 2016-05-06 一种氧化铝担载型二氧化铈粉体材料的制备方法

Publications (1)

Publication Number Publication Date
RU2673801C1 true RU2673801C1 (ru) 2018-11-30

Family

ID=54712579

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017143187A RU2673801C1 (ru) 2015-07-03 2016-05-06 Способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия

Country Status (7)

Country Link
US (1) US10441941B2 (ru)
CN (2) CN104990946A (ru)
AU (1) AU2016289884B2 (ru)
GB (1) GB2553479B (ru)
RU (1) RU2673801C1 (ru)
SG (1) SG11201710338YA (ru)
WO (1) WO2017005042A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799468C1 (ru) * 2022-12-13 2023-07-05 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ получения композитных материалов на основе фосфата и оксида церия

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990946A (zh) 2015-07-03 2015-10-21 中国计量科学研究院 K荧光x射线辐射装置
CN106395911B (zh) * 2016-09-05 2017-11-14 中南大学 一种气相化学运输法制备纳米Fe3‑xSnxO4材料的方法
US10702849B2 (en) * 2018-06-14 2020-07-07 Pacific Industrial Development Corporation Nano-rare earth oxide doped support for trapping of NOx and/or SOx
CN113620329A (zh) * 2021-09-02 2021-11-09 化学与精细化工广东省实验室潮州分中心 一种氧化铝-氧化锆纳米复合粉的制备方法
CN115445594A (zh) * 2022-09-13 2022-12-09 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 一种烟气高效协同脱硝脱甲苯的scr催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2353573C2 (ru) * 2006-12-18 2009-04-27 Институт электрофизики Уральского отделения РАН Способ получения нанопорошков и устройство для его реализации
CN101784695B (zh) * 2007-07-23 2012-07-18 原子能委员会 通过化学气相沉积制备纳米复合材料的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980019046A (ko) * 1996-08-29 1998-06-05 고사이 아키오 연마용 조성물 및 이의 용도(Abrasive composition and use of the same)
US6303391B1 (en) * 1997-06-26 2001-10-16 Advanced Technology Materials, Inc. Low temperature chemical vapor deposition process for forming bismuth-containing ceramic films useful in ferroelectric memory devices
US6602439B1 (en) * 1997-02-24 2003-08-05 Superior Micropowders, Llc Chemical-mechanical planarization slurries and powders and methods for using same
EP1180397B1 (de) * 2000-08-19 2007-03-28 Umicore AG & Co. KG Sauerstoff speicherndes Material auf der Basis von Ceroxid, Verfahren zu seiner Herstellung und Verwendung in der Abgasreinigung von Verbrennungsmotoren
CN101183083B (zh) * 2001-12-04 2013-03-20 X射线光学系统公司 用于冷却和电绝缘高压、生热部件的方法和设备
DE10333755A1 (de) * 2003-07-24 2005-03-31 Basf Ag Verfahren zur Dehydrierung von Carbonylverbindungen
CN1921937B (zh) * 2004-02-19 2011-07-27 出光兴产株式会社 烃的重整催化剂、利用该重整催化剂生产氢的方法以及燃料电池系统
FR2937053B1 (fr) * 2008-10-09 2010-12-17 Commissariat Energie Atomique Dispositif pour la synthese de nanoparticules par depot chimique en phase vapeur en lit fluidise
JP2011099749A (ja) * 2009-11-05 2011-05-19 Horiba Ltd 濃度計測方法及び蛍光x線分析装置
JP5256232B2 (ja) * 2009-12-08 2013-08-07 トヨタ自動車株式会社 アルミナ−セリア複合酸化物微粒子の合成方法
CN101734707A (zh) * 2009-12-24 2010-06-16 中国科学院生态环境研究中心 一种低温催化氧化邻二甲苯的高稳定性纳米氧化铈材料及其应用
US20140087937A1 (en) * 2012-09-21 2014-03-27 National Yunlin University Of Science & Technology Catalytic Article for Decomposing Volatile Organic Compound and Method for Preparing the Same
US9511352B2 (en) * 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
CN103969273B (zh) * 2013-01-30 2016-05-18 中国建材检验认证集团股份有限公司 X射线荧光分析的α系数测定方法
KR101492102B1 (ko) * 2013-05-02 2015-02-10 한국에너지기술연구원 연료전지용 합금 촉매 제조방법 및 이에 따라 제조된 연료전지용 합금 촉매
CN103731966B (zh) * 2014-01-03 2015-12-30 中国原子能科学研究院 一体化荧光发生装置
KR101568247B1 (ko) * 2014-06-02 2015-11-12 한국에너지기술연구원 질소 도핑된 탄소 표면을 갖는 금속-탄소 하이브리드 복합체 및 그 제조방법
CN204789416U (zh) * 2015-07-03 2015-11-18 中国计量科学研究院 K荧光x射线辐射装置
CN104990946A (zh) * 2015-07-03 2015-10-21 中国计量科学研究院 K荧光x射线辐射装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2353573C2 (ru) * 2006-12-18 2009-04-27 Институт электрофизики Уральского отделения РАН Способ получения нанопорошков и устройство для его реализации
CN101784695B (zh) * 2007-07-23 2012-07-18 原子能委员会 通过化学气相沉积制备纳米复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bakiz B. et al., From cerium oxycarbonate to nanostructured ceria: relations between synthesis, thermal process and morphologies, Journal of crystal growth, vol.310, no.12, 2008, p.3056. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799468C1 (ru) * 2022-12-13 2023-07-05 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ получения композитных материалов на основе фосфата и оксида церия

Also Published As

Publication number Publication date
WO2017005042A1 (zh) 2017-01-12
AU2016289884B2 (en) 2018-10-11
US10441941B2 (en) 2019-10-15
CN105126808A (zh) 2015-12-09
GB2553479B (en) 2019-03-27
SG11201710338YA (en) 2018-01-30
GB2553479A (en) 2018-03-07
CN104990946A (zh) 2015-10-21
GB201720482D0 (en) 2018-01-24
US20180169622A1 (en) 2018-06-21
AU2016289884A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
RU2673801C1 (ru) Способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия
Zhao et al. Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition
Zhang et al. High-temperature oxidation behavior of CVD-SiC ceramic coating in wet oxygen and structural evolution of oxidation product: Experiment and first-principle calculations
CN104528787B (zh) 一种制备细粒径氧化铝粉末的方法
Loghman-Estarki et al. Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating
Stegemann et al. Thermal annealing effect on nitrogen-doped TiO2 thin films grown by high power impulse magnetron sputtering plasma power source
CN106998596B (zh) 用于制备电热膜的饱和溶液
Ma et al. The effect of Gd3+ and Ti4+ co-doping on the thermal radiation performance of (Sm1-xGdx) 2 (Hf1-xTix) 2O7 (0≤ x≤ 0.2) ceramic coatings
CN108689610A (zh) 一种铌掺杂二氧化钛镀膜玻璃及其制备方法
Ahlawat Influence of multi-step annealing on nanostructure and surface morphology of Y2O3: SiO2 powder
CN102070178A (zh) 基于水热技术调控制备氧化钇微纳米材料的方法
Lee et al. Large-area sodium titanate nanorods formed on titanium surface via NaOH alkali treatment
Qian et al. Corrosion behavior of Y2O3-doped mullite-ZrSiO4 coatings applied on C/C–SiC composites in the presence of moisture at temperatures of 1373–1773 K
Zhang et al. Stoichiometric controlling of boron carbide thin films by using boron-carbon dual-targets
Zhang et al. The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO2 thin film
Pietrzyk et al. Plasma enhanced aerosol–gel deposition of Al2O3 coatings
Kostyukov et al. Study of t-ZrO2: Eu3+ nanophosphor obtained by laser vaporisation using a cw CO2 laser
Prusov et al. SnO 2@ MCC and SnO 2@ C Composites: Synthesis and Properties
JP2004244303A (ja) 酸素ラジカル含有カルシウムアルミネート膜の製造方法と積層体
Dukel’skiĭ et al. Mixed oxide (MgO–Y 2 O 3) coatings fabricated on glasses from nitrate solutions
Liu et al. Surface doping of TiO2 powders via a gas–melt reaction using thermal plasma as an excitation source
Fitz-Gerald et al. Nanometric dry powder coatings using a novel process
CN207193380U (zh) 具有复合渗层的钛铝合金件、具有金刚石涂层的钛铝合金件
Wang et al. Fabrication of TiO2 films on glass substrates by a pulsed dc reactive magnetron sputtering
Karslıoğlu et al. The effect of substrate temperature on the microstructural properties of nanocrystalline tin oxide coatings produced by APCVD

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200507