RU2673037C2 - Теплоаккумулирующее устройство - Google Patents

Теплоаккумулирующее устройство Download PDF

Info

Publication number
RU2673037C2
RU2673037C2 RU2017117111A RU2017117111A RU2673037C2 RU 2673037 C2 RU2673037 C2 RU 2673037C2 RU 2017117111 A RU2017117111 A RU 2017117111A RU 2017117111 A RU2017117111 A RU 2017117111A RU 2673037 C2 RU2673037 C2 RU 2673037C2
Authority
RU
Russia
Prior art keywords
heat storage
storage device
heat
granules
working substance
Prior art date
Application number
RU2017117111A
Other languages
English (en)
Other versions
RU2017117111A3 (ru
RU2017117111A (ru
Inventor
Алексей Григорьевич Ткачев
Александр Викторович Щегольков
Алексей Викторович Щегольков
Original Assignee
Общество с ограниченной ответственностью "НаноТехЦентр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "НаноТехЦентр" filed Critical Общество с ограниченной ответственностью "НаноТехЦентр"
Priority to RU2017117111A priority Critical patent/RU2673037C2/ru
Publication of RU2017117111A3 publication Critical patent/RU2017117111A3/ru
Publication of RU2017117111A publication Critical patent/RU2017117111A/ru
Application granted granted Critical
Publication of RU2673037C2 publication Critical patent/RU2673037C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Теплоаккумулирующее устройство относится к области теплотехники, более конкретно к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения комфортных условий дыхания при использовании изолирующих дыхательных аппаратов на химически связанном кислороде путем охлаждения вдыхаемого воздуха, а также для достижения требуемого теплового режима источников энергии (ИЭ) при их циклической работе в качестве их защиты от кратковременных воздействий внешних тепловых потоков. Теплоаккумулирующее устройство содержит корпус, имеющий одну или несколько полостей, заполненных теплоаккумулирующим фазопереходным рабочим веществом. Новым является выполнение фазопереходного рабочего вещества в виде гидрофобных гранул, содержащих углеродный наноматериал (УНМ) и магнитный дисперсный материал, заключенные в герметичную пленочную оболочку, заполненную гидрофильной жидкостью, сообщающуюся с охлаждаемой средой. Гранулы содержат смесь из низкоплавких парафинов из ряда СН-СНс температурой плавления 16,7-36,7°С, УНМ выполнен в виде углеродных нанотрубок «Таунит» с металлоксидным катализатором. Техническими результатами изобретения являются улучшение массогабаритных характеристик, сохранение постоянной величины энтальпии от цикла к циклу, повышение надежности работы устройства. 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области теплотехники, более конкретно к теплоаккумулирующим устройствам, использующим скрытую теплоту фазовых переходов рабочего вещества для обеспечения комфортных условий дыхания при использовании изолирующих дыхательных аппаратов на химически связанном кислороде путем охлаждения вдыхаемого воздуха, а также для достижения требуемого теплового режима источников энергии (ИЭ) при их циклической работе, в качестве их защиты от кратковременных воздействий внешних тепловых потоков.
Теплоаккумулирующие устройства обеспечивают тепловой режим радиоэлектронной аппаратуры (РЭА). Для аккумулирования тепла в них наряду с теплоемкостью конструкции корпуса устройства используются обратимые эндотермические процессы плавления рабочих веществ, сопровождающиеся дополнительным поглощением тепла при фазовых превращениях этих веществ из твердого в жидкое состояние после достижения ими температуры фазового перехода. Такие устройства, как правило, представляют собой тонкостенные металлические емкости конечных геометрических размеров с гладкой или оперенной поверхностью, герметичный объем которых заполняется плавящимся рабочим веществом (1. В.А. Алексеев. Охлаждение радиоэлектронной аппаратуры с использованием плавящихся веществ. Под ред. А.В. Ревякина, М.: Энергия, 1975. с. 6, 2. С.П. Нечепаев, В.В. Бучок. Разработка конструкции малогабаритного блока РЭА и системы его охлаждения на основе плавящегося вещества. - Ж. Вопросы радиоэлектроники. Серия: Общие вопросы радиоэлектроники (Тепловые режимы, термостатирование и охлаждение радиоэлектронной аппаратуры), выпуск 12, 1987. с. 20-25, 3. И.А. Зеленев, А.Ф. Клишин, В.М. Ковтуненко, А.Ф. Шабарчин. Методы обеспечения теплового режима автоматических межпланетных станций «Венера» в атмосфере планеты. - Ж. Космические исследования, Т.XXVI, выпуск 1, М.: Наука, 1988, с. 33-36.
После окончания работы РЭА или прекращения воздействия пиковых внешних тепловых потоков происходит остывание рабочего вещества и его затвердевание вследствие теплообмена с окружающей средой. Время между повторными включениями РЭА должно быть таким, чтобы рабочее вещество успело полностью затвердеть к началу следующего цикла включения аппаратуры. Плавящееся рабочее вещество в устройстве располагается в емкостях или полостях, которые должны быть герметичными для предотвращения выливания из них расплавленной массы рабочего вещества. Обычно емкость выполняется из металлического корпуса с высокой теплопроводностью (чаще из алюминиевых сплавов), а ИЭ или весь блок с РЭА размещаются снаружи или внутри емкости.
Применительно к использованию в аппаратах для защиты органов дыхания для снижения температуры газовоздушной среды на вдохе из-за ее нагрева при химическом поглощении диоксида углерода и влаги химическим поглотителем из выдыхаемого воздуха, возможны следующие варианты работы устройства:
- охлаждение воздуха в режиме рекуперативного теплообменника, при котором выдыхаемый пользователем воздух охлаждает плавящееся рабочее тело ниже температуры затвердевания и при вдохе охлажденное рабочее тело снижает температуру от регенерированного воздуха до комфортного уровня:
- второй вариант предусматривает охлаждение газовоздушной среды на вдохе исключительно за счет тепла фазового перехода, так как теплосодержание хотя и нагретой, но обезвоженной газовоздушной среды вполне укладывается в весовые характеристики аппарата.
Известна конструкция теплоаккумулирующего устройства, герметичный корпус которого выполнен в виде радиатора из алюминиевого сплава, наполненного плавящимся рабочим веществом (в данном случае парафином). В.А. Алексеев. Охлаждение радиоэлектронной аппаратуры с использованием плавящихся веществ. Под ред. А.В. Ревякина, М.: Энергия, 1975, стр. 71-72.
С помощью такой конструкции осуществляется отвод тепла от полупроводниковых приборов.
Известна конструкция теплоаккумулирующего устройства на основе фазопереходного рабочего вещества, представляющая собой корпус с заполненной натрием емкостью, разделенной на несколько герметичных отсеков с плоским основанием, служащим теплоприемником при работе электронного блока, размещенного на нем с хорошим тепловым контактом (США, патент №3328642, кл. 361/705, 1964 г.).
Основными недостатками вышеперечисленных конструкций являются:
- необходимость герметизации и, как следствие, сложная технология изготовления такого рода теплоаккумулирующих устройств, что приводит к ухудшению массогабаритных характеристик аппаратуры, работающей в пиковых режимах включения, и снижению надежности;
- наличие газовых областей во внутренних полостях конструкции, ухудшающих теплообмен.
Наиболее близким к предлагаемому изобретению является тепло-аккумулирующее устройство (пат. РФ №2306494, МПК F24H 7/00, опубл. 20.09.2007) на основе фазопереходного рабочего вещества, для обеспечения требуемого теплового режима источников энергии при их циклической работе, а также в качестве их защиты от кратковременных воздействий внешних тепловых потоков. Устройство содержит корпус, имеющий полости, заполненные теплоаккумулирующим фазопереходным рабочим веществом, в качестве рабочего вещества использована композиция формоустойчивого материала, у которого фазопереходное вещество не вытекает из объема этого материала после расплавления и пребывания в жидком состоянии в процессе перегрева.
Основными недостатками вышеперечисленных конструкций являются:
- необходимость герметизации и, как следствие, сложная технология изготовления такого рода теплоаккумулирующих устройств, что приводит к ухудшению массогабаритных характеристик аппаратуры, работающей в пиковых режимах включения, и снижению надежности.
Задачами изобретения являются уменьшение массы теплоаккумулирующего устройства, упрощение технологии его изготовления, улучшение теплообмена, обеспечение стабильной работы устройства за счет отказа от герметизации корпуса.
Техническими результатами настоящего изобретения являются
- улучшение массогабаритных характеристик, что особенно актуально для бортовой аппаратуры;
- сохранение постоянной величины энтальпии от цикла к циклу;
- повышение надежности.
Указанные технические результаты достигаются тем, что в тепло-аккумулирующем устройстве, содержащем корпус, имеющий одну или несколько полостей, заполненных теплоаккумулирующим фазопереходным рабочим веществом, фазопереходное рабочее вещество выполнено в виде гидрофобных гранул, содержащих углеродный наноматериал (УНМ) и магнитный дисперсный материал, заключенные в герметичную пленочную оболочку, заполненную гидрофильной жидкостью, сообщающуюся с охлаждаемой средой.
Гранулы могут содержать смесь из низкоплавких парафинов из ряда С16Н3620Н42 с температурой плавления 16,7-36,7°С.
УНМ могут быть выполнены в виде углеродных нанотрубок «Таунит».
Магнитным материалом может служить оксид никеля, заключенный в УНМ в процессе каталитического синтеза УНМ.
В состав гранул может быть также введен дисперсный магнитный порошок из ферромагнетиков, предпочтительно магнетита.
В качестве гидрофильной жидкости могут использоваться гидрогели.
Корпус может быть выполнен из немагнитного материала и содержать снабженный устройством для изменения полярности электромагнит, либо постоянный магнит, установленный с возможностью изменения пространственного положения.
Выполнение фазопереходного рабочего вещества выполнено в виде гидрофобных гранул, содержащих углеродный наноматериал и магнитный дисперсный материал, заключенные в герметичную пленочную оболочку, заполненную гидрофильной жидкостью, сообщающуюся с охлаждаемой средой обеспечивают изменение спина гранул при поглощении тепла, что обеспечивает увеличение скорости теплопереноса выше скорости переноса за счет теплопроводности под действием только градиента тепла.
Выполнение гранул содержащими смесь из низкоплавких парафинов из ряда С16Н3620Н42 с температурой плавления 16,7-36,7°С обеспечивают достижение заданной температуры плавления эвтектики путем подбора двух или более марок парафина.
Использование УНМ в виде углеродных нанотрубок «Таунит» обеспечивает фиксацию температуры плавления смеси, повышение ее теплопроводности и поддержание формы гранул при их разогреве.
Использование в качестве магнитного материала металлоксидного катализатора синтеза УНТ в виде оксида никеля, заключенного в УНТ в процессе каталитического синтеза обеспечивает упрощение технологии изготовления УНТ.
Введение в состав гранул дисперсного магнитного порошка из ферромагнетиков, предпочтительно магнетита, либо железного порошка обеспечивает применения других модификаций УНТ «Таунит» со слабыми магнитными свойствами металлоксидного катализатора, либо вообще без катализатора.
Использование в качестве гидрофильной жидкости гидрогелей обеспечивает возможность изменения спина (разворота) гранул под действием магнитных сил. При этом с охлаждаемой средой будут взаимодействовать разогретые стороны гранул, что увеличивает скорость переноса тепла, создавая при этом дополнительный эффект, заключающийся в возможности уменьшения массы рабочего тела.
Выполнение корпуса из немагнитного материала и снабжение его устройством для изменения полярности электромагнита, либо постоянного магнита, установленного с возможностью изменения пространственного положения, позволяет управлять положением гранул при работе устройства.
Таким образом, обеспечивается стабильная работа теплоаккумулирующего устройства.
Примеры выполнения предлагаемого устройства иллюстрируются чертежами, представленными на фиг. 1 и 2.
На фиг. 1 показан общий вид теплоаккумулирующего устройства при начальном положении теплопоглощающих гранул.
На фиг. 2 показано то же, что на фиг. 1, при развороте гранул на 180 градусов.
Перечень позиций:
1. корпус;
2. вход линии подачи охлаждаемой среды;
3. выход линии подачи охлаждаемой среды;
4. вход охлаждающей среды;
5. выход охлаждающей среды;
6. оболочка;
7. гранула;
8. гидрогель;
9. магнитопровод;
10. катушка электромагнита.
Устройство содержит корпус 1, выполненный из немагнитного материала (аустенитная сталь, алюминий) либо пластмассы (полипропилен, поликарбонат и др. Корпус 1 снабжен патрубками: вход линии подачи охлаждаемой среды 2, выход линии подачи охлаждаемой среды 3, вход охлаждающей среды 4 и выход охлаждающей среды 5. В полости корпуса 1 помещена оболочка 6, выполненная из полиэтиленовой, фторопластовой либо полиимидной пленки (определяется характеристиками охлаждаемой среды). В оболочку 6 помещены гранулы 7 из смеси низкоплавких парафинов из ряда С16Н3620Н42 с температурой плавления 16,7-36,7°С, модифицированной углеродными нанотрубками «Таунит» с магнитным материалом в виде оксида никеля, заключенного в УНТ в процессе каталитического синтеза. В состав гранул может быть введен дисперсный магнитный порошок из ферромагнетиков, предпочтительно магнетита. Пространство между гранулами 7 в оболочке 6 заполнено гидрогелем 8 производства ф. «Гельтек» в виде «Ультрагеля» высокой, средней и пониженной вязкости (бесцветный), предназначенного для ультразвуковых исследований, допплерографии и терапии. На внешней поверхности корпуса 1 закреплен магнитопровод 9, соединенный с катушкой электромагнита 10, соединенного с блоком питания (не показан). Вместо электромагнита может использоваться компактный постоянный магнит, предпочтительно ниобиевый, но его применение требует дополнительного устройства для изменения полярности путем его разворота.
Устройство работает следующим образом.
В качестве примера ниже описан рекуперативный режим работы устройства при использовании в средствах защиты органов дыхания. Выдыхаемый воздух через вход линии подачи охлаждаемой среды 2 поступает в корпус 1 Корпус и расположенный в нем оболочка 6 принимают температуру, близкую к температуре пользователя - около 37°С. Эту температуру принимает и прилегающий к оболочке 6 слой гранул 7 и гидрогель 8. Далее поток газовоздушной смеси через выход линии подачи охлаждаемой среды 3 поступает на химическую регенерацию, в процессе которой он очищается от диоксида углерода и воды и при этом разогревается до температуры выше 60°С. При вдохе газовоздушная смесь через патрубок 3 вновь поступает в полость аппарата 1, в которой отдает избыток тепла через оболочку 6 слою гранул 7 и гидрогелю 8 и охлажденная до комфортной температуры порядка 40-45°С поступает на вдох пользователя. Так как система работает с накоплением тепла, происходит постепенное повышение температуры вдыхаемой газовоздушной смеси. Для снижения температуры на вдохе включается питание катушки электромагнита 10, магнитное поле через магнитопровод 9 воздействует на гранулы 7, которые при взаимодействии с магнитным материалом гранул разворачиваются вокруг своей оси, как показано на фиг. 2. Процесс охлаждения газовоздушной среды повторяется как описано выше, но уже с одновременным отводом тепла через заднюю стенку оболочки 6 за счет охлаждения хладагентом (например, выдыхаемым воздухом) проходящим через патрубки вход охлаждающей среды 4 и выход охлаждающей среды 5. Частота переключений катушки электромагнита 10 зависит от степени нагрузки пользователя и времени защитного действия.
Применительно к блоку РЭА, разогреваемого за счет тепла, получаемого от ИЭ. При разогреве гранул до температуры плавления также меняется полярность катушки электромагнита и процесс охлаждения ведется аналогично вышеописанному. При выключении ИЭ происходит остывание гранул 7 и их затвердевание за счет передачи теплоты от ИЭ и корпуса в окружающую среду за более длительный период времени. При этом выделяется количество теплоты, поглощенное теплоаккумулирующим устройством в период работы ИЭ.
Изобретение обеспечивает улучшение массогабаритных характеристик, сохранение постоянной величины энтальпии от цикла к циклу; повышение надежности работы устройства.

Claims (7)

1. Теплоаккумулирующее устройство, содержащее корпус, имеющий одну или несколько полостей, заполненных теплоаккумулирующим фазопереходным рабочим веществом, отличающееся тем, что фазопереходное рабочее вещество выполнено в виде гидрофобных гранул, содержащих углеродный наноматериал и магнитный дисперсный материал, заключенный в герметичную пленочную оболочку, заполненную гидрофильной жидкостью, сообщающуюся с охлаждаемой средой.
2. Теплоаккумулирующее устройство по п. 1, отличающееся тем, что гранулы содержат смесь из низкоплавких парафинов из ряда С16Н3620Н42 с температурой плавления 16,7-36,7°С.
3. Теплоаккумулирующее устройство по п. 1, отличающееся тем, что УНМ выполнен в виде углеродных нанотрубок «Таунит».
4. Теплоаккумулирующее устройство по п. 1, отличающееся тем, что магнитным материалом является оксид никеля, заключенный в УНМ в процессе каталитического синтеза УНМ.
5. Теплоаккумулирующее устройство по п. 1, отличающееся тем, что в состав гранул введен дисперсный магнитный порошок из ферромагнетиков, предпочтительно магнетита.
6. Теплоаккумулирующее устройство по п. 1, отличающееся тем, что в качестве гидрофильной жидкости используют гидрогели.
7. Теплоаккумулирующее устройство по п. 1, отличающееся тем, что корпус выполнен из немагнитного материала и содержит снабженный устройством для изменения полярности электромагнит либо постоянный магнит, установленный с возможностью изменения пространственного положения.
RU2017117111A 2017-05-16 2017-05-16 Теплоаккумулирующее устройство RU2673037C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017117111A RU2673037C2 (ru) 2017-05-16 2017-05-16 Теплоаккумулирующее устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017117111A RU2673037C2 (ru) 2017-05-16 2017-05-16 Теплоаккумулирующее устройство

Publications (3)

Publication Number Publication Date
RU2017117111A3 RU2017117111A3 (ru) 2018-11-19
RU2017117111A RU2017117111A (ru) 2018-11-19
RU2673037C2 true RU2673037C2 (ru) 2018-11-21

Family

ID=64317085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017117111A RU2673037C2 (ru) 2017-05-16 2017-05-16 Теплоаккумулирующее устройство

Country Status (1)

Country Link
RU (1) RU2673037C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708577C1 (ru) * 2019-04-15 2019-12-09 Общество с ограниченной ответственностью "Парафин Энерджи" Способ получения парафиновых теплоаккумулирующих материалов и устройство для его осуществления
RU2735507C1 (ru) * 2019-12-20 2020-11-03 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Устройство индивидуальной защиты от ожогов органов дыхания

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2306494C1 (ru) * 2005-12-14 2007-09-20 Федеральное государственное унитарное предприятие Научно-исследовательский институт точных приборов Теплоаккумулирующее устройство
WO2011135501A2 (en) * 2010-04-29 2011-11-03 Magaldi Industrie S.R.L. Storing and transport device and system with high efficiency
US20120227926A1 (en) * 2009-11-16 2012-09-13 Sunamp Limited Energy storage systems
RU2518920C2 (ru) * 2012-07-03 2014-06-10 Общество с ограниченной ответственностью "НаноТехЦентр" Электротеплоаккумулирующий нагреватель
RU2547680C1 (ru) * 2013-11-26 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Аккумулятор теплоты с фазопереходным материалом

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2306494C1 (ru) * 2005-12-14 2007-09-20 Федеральное государственное унитарное предприятие Научно-исследовательский институт точных приборов Теплоаккумулирующее устройство
US20120227926A1 (en) * 2009-11-16 2012-09-13 Sunamp Limited Energy storage systems
WO2011135501A2 (en) * 2010-04-29 2011-11-03 Magaldi Industrie S.R.L. Storing and transport device and system with high efficiency
RU2518920C2 (ru) * 2012-07-03 2014-06-10 Общество с ограниченной ответственностью "НаноТехЦентр" Электротеплоаккумулирующий нагреватель
RU2547680C1 (ru) * 2013-11-26 2015-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Аккумулятор теплоты с фазопереходным материалом

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2708577C1 (ru) * 2019-04-15 2019-12-09 Общество с ограниченной ответственностью "Парафин Энерджи" Способ получения парафиновых теплоаккумулирующих материалов и устройство для его осуществления
RU2735507C1 (ru) * 2019-12-20 2020-11-03 Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления Дальневосточного отделения Российской академии наук (ИАПУ ДВО РАН) Устройство индивидуальной защиты от ожогов органов дыхания

Also Published As

Publication number Publication date
RU2017117111A3 (ru) 2018-11-19
RU2017117111A (ru) 2018-11-19

Similar Documents

Publication Publication Date Title
US6105659A (en) Rechargeable thermal battery for latent energy storage and transfer
EP0015106B1 (en) Absorption-desorption system
RU2673037C2 (ru) Теплоаккумулирующее устройство
Hu et al. Forced convective heat transfer characteristics of solar salt-based SiO2 nanofluids in solar energy applications
Hathaway et al. Experimental investigation of uneven-turn water and acetone oscillating heat pipes
Kim et al. Compressor-driven metal-hydride heat pumps
Klein et al. Development of a two-stage metal hydride system as topping cycle in cascading sorption systems for cold generation
Weckerle et al. Numerical optimization of a plate reactor for a metal hydride open cooling system
RU2306494C1 (ru) Теплоаккумулирующее устройство
US20050072786A1 (en) Hydrogen storage container
JP6434867B2 (ja) 蓄熱材充填容器、及び蓄熱槽
Almadhoni et al. A review—An optimization of macro-encapsulated paraffin used in solar latent heat storage unit
JP2007285627A (ja) 蓄熱材の凝固融解促進方法及び蓄熱装置
CN110360865A (zh) 一种翅片式组合相变材料蓄热球
CA1187073A (en) Thermally reversible heat exchange unit
JPH0288404A (ja) 金属水素化合物を用いた熱交換器
ES2304344T3 (es) Preparacion de materiales refrigerantes.
RU2003129766A (ru) Нейтронопродуцирующий мишенный узел
JPH09324960A (ja) 水素吸蔵合金を用いた発熱または吸熱方法および装置
JPS6136696A (ja) 定常熱発生用熱交換器
JP2006177434A (ja) 水素貯蔵・供給装置
JP2019157830A (ja) 蓄熱システム
JPS5950300A (ja) 金属水素化物容器
JPH01197301A (ja) 水素貯蔵容器
JPH04160001A (ja) 水素化金属の水素吸蔵放出方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190517