RU2672300C2 - Перестановочный декодер с памятью - Google Patents
Перестановочный декодер с памятью Download PDFInfo
- Publication number
- RU2672300C2 RU2672300C2 RU2017114324A RU2017114324A RU2672300C2 RU 2672300 C2 RU2672300 C2 RU 2672300C2 RU 2017114324 A RU2017114324 A RU 2017114324A RU 2017114324 A RU2017114324 A RU 2017114324A RU 2672300 C2 RU2672300 C2 RU 2672300C2
- Authority
- RU
- Russia
- Prior art keywords
- block
- output
- input
- ranking
- unit
- Prior art date
Links
- 239000011159 matrix material Substances 0.000 claims abstract description 37
- 230000009466 transformation Effects 0.000 claims abstract description 13
- 238000012937 correction Methods 0.000 claims abstract description 10
- 238000000844 transformation Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract 1
- 239000013598 vector Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 230000009897 systematic effect Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/27—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
- H03M13/2703—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
- H03M13/271—Row-column interleaver with permutations, e.g. block interleaving with inter-row, inter-column, intra-row or intra-column permutations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/3784—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 for soft-output decoding of block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/20—Arrangements for detecting or preventing errors in the information received using signal quality detector
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Error Detection And Correction (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Изобретение относится к области связи и может быть использовано в системах обмена данными. Техническим результатом является сокращение объема памяти для хранения эталонных матриц. Устройство содержит блок приема, блок мягких решений символов, накопитель оценок, блок упорядочения оценок, блок эквивалентного кода, блок сравнения и обратных перестановок, блок исправления стираний, блок ранжирования, блок ранжированных отрицательных решений, блок ранжированных положительных решений и блок матричных преобразований. 1 ил., 2 табл.
Description
Изобретение относится к технике связи и может использоваться при проектировании новых и модернизации существующих систем обмена данными.
Заявленное устройство расширяет арсенал мягкого декодирования двоичных избыточных блоковых кодов за счет исправления доли стираний, кратность которых выходит за пределы минимального кодового расстояния. Для этого используются известные свойства эквивалентных кодов (см. У. Питерсон, Э. Уэлдон. Коды, исправляющие ошибки. Ред. Р.Л. Добрушин и С.И. Самойленко. М.: Мир, 1976. - С. 76-78). Для двоичных кодов реализация подобных свойств может иметь как положительный, так и отрицательный исход, который зависит от конфигурации конкретных перестановок принятых символов. Положительный результат формируется в том случае, когда выполненная по результатам оценки мягких решений перестановка символов принятой кодовой комбинации не приводит к линейной зависимости столбцов адекватно переставленной порождающей матрицы. В противном случае формирование эквивалентного кода положительного результата не дает. Количество положительных решений из общего множества возможных решений составляет большую часть.
Близким по технической сущности к заявленному устройству является способ мягкого декодирования систематических блоковых кодов, в основе которого лежит процедура ранжирования мягких решений символов (МРС) принятой кодовой комбинации, выделения из них наиболее надежных символов по показателям МРС, переход к эквивалентному коду с последующим вычислением вектора ошибок, действовавшего на принятый кодовый вектор в процессе передачи его по каналу связи (см. Р. Морелос-Сарагоса. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. М., Техносфера, 2005, С. 213, …, 216). Достоинством способа является возможность исправления стираний не только кратности (d-1), но и большей доли стираний кратности (n-k), где d - метрика Хемминга, n - число символов в кодовом векторе, k - число информационных разрядов в нем.
Недостатком указанного способа является необходимость вычисления для каждой принятой кодовой комбинации определителя переставленной порождающей матрицы кода в соответствии с показателями МРС для ее первых k столбцов. При невырожденности указанной матрицы для нее выполняется поиск обратной матрицы и вычисление на этой основе порождающей матрицы эквивалентного кода в систематической форме (см. Гладких А.А. Основы теории мягкого декодирования избыточных кодов в стирающем канале связи. Ульяновск: УлГТУ, 2010, С. 286-295).
Кроме того, известен способ мягкого декодирования систематических кодов (см. патент РФ 2444127), в котором с целью снижения вычислительных затрат в алгоритме поиска обратной матрицы вычисление матрицы эквивалентного кода при приведении ее к систематическому виду используют прием кластеризации множества разрешенных кодовых векторов, что позволяет обрабатывать определители матриц размерности не (k×k), а размерности (k-ƒ)×(k-ƒ), где ƒ - число бит, отводимых на нумерацию (в двоичной системе) формируемых в коде кластеров. Указанная процедура обеспечивает незначительное снижение вычислительных затрат, поскольку в значительной степени зависит от выбранного параметра ƒ, где 1≤ƒ<k.
Все указанные способы обладают одним общим недостатком, который заключается в том, что ряд кодовых комбинаций в процессе обработки данных могут повторяться, и не только в текущем сеансе, но и по итогам предыдущих сеансов связи. Однако не один из указанных способов не учитывает этот факт и не хранит в своей памяти образец матрицы эквивалентного кода комбинации, когда-либо переданной в системе обмена данными.
Более того, всевозможные образцы переставленных порождающих матриц с положительным и отрицательным исходом могут быть вычислены с помощью внешних устройств и заранее внесены в память декодера. Сравнивая текущие перестановки символов кодовых векторов с имеющимися образцами, возможно заявить, будет ли исход текущих преобразований кодового вектора положительным или отрицательным, без производства сложных матричных вычислений.
Известно устройство - декодер с упорядоченной статистикой символов (см. патент РФ 2490804), в котором частично решается задача запоминания комбинаций номеров переставленных столбцов порождающей матрицы основного кода, определитель которых указывает на вырожденность переставленных матриц и невозможность реализовать декодирование с использованием эквивалентного кода. Следовательно, для невырожденных матриц процедура поиска переставленных порождающих матриц и приведение их к систематической форме для получения эквивалентного кода выполняется в декодере даже в том случае, если образец переставленного вектора уже обрабатывался декодером.
Известно также устройство - декодер с повышенной корректирующей способностью (см. патент РФ 2438252), которое практически реализует способ, описанный в работе Р. Морелос-Сарагосы, с незначительным уточнением процедуры получения МРС. В таком декодере, по сути, сохраняются все недостатки, характерные для решений по патентам 2444127, 2490804 и 2580797.
Близким по технической сущности к заявленному декодеру является устройство по патенту №2438252, когда в блоке приема, первый выход которого через последовательно включенные блок мягких решений символов, накопитель оценок и блок упорядочения оценок подключен к первому входу блока эквивалентного кода, второй выход которого подключен к другому входу блока сравнения и обратных перестановок, выход которого подключен ко второму входу блока исправления стирания, второй выход блока приема подключен к первому входу блока исправления стирания.
Достоинством прототипа является возможность мягкого декодирования комбинаций двоичного кода за пределами метрики Хемминга.
Недостатком прототипа является выполнение повторных действий по вычислению порождающей матрицы эквивалентного кода для комбинаций переставленных столбцов порождающей матрицы основного кода, даже если какая-либо комбинация подобных перестановок уже обрабатывалась декодером ранее. Кроме того, прототип не способен реализовать процедуру предварительного вычисления переставленных матриц, что является, по сути, процедурой обучения и подготовки базы данных для фиксации перестановок с положительным или отрицательным исходами в системе поиска невырожденной матрицы эквивалентного кода.
Технический результат достигается тем, что блок приема, первый выход которого через последовательно включенные блок мягких решений символов, накопитель оценок и блок упорядочения оценок подключен к первому входу блока эквивалентного кода, второй выход которого подключен к другому входу блока сравнения и обратных перестановок, выход которого подключен ко второму входу блока исправления стирания, при этом второй выход блока приема подключен к первому входу блока исправления стирания, отличается тем, что дополнительно введены блок ранжирования, блок ранжированных отрицательных решений, блок ранжированных положительных решений и блок матричных преобразований, выход которого подключен к одному входу блока сравнения и обратных перестановок, при этом первый выход блока эквивалентного кода подключен к одному входу блока ранжирования, первый выход которого через блок ранжированных отрицательных решений подключен к другому входу блока ранжирования, тогда как второй выход этого блока подключен ко второму входу блока эквивалентного кода, а третий выход блока ранжирования подключен ко второму входу блока матричных преобразований и четвертый выход блока ранжирования через блок ранжирования положительных решений подключен к первому входу блока матричных преобразований, а его выход подключен к одному входу блока сравнения и обратных перестановок.
Структурная схема представлена на фиг. 1. Структурная схема декодера содержит блок приема 1, первый выход которого через последовательно включенные блок мягких решений символов 2, накопитель оценок 3 и блок упорядочения оценок 4 подключен к первому входу блока эквивалентного кода 5. Второй выход блока эквивалентного кода 5 подключен к другому входу блока сравнения и обратных перестановок 7, выход которого подключен ко второму входу блока исправления стираний 6. Второй выход блока приема 1 подключен к первому входу блока исправления стираний 6. Первый выход блока эквивалентного кода 5 подключен к одному входу блока ранжирования 9, а первый выход этого блока через вход блока ранжированных отрицательных решений 8 и его выход подключен к другому входу блока ранжирования 9. Второй выход блока ранжирования 9 подключен ко второму входу блока эквивалентного кода 5, а третий выход блока ранжирования 9 подключен ко второму входу блока матричных преобразований 11, и выход этого блока подключен к одному входу блока сравнения и обратных перестановок 7. Четвертый выход блока ранжирования 9 через блок ранжированных положительных решений 10 подключен к первому входу блока матричных преобразований 11.
Работу предлагаемого устройства рассмотрим на примере кода Хэмминга (7, 4, 3) с истиной порождающей матрицей G вида
Столбцы истиной матрицы G нумеруются от 1 до 7 слева направо. Пусть передатчик передает информационный вектор V и нф =1010, тогда в канал связи будет отправлен вектор V кан =V инф ×G=1010011. Пусть вектор ошибок V e имеет вид V e =1100100. В ходе фиксации вектора приема V пр в блоке приема 1 и выработки для каждого бита этого вектора мягких решений в блоке мягких решений символов 2 в накопителе оценок 3 фиксируется последовательность жестких решений символов и соответствующих им целочисленных МРС вида
Последовательность МРС в блоке 2 формируется по правилу
где ρ - интервал стирания; Ев - энергия сигнала, приходящаяся на один информационный бит; Z - уровень принятого модулируемого параметра (сигнала); λmах - фиксированная оценка МРС с максимальным значением, как правило, определяемая конструктором декодера (см. А.А. Гладких. Основы теории мягкого декодирования избыточных кодов в стирающем канале связи, Ульяновск. - 2010 с. 211). В примере λmах=7. В блоке упорядочения оценок 4 вектор V3 после перестановок жестких решений по убыванию и соответствующих им МРС принимает вид
При этом в ходе упорядочения оценок формируется перестановочная матрица Р, которая в последующем через блок эквивалентного кода 5 поступает в блок сравнения и обратных перестановок для осуществления обратных перестановок с использованием транспонированной матрицы РT.
Одновременно с этим блок 5 получает переставленную последовательность номеров столбцов истиной матрицы G в порядке убывания значений МРС в виде V5 → 6743251.
Для последующей обработки данных важны первые четыре номера этой последовательности (6 7 4 3). Для быстрого поиска положительного или отрицательного решения по данной перестановке в блоке 9 указанная последовательность ранжируется к виду (3 4 6 7). Все упорядоченные последовательности отрицательных решений хранятся в блоке 8, а упорядоченные значения ранжированных положительных решений хранятся в блоке 10. Упорядоченные последовательности могут быть подсчитаны заранее и введены соответственно в блоки 8 и 10. Для используемого в примере кода все сочетания номеров отрицательных решений представлены в таблице 1, а положительных решений - в таблице 2.
Для любого ранжированного сочетания решений из таблицы 1 справедливы будут всевозможные перестановки, общее число которых определяется как k!. Например, для первой позиции таблицы: 1253; 1325; 1352; …; 5123.
Общее число различных сочетаний номеров столбцов для блокового кода определяется выражением вида . Тогда . Следовательно, с учетом показателей таблицы 1 число положительных решений в таблице 2 должно быть равным 28.
Сравнивая значения номеров столбцов, поступивших из блока 5 в виде (6 7 4 3) и приведенных в блоке 9 к виду (3 4 6 7), со значениями таблицы 1, декодер устанавливает отсутствие такой комбинации в отрицательных решениях. Сравнивая это же значение (3 4 6 7) с ранжированными положительными решениями, декодер находит аналогичную комбинацию в памяти блока 10 и приступает к формированию порождающей матрицы эквивалентного кода. На оставшихся (n-k) позициях обрабатываемого вектора могут быть только номера символов, не вошедшие в первые k номеров. Если их упорядочить по возрастанию, то получится эталонная переставленная матрица некоторого эквивалентного кода. Такими номерами в примере является последовательность (1 2 5). Образцы эталонных матриц в систематической форме для всех 28 элементов из таблицы 2 хранятся в блоке матричных преобразований. Для приведенного примера эталонная матрица G3467125 в систематическом виде имеет вид
С учетом номеров строк и столбцов проверочной части матрицы.
В блок матричных преобразований 11 через третий выход блока ранжирования 9 поступают данные о текущей последовательности перестановок в виде (6743251). В блоке 11 по первым k элементам сортируются строки эталонной матрицы, по оставшимся (n-k) элементам сортируются столбцы проверочной части матрицы.
Умножая надежную часть вектора (1 1 0 1) из V4 на , в блоке сравнения и обратных перестановок 7 получают вектор эквивалентного кода вида Vэкв=1101101. Складывая и умножая результат сравнения на РT, в блоке 7 получают истинный вектор ошибок, действовавший в канале связи в момент передачи вектора V кан или V e =1100100. Значение этого вектора позволяет исправить стирания в блоке исправления стираний 6.
Предложенное устройство в полной мере использует свойство линейных преобразований матриц и сокращает объем памяти для хранения эталонных матриц в k!×(n-k)! раз. При этом максимально используется введенная в код избыточность и исключаются такие матричные операции, как вычисление определителей и последующий поиск порождающих матриц эквивалентных кодов и последующее приведение их к систематической форме.
Claims (1)
- Перестановочный декодер с памятью, содержащий блок приема, первый выход которого через последовательно включенные блок мягких решений символов, накопитель оценок и блок упорядочения оценок подключен к первому входу блока эквивалентного кода, второй выход которого подключен к другому входу блока сравнения и обратных перестановок, выход которого подключен ко второму входу блока исправления стираний, при этом второй выход блока приема подключен к первому входу блока исправления стираний, отличающийся тем, что дополнительно введены блок ранжирования, блок ранжированных отрицательных решений, блок ранжированных положительных решений и блок матричных преобразований, выход которого подключен к одному входу блока сравнения и обратных перестановок, при этом первый выход блока эквивалентного кода подключен к одному входу блока ранжирования, первый выход которого через блок ранжированных отрицательных решений подключен к другому входу блока ранжирования, тогда как второй выход этого блока подключен ко второму входу блока эквивалентного кода, а третий выход блока ранжирования подключен ко второму входу блока матричных преобразований и четвертый выход блока ранжирования через блок ранжирования положительных решений подключен к первому входу блока матричных преобразований, а его выход подключен к одному входу блока сравнения и обратных перестановок.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017114324A RU2672300C2 (ru) | 2017-04-24 | 2017-04-24 | Перестановочный декодер с памятью |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017114324A RU2672300C2 (ru) | 2017-04-24 | 2017-04-24 | Перестановочный декодер с памятью |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2017114324A RU2017114324A (ru) | 2018-10-24 |
RU2017114324A3 RU2017114324A3 (ru) | 2018-10-24 |
RU2672300C2 true RU2672300C2 (ru) | 2018-11-13 |
Family
ID=63923076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017114324A RU2672300C2 (ru) | 2017-04-24 | 2017-04-24 | Перестановочный декодер с памятью |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2672300C2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2826701C1 (ru) * | 2024-03-28 | 2024-09-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский институт гражданской авиации имени Главного маршала авиации Б.П. Бугаева" | Перестановочный декодер с альтернативными решениями |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008087042A1 (en) * | 2007-01-19 | 2008-07-24 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Multiple-bases belief-propagation and permutation decoding for block codes |
US20100031122A1 (en) * | 2007-05-04 | 2010-02-04 | Harris Corporation | Serially Concatenated Convolutional Code Decoder with a Constrained Permutation Table |
RU2438252C1 (ru) * | 2010-05-07 | 2011-12-27 | Федеральный научно-производственный центр Открытое акционерное общество "Научно-производственное объединение "Марс" | Декодер с повышенной корректирующей способностью |
RU2444127C1 (ru) * | 2010-08-24 | 2012-02-27 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ мягкого декодирования систематических блоковых кодов |
RU2490804C1 (ru) * | 2012-07-03 | 2013-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Декодер с упорядоченной статистикой символов |
RU2580797C1 (ru) * | 2015-03-13 | 2016-04-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ мягкого декодирования блоковых кодов |
-
2017
- 2017-04-24 RU RU2017114324A patent/RU2672300C2/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008087042A1 (en) * | 2007-01-19 | 2008-07-24 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Multiple-bases belief-propagation and permutation decoding for block codes |
US20100031122A1 (en) * | 2007-05-04 | 2010-02-04 | Harris Corporation | Serially Concatenated Convolutional Code Decoder with a Constrained Permutation Table |
RU2438252C1 (ru) * | 2010-05-07 | 2011-12-27 | Федеральный научно-производственный центр Открытое акционерное общество "Научно-производственное объединение "Марс" | Декодер с повышенной корректирующей способностью |
RU2444127C1 (ru) * | 2010-08-24 | 2012-02-27 | Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ мягкого декодирования систематических блоковых кодов |
RU2490804C1 (ru) * | 2012-07-03 | 2013-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Декодер с упорядоченной статистикой символов |
RU2580797C1 (ru) * | 2015-03-13 | 2016-04-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ мягкого декодирования блоковых кодов |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2826701C1 (ru) * | 2024-03-28 | 2024-09-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский институт гражданской авиации имени Главного маршала авиации Б.П. Бугаева" | Перестановочный декодер с альтернативными решениями |
Also Published As
Publication number | Publication date |
---|---|
RU2017114324A (ru) | 2018-10-24 |
RU2017114324A3 (ru) | 2018-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10784992B2 (en) | Device and method for executing encoding | |
CN107370560B (zh) | 一种极化码的编码和速率匹配方法、装置及设备 | |
US10348336B2 (en) | System and method for early termination of decoding in a multi user equipment environment | |
CN106877973A (zh) | 极化码处理的方法及通信设备 | |
CN106712898B (zh) | 基于高斯迭代列消元的信道编码盲识别方法 | |
CN1189936A (zh) | 截尼格子码的最佳软输出译码器 | |
CN102694625A (zh) | 一种循环冗余校验辅助的极化码译码方法 | |
CN108092742B (zh) | 一种基于极化码的通信方法 | |
CN110048727B (zh) | 任意码长的Polar码编码方法 | |
CN107332571B (zh) | 一种Polar码构造方法及装置 | |
JP2020515140A5 (ru) | ||
CN104467875A (zh) | 一种rs码与删余卷积码级联码的参数盲识别方法 | |
CN111478885A (zh) | 一种非对称加解密方法、设备及存储介质 | |
RU2438252C1 (ru) | Декодер с повышенной корректирующей способностью | |
RU2644507C1 (ru) | Перестановочный декодер с режимом обучения | |
RU2490804C1 (ru) | Декодер с упорядоченной статистикой символов | |
CN110535560A (zh) | 一种极化码结合编码和译码方法 | |
RU2704722C2 (ru) | Перестановочный декодер с обратной связью | |
RU2672300C2 (ru) | Перестановочный декодер с памятью | |
CN110380737B (zh) | 一种极化码距离谱分析的方法及装置 | |
CN114221740B (zh) | 基于bats码的传输方法、装置、设备及可读存储介质 | |
CN108390677A (zh) | 一种极化码优化的编译码方法 | |
RU2697732C1 (ru) | Способ перестановочного декодирования блоковых кодов на базе упорядоченной когнитивной карты | |
RU2718224C1 (ru) | Перестановочный декодер с системой быстрых матричных преобразований | |
RU2743854C1 (ru) | Генератор комбинаций двоичного эквивалентного кода |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200425 |