RU2668809C1 - Катализатор жидкофазного гидрирования глюкозы и способ его получения - Google Patents

Катализатор жидкофазного гидрирования глюкозы и способ его получения Download PDF

Info

Publication number
RU2668809C1
RU2668809C1 RU2017138665A RU2017138665A RU2668809C1 RU 2668809 C1 RU2668809 C1 RU 2668809C1 RU 2017138665 A RU2017138665 A RU 2017138665A RU 2017138665 A RU2017138665 A RU 2017138665A RU 2668809 C1 RU2668809 C1 RU 2668809C1
Authority
RU
Russia
Prior art keywords
catalyst
nickel
glucose
carrier
solution
Prior art date
Application number
RU2017138665A
Other languages
English (en)
Inventor
Валентин Юрьевич Долуда
Роман Викторович Бровко
Валентина Геннадьевна Матвеева
Эсфирь Михайловна Сульман
Борис Борисович Тихонов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет"
Priority to RU2017138665A priority Critical patent/RU2668809C1/ru
Application granted granted Critical
Publication of RU2668809C1 publication Critical patent/RU2668809C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного гидрирования глюкозы в сорбит, и может быть применено на предприятиях пищевой, фармацевтической и энергетической промышленности для получения пищевых подсластителей, вспомогательных компонентов лекарственных препаратов и антивспенивающей добавки к топливам. Катализатор жидкофазного гидрирования глюкозы содержит носитель и никель в качестве активного компонента. Согласно изобретению в качестве носителя используют сверхсшитый полистирол со степенью сшивки 195÷205%, при этом содержание никеля в катализаторе составляет от 24 до 26 масс. %, а содержание сверхсшитого полистирола - 74÷76 масс. %. Способ получения катализатора включает обработку носителя раствором соли никеля, выпаривание и сушку полученного катализатора с дальнейшим его восстановлением водородом в течение 3 ч. Согласно изобретению в качестве носителя используют сверхсшитый полистирол, а в качестве раствора соли никеля используют раствор ацетата никеля концентрацией 0,8÷0,9 моль/л. Обработку носителя раствором ацетата никеля осуществляют при дополнительном одновременном ультразвуковом воздействии с частотой 37 кГц в течение 30 мин, после чего проводят выпаривание при температуре 70±5°С в течение 12±0,5 ч с повторным одновременным ультразвуковым воздействием с частотой 37 кГц, затем полученный катализатор сушат на воздухе при температуре 105±5°С в течение 12±0,5 ч и восстанавливают водородом при 300±10°С с расходом 10-15 мл/мин. Технический результат изобретения - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного гидрирования глюкозы за счет использования инертного полимерного носителя с большой площадью поверхности и увеличения доступности активного металла (никеля). 2 н. и 2 з.п. ф-лы, 20 ил., 23 пр.

Description

Изобретение относится к химической промышленности, а именно, к области производства гетерогенных катализаторов для процессов жидкофазного гидрирования глюкозы в сорбит и может быть применено на предприятиях пищевой, фармацевтической и энергетической промышленности для получения пищевых подсластителей, вспомогательных компонентов лекарственных препаратов и антивспенивающей добавки к топливам.
Никелевые катализаторы на носителях (оксидах алюминия, кремния, магния, кальция, активных углях, диатомите и т.д.) широко используются в практике гидрирования. Нанесенные никелевые катализаторы получают адсорбцией соединения-предшественника активного металла носителем с последующей сушкой (или прокаливанием) и восстановлением (SU, №285689, кл. B01J 37/08, опубл. 15.09.1985). В большинстве случаев нанесенные на носитель никелевые катализаторы являются активными в каком-то определенном процессе гидрирования, то есть не являются универсальными катализаторами гидрирования. В частности, при гидрировании олефиновых и ацетиленовых связей используют никелевые катализаторы на различных носителях (US 4885410, кл. B01J 23/89, B01J 23/656, B01J 23/889, опубл. 1989; Патент Франции №2539647, кл. B01J 37/04, опубл. 1983).
Общим недостатком большинства известных никелевых катализаторов гидрирования является сложность и энергоемкость процесса их приготовления, а также невозможность полной регенерации, что существенно увеличивает себестоимость катализаторов.
Промышленным катализатором гидрирования глюкозы в настоящее время служит никель Ренея («скелетный никель») - твердый микрокристаллический пористый никелевый катализатор, способ приготовления которого предложен в 1926 году Мюрреем Ренеем (Castoldi М.С.М.,
Figure 00000001
L.D.T., Aranda D.A.G. // React. Kinet. Catal. Lett. 2009. V. 98. P. 83; Crezee E., Hoffer B.W., Berger R.J., Makkee M, Kapteijn F., Moulijn J.A. // Appl. Catal. A. General. 2003. V. 251. P. 1; Kusserow В., Schimpf S., Claus P. // Adv. Synth. Catal. 2003. V. 345. P. 289; US 2953605, кл. C07C 29/17, C07C 29/00, опубл. 1960; Патент RU 2352392 B01J 25/02 C07C 209/36, 2004). Данный катализатор представляет собой высокодисперсный порошок (размер частиц - 400-800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс. %) и насыщенный водородом (до 33 ат. %). Частицы порошка имеют большое количество пор, его удельная поверхность составляет около 100 м2/г. Получают никель Ренея сплавлением при 1200°С никеля с алюминием (20-50% Ni; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидроксида натрия с концентрацией 10-35%; остаток промывают водой в атмосфере водорода.
К недостаткам катализаторов на основе никеля Ренея можно отнести пониженную доступность активного металла из-за малой площади поверхности и неравномерного распределения активного металла по поверхности, а также их тенденцию к вымыванию никеля, что приводит не только к потере каталитической активности (после пяти рециклов активность снижается на 40-50%), но и к необходимости введения дополнительной стадии очистки катализата, что существенно увеличивает затраты.
Известен катализатор гидрирования (RU, №2333796, кл. B01J 23/755, опубл. 20.09.2008), содержащий только никель или никель и один или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, нанесенных на носитель, представляющий оксид алюминия, имеющий следующие физические свойства: площадь поверхности по БЭТ от 30 до примерно 100 м2/г, общий объем пор по азоту от 0,4 до примерно 0,9 см3/г и средний диаметр пор от примерно 110 до
Figure 00000002
, где указанный катализатор содержит от примерно 4 до примерно 20 вес. % никеля.
Также известен катализатор гидрирования (RU, №2050189, кл. B01J 23/755, опубл. 20.12.1995), содержащий никель на носителях (оксиде алюминия, двуокиси кремния) и комплексную соль вольфрама ф-лы: Men[SiMe'Om] где Me К, Cs, Li, Ni; Me' Co, Ni, W, Cr; n-4; m-40, когда Me' W; Me Me (+1) K, Li, Cs; n 2 при Me Me(+2) Ni; n 6, m 39, когда Me' Ni или Co, Me Me(+1); n 3, когда Me (+2); n 5, m 39, когда Me' и Me Me(+1). Соотношение компонентов в катализаторе, % мас.: никель 1-5, комплексная соль вольфрама 2-6.
Общим недостатком данных катализаторов является использование кислотных носителей (Al2O3, SiO2), что приводит к образованию в процессе реакции гидрирования глюкозы помимо целевого продукта (сорбита) большого диапазона побочных продуктов (прежде всего - фруктозы, этиленгликоля и пропиленгликоля), что существенно снижает эффективность применения катализатора.
Наиболее близким к предлагаемому катализатору является катализатор гидрирования глюкозы, содержащий носитель, обработанный раствором соли никеля (Jun Zhang, Shubin Wu, Ying Liu, Bo Li. Hydrogenation of glucose over reduced Ni/Cu/Al hydrotalcite precursors // Catalysis Communications 35 (2013) 23-26). Носитель имеет площадь внутренней поверхности 5÷30 м2/г. Оптимальный катализатор с молярным соотношением Ni:Cu:Al 1.85:1:1,15 показал конверсию в реакции гидрирования глюкозы до сорбита 78,4% и селективность 93.4%.
Недостатками катализатора являются недостаточно высокая конверсия и селективность по сорбиту в реакции гидрирования глюкозы до сорбита в присутствии данного катализатора, а также недостаточно равномерное и прочное закрепление активных металлов (Ni, Cu и Al) на поверхности носителя, что существенно снижает его стабильность и загрязняет продукты реакции, в связи, с чем требуется их дополнительная обработка.
Известен способ получения катализатора гидрирования (RU, №2333796, кл. B01J 23/755, опубл. 20.09.2008), включающий пропитку носителя растворимыми солями только никеля или никеля и одного или больше элементов, выбранных из группы, состоящей из Cu, Re, Pd, Zn, Mg, Mo, Ca и Bi, из одного или больше растворов с получением пропитанного носителя, после чего пропитанный носитель сушат и прокаливают.
Недостатком способа является невозможность обеспечения прочного закрепления ионов никеля на поверхности носителя данным способом вследствие кислотной природы и малой площади поверхности (от 30 до примерно 100 м2/г) носителя, что существенно ухудшает каталитическую активность катализатора и операционную стабильность.
Наиболее близким к предлагаемому способу является способ получения катализатора гидрирования глюкозы (Jun Zhang, Shubin Wu, Ying Liu, Bo Li. Hydrogenation of glucose over reduced Ni/Cu/Al hydrotalcite precursors // Catalysis Communications 35 (2013) 23-26), включающий обработку носителя раствором соли никеля, выпаривание и сушку полученного катализатора с дальнейшим его восстановлением водородом в течение 3 ч.
Недостатком способа является невозможность обеспечения равномерного распределения ионов никеля и их прочного закрепления на поверхности носителя данным способом из-за достаточно малой внутренней площади поверхности носителя (5÷30 м2/г), что существенно ухудшает каталитическую активность катализатора и операционную стабильность.
Технической проблемой, решаемой при создании настоящего изобретения, является разработка высокоактивного, стабильного и селективного гетерогенного катализатора реакции жидкофазного гидрирования глюкозы для многократного использования и способа получения катализатора реакции жидкофазного гидрирования с оптимальными каталитическими свойствами.
Технический результат изобретения - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного гидрирования глюкозы за счет использования инертного полимерного носителя с большой площадью поверхности и увеличения доступности активного металла (никеля).
Поставленная проблема и указанный технический результат достигаются тем, что катализатор жидкофазного гидрирования глюкозы содержит носитель и никель в качестве активного компонента. Согласно изобретению в качестве носителя используют сверхсшитый полистирол со степенью сшивки 195÷205%, при этом содержание никеля в катализаторе составляет от 24 до 26 масс. %, а содержание сверхсшитого полистирола -74÷76 масс. %
Используют сверхсшитый полистирол с площадью внутренней поверхности 1400÷1600 м2/г.
Способ получения катализатора жидкофазного гидрирования глюкозы включает обработку носителя раствором соли никеля, выпаривание и сушку полученного катализатора с дальнейшим его восстановлением водородом в течение 3 ч. Согласно изобретению в качестве носителя используют сверхсшитый полистирол, а в качестве раствора соли никеля используют раствор ацетата никеля концентрацией 0,8÷0,9 моль/л, обработку носителя раствором ацетата никеля осуществляют при дополнительном одновременном ультразвуковом воздействии с частотой 37 кГц в течение 30 мин, после чего проводят выпаривание при температуре 70±5°С в течение 12±0,5 ч с повторным одновременным ультразвуковым воздействием с частотой 37 кГц, затем полученный катализатор сушат на воздухе при температуре 105±5°С в течение 12±0,5 ч и восстанавливают водородом при 300±10°С с расходом 10-15 мл/мин.
Сверхсшитый полистирол предварительно обрабатывают ацетоном и сушат до постоянной массы.
Предлагаемый катализатор обладает следующими преимуществами по сравнению с имеющимися аналогами:
- высокая доступность активного металла за счет использования внутренней поверхности полимера, по которой распределен активный металл;
- более равномерное распределение активного металла по поверхности носителя и отсутствие его выщелачивания (и соответственно - потери) в процессе реакции за счет большой площади поверхности;
- небольшое количество побочных продуктов в реакции гидрирования глюкозы в присутствии предлагаемого катализатора за счет инертности полимерного носителя.
Включение в катализатор каждого из этих компонентов является обязательным и ни один из них нельзя исключить из данной системы, а также изменить их количественное соотношение, так как это приведет к существенному снижению активности и стабильности катализатора в реакции гидрирования глюкозы.
Использование сверхсшитого полистирола (СПС) в качестве носителя для никелевого катализатора гидрирования глюкозы обусловлено его пространственной структурой, идеально подходящей для формирования металлополимерных катализаторов. Синтез катализатора основан на формировании наночастиц металлов в микрополостях полимерной матрицы СПС, способных выполнять роль нанореакторов. Сверсшитый полистирол формируется поперечной сшивкой между собой фенильных колец линейного полистирола метиленовыми мостиками (степень сшивки - 195÷205%), что обеспечивает его жесткую и прочную структуру и формирование большой внутренней поверхности (1400÷1600 м2/г), а также способность к набуханию в жидкой среде. При использовании СПС со степенью сшивки менее 195% снижается прочность закрепления никеля в порах носителя, что значительно уменьшает стабильность катализатора и ухудшает качество получаемых продуктов из-за их загрязнения вымываемым из пор носителя никелем. Использование СПС со степенью сшивки более 205% нецелесообразно, так как это не приводит к улучшению каталитических свойств катализатора, при этом требует дополнительных затрат. При использовании СПС с площадью внутренней поверхности менее 1400 м2/г снижается емкость носителя по никелю, что приводит к существенной потере каталитической активности катализатора. Использование СПС с площадью внутренней поверхности более 1600 м2/г нецелесообразно, так как это не приводит к улучшению каталитических свойств катализатора, при этом требует дополнительных затрат.
Соотношение компонентов (СПС и никеля) выбрано экспериментально. Итоговое содержание никеля относительно СПС ниже 24% масс, значительно снижает активность катализатора в реакции гидрирования глюкозы, а увеличение его содержания выше 26% масс, нецелесообразно, так как по результатам экспериментов это не приводит к существенному увеличению активности катализатора в реакции гидрирования глюкозы.
Обработка предварительно подготовленного СПС раствором ацетата никеля необходима для равномерного нанесения активного металла (никеля) на поверхность полимерного носителя (СПС).
Использование в качестве раствора соли никеля ацетата никеля обусловлена лучшим проникновением данного вещества в поры СПС, по сравнению с хлоридом и нитратом никеля.
Использование ультразвукового воздействия в процессе пропитки и выпаривания позволяет добиться равномерности пропитки СПС активным металлом (никелем).
Выпаривание раствора при температуре 70±5°С в течение 12±0,5 ч с одновременным ультразвуковым воздействием с частотой 37 кГц необходимо для концентрирования раствора ацетата никеля и последующего формирования наночастиц и нанокластеров ацетата никеля в матрице полимера. Температура выпаривания 70±5°С и время выпаривания 12±0,5 часов выбраны экспериментально. Уменьшение температуры ниже 65°С приводит к образованию крупных кластеров ацетата никеля, что существенно снижает эффективность катализатора, а увеличение температуры выше 75°С не приводит к существенному повышению его эффективности, при этом требует дополнительные энергозатраты. Уменьшение времени выпаривания менее 11,5 часов приводит к снижению эффективности катализатора, а увеличение более 12,5 часов не приводит к существенному повышению эффективности катализатора, при этом требует дополнительных энергозатрат.
Температура высушивания 105±5°С полученного катализатора на воздухе и время высушивания 12±0,5 часов выбраны экспериментально. Уменьшение температуры ниже 100°С приводит к снижению эффективности катализатора из-за недостаточного удаления влаги из пор, а увеличение выше 110°С не приводит к существенному повышению эффективности катализатора, при этом требует дополнительных энергозатрат. Уменьшение времени высушивания менее 11,5 часов приводит к снижению эффективности катализатора из-за недостаточного удаления влаги из пор, а увеличение более 12,5 часов не приводит к существенному повышению эффективности катализатора, при этом требует дополнительных энергозатрат.
Восстановление катализатора водородом при 300±10°С с расходом 10-15 мл/мин необходимо для перевода никеля ионного в металлическое состояние (никель в металлическом состоянии проявляет гораздо большую каталитическую активность в реакции гидрирования глюкозы). Температура восстановления 300±10°С выбраны экспериментально. Уменьшение температуры ниже 290°С приводит к недовосстановлению никеля и, соответственно, к значительному снижению эффективности катализатора в реакции гидрирования глюкозы. Увеличение температуры выше 310°С не приводит к существенному повышению эффективности катализатора, при этом требует дополнительных энергозатрат. Расход водорода при восстановлении 10÷15 мл/мин определен расчетным методом, исходя из количества активного металла в катализаторе. Уменьшение расхода водорода ниже 10 мл/мин приводит к недовосстановлению никеля и, соответственно, к значительному снижению эффективности катализатора в реакции гидрирования глюкозы. Увеличение расхода водорода более 15 мл/мин не приводит к существенному повышению эффективности катализатора, при этом требует дополнительных затрат водорода.
Предварительная обработка СПС ацетоном с последующим высушиванием до постоянной массы необходимо для очистки пор полимера от остатков пластификатора и других неспецифически связанных компонентов.
Изобретение поясняется чертежами, где на фиг. 1 представлена зависимость конверсии глюкозы от времени, на фиг. 2 - зависимость селективности от времени, на фиг. 3 представлена зависимость конверсии глюкозы от времени, на фиг. 4 - зависимость селективности от времени, на фиг. 5 представлена зависимость конверсии глюкозы от времени, а на фиг. 6 - зависимость селективности от времени, на фиг. 7 представлена зависимость конверсии глюкозы от времени, а на фиг. 8 - зависимость селективности от времени, на фиг. 9 представлена зависимость конверсии глюкозы от времени, а на фиг. 10 - зависимость селективности от времени, на фиг. 11 представлена зависимость конверсии глюкозы от времени, а на фиг. 12 -зависимость селективности от времени, на фиг. 13 представлена зависимость конверсии глюкозы от времени, а на фиг. 14 - зависимость селективности от времени, на фиг. 15 представлена зависимость конверсии глюкозы от времени, а на фиг. 16 - зависимость селективности от времени, на фиг. 17 представлена зависимость конверсии глюкозы от времени, а на фиг. 18 -зависимость селективности от времени, на фиг. 19 представлена зависимость конверсии глюкозы от времени, а на фиг. 20 - зависимость селективности от времени.
Катализатор готовится следующим образом.
Пример 1
10 г СПС с степенью сшивки 200%, площадью внутренней поверхности 1500 м2/г, узким распределением пор по размерам с максимумом около 2 нм и размером гранул 0,2÷1 мм, предварительно обработанного ацетоном и просушенного до постоянной массы, внесли в ультразвуковую ванну и пропитали 50 мл раствора водного раствора ацетата никеля концентрацией 0,85 моль/л в течение 30 минут с частотой ультразвукового воздействия 37 кГц. Затем полученный раствор выпаривали в ультразвуковой ванне с помощью водоструйного насоса при температуре 70°С в течение 12 часов с частотой ультразвукового воздействия 37 кГц. После удаления растворителя катализатор высушили на воздухе при температуре 105°С в течение 12 часов. После высушивания катализатор подвергли восстановлению в трубчатой печи при температуре 300°С в среде водорода с расходом 10÷15 мл/мин в течение 3 часов. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 75; никель - 25.
Была исследована активность синтезированного катализатора в реакции гидрирования глюкозы в металлическом реакторе с возвратно поступательным качанием при следующих условиях: температура реакционной среды - 160°С, масса катализатора - 6 г, масса глюкозы - 12 г, общее давление в система - 40 атм, общее количество воды - 50 мл, интенсивность качания - 200 мин-1, время проведения процесса гидрирования -6 ч.
Анализ продуктов гидрирования глюкозы проводили методом ВЭЖХ, при этом рассчитывалась конверсия глюкозы (концентрация прореагировавшей глюкозы, поделенная на начальное количество глюкозы, в процентах) и селективность (концентрация целевого продукта - сорбита, поделенная на концентрацию всех продуктов, в процентах).
Пример 2
Аналогичен примеру 1, однако для пропитки использовался водный раствор ацетата никеля концентрацией 0,034 моль/л. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 99; никель - 1.
Пример 3
Аналогичен примеру 1, однако для пропитки использовался водный раствор ацетата никеля концентрацией 0,102 моль/л. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 97; никель - 3.
Пример 4
Аналогичен примеру 1, однако для пропитки использовался водный раствор ацетата никеля концентрацией 0,17 моль/л. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 95; никель - 5.
Пример 5
Аналогичен примеру 1, однако для пропитки использовался водный раствор ацетата никеля концентрацией 0,34 моль/л. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 90; никель - 10.
Пример 6
Аналогичен примеру 1, однако для пропитки использовался водный раствор ацетата никеля концентрацией 0,68 моль/л. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 80; никель - 20.
Пример 7
Аналогичен примеру 1, однако для пропитки использовался водный раствор ацетата никеля концентрацией 1,02 моль/л. В результате был сформирован катализатор со следующим соотношением компонентов, % масс.: СПС - 70; никель - 30.
Для пояснения результатов экспериментов, приведенных в примерах 1-7, представлены графики на фиг. 1 представлена зависимость конверсии глюкозы от времени, а на фиг. 2 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1-7 очевидно, что оптимальное содержание никеля относительно СПС, при котором достигается максимальная конверсия глюкозы (более 96%) и максимальная селективность (более 99%), - 25% масс, (пример 1). В связи с этим можно сделать вывод о высокой эффективности данного катализатора в реакции гидрирования глюкозы.
Пример 8
Аналогичен примеру 1, однако для пропитки использовался водный раствор хлорида никеля.
Пример 9
Аналогичен примеру 1, однако для пропитки использовался водный раствор нитрата никеля.
Для пояснения результатов проведенных в примерах 1, 8-9 экспериментов представлены графики на фиг. 3 представлена зависимость конверсии глюкозы от времени, а на фиг. 4 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 8-9 очевидно, что максимальная конверсия глюкозы и максимальная селективность достигается при использовании ацетата никеля (пример 1), что обусловлено лучшим проникновением данного вещества в поры СПС, по сравнению с хлоридом и нитратом никеля.
Пример 10
Аналогичен примеру 1, однако была исключена стадия восстановления катализатора.
Для пояснения результатов проведенных в примерах 1 и 10 экспериментов представлены графики на фиг. 5 представлена зависимость конверсии глюкозы от времени, а на фиг. 6 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1 и 10 очевидно, что невосстановленный катализатор обладает гораздо меньшей активностью в реакции гидрирования глюкозы, по сравнению с восстановленным.
Пример 11
Аналогичен примеру 1, однако восстановление катализатора проводилось при температуре 285°С.
Пример 12
Аналогичен примеру 1, однако восстановление катализатора проводилось при температуре 315°С.
Для пояснения результатов проведенных в примерах 1, 11 и 12 экспериментов представлены графики на фиг. 7 представлена зависимость конверсии глюкозы от времени, а на фиг. 8 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 11 и 12 очевидно, что наиболее эффективно катализатор работает при его восстановлении при температуре 300°С.
Пример 13
Аналогичен примеру 1, однако восстановление катализатора проводилось в течение 2 часов.
Пример 14
Аналогичен примеру 1, однако восстановление катализатора проводилось в течение 4 часов.
Для пояснения результатов проведенных в примерах 1, 13 и 14 экспериментов представлены графики на фиг. 9 представлена зависимость конверсии глюкозы от времени, а на фиг. 10 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 13 и 14 очевидно, что наиболее эффективно катализатор работает при его восстановлении в течение 3 часов.
Пример 15
Аналогичен примеру 1, однако было исключено ультразвуковое воздействие на стадиях пропитки и упаривания.
Для пояснения результатов проведенных в примерах 1 и 15 экспериментов представлены графики на фиг. 11 представлена зависимость конверсии глюкозы от времени, а на фиг. 12 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1 и 15 очевидно, что при использовании ультразвукового воздействия на стадиях пропитки и упаривания катализатор работает более эффективно.
Пример 16
Аналогичен примеру 1, однако упаривание проводилось при температуре 60°С.
Пример 17
Аналогичен примеру 1, однако упаривание проводилось при температуре 80°С.
Для пояснения результатов проведенных в примерах 1, 16 и 17 экспериментов представлены графики на фиг. 13 представлена зависимость конверсии глюкозы от времени, а на фиг. 14 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 16 и 17 очевидно, что наиболее эффективно катализатор работает при его упаривании при температуре 70°С.
Пример 18
Аналогичен примеру 1, однако упаривание проводилось в течение 11 часов.
Пример 19
Аналогичен примеру 1, однако упаривание проводилось в течение 13 часов.
Для пояснения результатов проведенных в примерах 1, 18 и 19 экспериментов представлены графики на фиг. 15 представлена зависимость конверсии глюкозы от времени, а на фиг. 16 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 18 и 19 очевидно, что наиболее эффективно катализатор работает при его упаривании в течение 12 часов.
Пример 20
Аналогичен примеру 1, однако высушивание проводилось при температуре 95°С.
Пример 21
Аналогичен примеру 1, однако высушивание проводилось при температуре 115°С.
Для пояснения результатов проведенных в примерах 1, 20 и 21 экспериментов представлены графики на фиг. 17 представлена зависимость конверсии глюкозы от времени, а на фиг. 18 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 20 и 21 очевидно, что наиболее эффективно катализатор работает при его высушивании при температуре 105°С.
Пример 22
Аналогичен примеру 1, однако высушивание проводилось в течение 11 часов.
Пример 23
Аналогичен примеру 1, однако высушивание проводилось в течение 13 часов.
Для пояснения результатов проведенных в примерах 1, 22 и 23 экспериментов представлены графики на фиг. 19 представлена зависимость конверсии глюкозы от времени, а на фиг. 20 - зависимость селективности от времени.
Из результатов экспериментов в примерах 1, 22 и 23 очевидно, что наиболее эффективно катализатор работает при его высушивании в течение 12 часов.
Таким образом, внесение активного металла (никеля) в полимерную матрицу (СПС) с последующим восстановлением существенно повышает активность катализатора, его селективность по отношению к целевому продукту (сорбиту) и операционную стабильность.
Полученные результаты свидетельствуют о том, что применение катализатора на основе никеля в матрице сверхсшитого полистирола, является перспективной возможностью получения сорбита - сырья для пищевой, фармацевтической и энергетической промышленности.

Claims (4)

1. Катализатор жидкофазного гидрирования глюкозы, содержащий носитель и никель в качестве активного компонента, отличающийся тем, что в качестве носителя используют сверхсшитый полистирол со степенью сшивки 195÷205%, при этом содержание никеля в катализаторе составляет от 24 до 26 масс. %, а содержание сверхсшитого полистирола - 74÷76 масс. %
2. Катализатор по п. 1, отличающийся тем, что используют сверхсшитый полистирол с площадью внутренней поверхности 1400÷1600 м2/г.
3. Способ получения катализатора жидкофазного гидрирования глюкозы по п.1, включающий обработку носителя раствором соли никеля, выпаривание и сушку полученного катализатора с дальнейшим его восстановлением водородом в течение 3 ч, отличающийся тем, что в качестве носителя используют сверхсшитый полистирол, а в качестве раствора соли никеля используют раствор ацетата никеля концентрацией 0,8÷0,9 моль/л, обработку носителя раствором ацетата никеля осуществляют при дополнительном одновременном ультразвуковом воздействии с частотой 37 кГц в течение 30 мин, после чего проводят выпаривание при температуре 70±5°С в течение 12±0,5 ч с повторным одновременным ультразвуковым воздействием с частотой 37 кГц, затем полученный катализатор сушат на воздухе при температуре 105±5°С в течение 12±0,5 ч и восстанавливают водородом при 300±10°С с расходом 10-15 мл/мин.
4. Способ по п. 3, отличающийся тем, что сверхсшитый полистирол предварительно обрабатывают ацетоном и сушат до постоянной массы.
RU2017138665A 2017-11-08 2017-11-08 Катализатор жидкофазного гидрирования глюкозы и способ его получения RU2668809C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017138665A RU2668809C1 (ru) 2017-11-08 2017-11-08 Катализатор жидкофазного гидрирования глюкозы и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017138665A RU2668809C1 (ru) 2017-11-08 2017-11-08 Катализатор жидкофазного гидрирования глюкозы и способ его получения

Publications (1)

Publication Number Publication Date
RU2668809C1 true RU2668809C1 (ru) 2018-10-08

Family

ID=63798580

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017138665A RU2668809C1 (ru) 2017-11-08 2017-11-08 Катализатор жидкофазного гидрирования глюкозы и способ его получения

Country Status (1)

Country Link
RU (1) RU2668809C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720369C1 (ru) * 2019-11-08 2020-04-29 Ооо "Катализатор-Про" Катализатор деоксигенирования компонентов биомассы в углеводороды и способ его получения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU426687A1 (ru) * 1972-04-14 1974-05-05 С. Т. Сулейменов, Н. К. Надиров, О. М. Тлеукулов, , М. Н. Юсупов Способ получения никелевого катализатора для гидрирования углеводов
SU593731A1 (ru) * 1975-09-03 1978-02-25 Институт Органического Катализа И Электротехники Ан Казахской Сср Катализатор дл гидрировани глюкозы
US5242877A (en) * 1992-02-21 1993-09-07 Rohm And Haas Company Polymer-supported catalysts
US6680013B1 (en) * 1999-04-15 2004-01-20 Regents Of The University Of Minnesota Synthesis of macroporous structures
RU2627265C1 (ru) * 2016-10-26 2017-08-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Способ получения полимерсодержащего катализатора реакции Сузуки

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU426687A1 (ru) * 1972-04-14 1974-05-05 С. Т. Сулейменов, Н. К. Надиров, О. М. Тлеукулов, , М. Н. Юсупов Способ получения никелевого катализатора для гидрирования углеводов
SU593731A1 (ru) * 1975-09-03 1978-02-25 Институт Органического Катализа И Электротехники Ан Казахской Сср Катализатор дл гидрировани глюкозы
US5242877A (en) * 1992-02-21 1993-09-07 Rohm And Haas Company Polymer-supported catalysts
US6680013B1 (en) * 1999-04-15 2004-01-20 Regents Of The University Of Minnesota Synthesis of macroporous structures
RU2627265C1 (ru) * 2016-10-26 2017-08-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" Способ получения полимерсодержащего катализатора реакции Сузуки

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Jun Zhang et al. Hydrogenation of glucose over reduced Ni/Cu/Al hydrotalcite precursors, Catalysis Communications, 2013, 35, pp.23-26. *
Jun Zhang et al. Hydrogenation of glucose over reduced Ni/Cu/Al hydrotalcite precursors, Catalysis Communications, 2013, 35, pp.23-26. Цюрупа М.П. и др. Сверхсшитый полистирол - первый нанопористый полимерный материал, Российские нанотехнологии. 2009, т.4, номер 9-10, с.109-117. *
Цюрупа М.П. и др. Сверхсшитый полистирол - первый нанопористый полимерный материал, Российские нанотехнологии. 2009, т.4, номер 9-10, с.109-117. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720369C1 (ru) * 2019-11-08 2020-04-29 Ооо "Катализатор-Про" Катализатор деоксигенирования компонентов биомассы в углеводороды и способ его получения

Similar Documents

Publication Publication Date Title
JP3831821B2 (ja) 接触水素化方法およびこの方法において使用可能な触媒
KR101487352B1 (ko) 실리카계 재료 및 그 제조 방법, 및 귀금속 담지물 및 그것을 촉매로서 이용하는 카르복실산류의 제조 방법
NZ286309A (en) Process for preparing fischer-tropsch catalysts (cobalt or iron on an alumina carrier)
JP5939485B2 (ja) 水素化方法
EP1151790A1 (en) Catalyst for selective hydrogenation, process for preparation of the same, its use in selectiv hydrogenation
CN109225209B (zh) 一种选择性加氢制肉桂醇的微波辐射增强碱改性炭载贵金属催化剂的制备方法
WO2015069868A1 (en) Method of preparing an alumina catalyst support and catalyst for dehydrogenation reactions, and its use
JP2929130B2 (ja) 液状炭化水素中の砒素および燐除去用の捕集物質、その製造方法およびその使用法
RU2668809C1 (ru) Катализатор жидкофазного гидрирования глюкозы и способ его получения
RU2768802C2 (ru) Способ обработки сточных вод
JP2009541025A (ja) 吸収組成物及び水銀の除去方法
WO2014203601A1 (ja) 水素化反応用触媒の再生方法、及び多価アルコールの水素化物の製造方法
EP2365875A2 (en) Catalyst regeneration method
KR102334082B1 (ko) 촉매를 제조하는 방법 및 이의 용도
CN106607102B (zh) 一种氧化铝载体及其制备方法和应用
JPH0557023B2 (ru)
TW201929958A (zh) 用於製備環氧化催化劑之方法
JP7016682B2 (ja) パラジウムを非成型の活性炭粒子表面に偏在担持した活性炭触媒の製造方法
JP7077157B2 (ja) パラジウムを非成型の活性炭粒子表面に偏在担持した活性炭触媒の製造方法
US20160001265A1 (en) Alumina materials with increased surface acidity, methods for making, and methods for using the same
RU2403973C1 (ru) Катализатор, способ его приготовления и способ гидрирования
RU2772013C1 (ru) Способ изготовления катализатора селективного гидрирования ППФ
JP3083463B2 (ja) 湿式酸化処理用触媒の再生方法
RU2720369C1 (ru) Катализатор деоксигенирования компонентов биомассы в углеводороды и способ его получения
CN110612159A (zh) 沉积pd纳米粒子的改进方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191109