RU2666722C1 - Катализатор селективного каталитического восстановления - Google Patents

Катализатор селективного каталитического восстановления Download PDF

Info

Publication number
RU2666722C1
RU2666722C1 RU2016125301A RU2016125301A RU2666722C1 RU 2666722 C1 RU2666722 C1 RU 2666722C1 RU 2016125301 A RU2016125301 A RU 2016125301A RU 2016125301 A RU2016125301 A RU 2016125301A RU 2666722 C1 RU2666722 C1 RU 2666722C1
Authority
RU
Russia
Prior art keywords
layer
component
total mass
terms
proportion
Prior art date
Application number
RU2016125301A
Other languages
English (en)
Other versions
RU2016125301A (ru
Inventor
Штефан МАЛЬМБЕРГ
Никола ЗЁГЕР
Ивонна ДЕМЕЛЬ
Геральд ЙЕСКЕ
Original Assignee
Умикоре Аг Унд Ко. Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Умикоре Аг Унд Ко. Кг filed Critical Умикоре Аг Унд Ко. Кг
Publication of RU2016125301A publication Critical patent/RU2016125301A/ru
Application granted granted Critical
Publication of RU2666722C1 publication Critical patent/RU2666722C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Настоящее изобретение относится к катализатору для селективного восстановления оксидов азота, имеющему два каталитически активных слоя А и Б, при этом слой А содержит оксидный носитель, а также компоненты А1 и А2, а слой Б содержит оксидный носитель, а также компоненты Б1, Б2 и Б3, где А1 и Б1 обозначают по меньшей мере один оксид ванадия, А2 и Б2 обозначают по меньшей мере один оксид вольфрама и Б3 обозначает по меньшей мере один оксид кремния, отличающийся тем, что доля компонента А1 в слое А в мас. % в пересчете на общую массу этого слоя А больше, чем доля компонента Б1 в слое Б в мас. % в пересчете на общую массу этого слоя Б, а доля слоя А в мас. % в пересчете на общую массу слоев А и Б больше, чем доля слоя Б. Также заявлены способ снижения оксидов азота в отработавших газах (ОГ), работающих на обедненных смесях двигателей внутреннего сгорания с использованием указанного выше катализатора, система снижения токсичности отработавших газов (ОГ), имеющая указанный выше катализатор и способ снижения содержания оксидов азота в отработавших газах (ОГ) с использованием такой системы. Технический результат – получение катализаторов для селективного восстановления оксидов азота, обладающих хорошей низкотемпературной активностью и одновременно высокой высокотемпературной селективностью. 4 н. и 21 з.п. ф-лы, 1 табл., 21 пр.

Description

Настоящее изобретение относится к содержащему оксид ванадия катализатору селективного каталитического восстановления.
Отработавшие газы (ОГ) автомобилей с работающими на обедненных смесях двигателями внутреннего сгорания (ДВС), например дизельными двигателями, содержат монооксид углерода (СО) и оксиды азота (NOx), а также компоненты, наличие которых обусловлено неполным сгоранием топлива в камере сгорания, находящейся в цилиндре. К таким компонентам помимо остаточных углеводородов (НС), которые по большей части представлены также преимущественно в газообразном виде, относятся также твердые частицы, называемые также "дизельной сажей" или "сажевыми частицами". Речь при этом идет о сложных агломератах, состоящих из преимущественно углеродсодержащих пылевидных или твердых частиц и прилипшей к ним жидкой фазы, которая по большей части состоит из длинноцепных углеводородных конденсатов. Такую прилипшую к твердофазным компонентам жидкую фазу называют также "растворимой органической фракцией" (РОФ) или "летучей органической фракцией" (ЛОФ).
Для снижения токсичности таких ОГ указанные компоненты необходимо максимально полно превращать в безвредные соединения, что возможно только с применением пригодных для этого катализаторов, соответственно каталитических нейтрализаторов.
Так, в частности, монооксид углерода (CO), газообразные углеводороды (HC) и, возможно, присутствующие прилипшие к сажевым частицам органические агломераты (так называемую "летучую органическую фракцию" (ЛОФ)) можно удалять путем окисления с помощью соответствующих катализаторов окисления, соответственно каталитических нейтрализаторов окислительного типа.
Для удаления твердых частиц из ОГ используют фильтры для улавливания этих твердых частиц, называемые сажевыми фильтрами. Такие сажевые фильтры обычно выполнены в виде фильтрующих элементов с проницаемыми стенками каналов, т.е. в виде сотовых элементов с попеременно газонепроницаемо закрытыми с их противоположных сторон входными и выходными каналами, которые ограничены пористыми стенками и отделены ими друг от друга. Входящие во входные каналы ОГ, содержащие твердые частицы, из-за наличия газонепроницаемых заглушек с выходной стороны этих входных каналов принудительно проходят сквозь пористую стенку и затем вновь выходят из фильтрующего элемента из его закрытых с входной стороны выходных каналов. При этом дизельная сажа отфильтровывается из ОГ.
Один из возможных подходов по удалению оксидов азота из ОГ основан на применении так называемых катализаторов-накопителей оксидов азота. Действие таких катализаторов-накопителей оксидов азота по их удалению из ОГ основано на том, что в период работы двигателя на обедненных смесях оксиды азота аккумулируются преимущественно в виде нитратов накапливающим их материалом катализатора-накопителя оксидов азота, а в последующий короткий период работы двигателя на обогащенных смесях ранее образовавшиеся нитраты вновь разлагаются и выделяющиеся таким путем оксиды азота реагируют на катализаторе-накопителе оксидов азота с восстановительными компонентами ОГ с образованием азота, диоксида углерода и воды. Принцип работы катализаторов-накопителей оксидов азота описан, например, в документе SAE 950809, изданном Обществом автотракторных инженеров (США).
Еще одним известным способом удаления оксидов азота из ОГ в присутствии кислорода является способ селективного каталитического восстановления (сокращенно СКВ) оксидов азота аммиаком на пригодном для этого катализаторе, сокращенно называемом СКВ-катализатором. При осуществлении этого способа удаляемые из ОГ оксиды азота взаимодействуют с аммиаком с образованием азота и воды. Используемый в качестве восстановителя аммиак можно образовывать в системе выпуска ОГ в виде вторичных выбросов или его наличие можно обеспечивать путем дозирования соединения-предшественника, из которого возможно образование аммиака, такого, например, как мочевина, карбамат аммония или формиат аммония, в выпускной тракт и путем последующего гидролиза. Для реализации последнего из указанных вариантов СКВ-способа необходимы источник восстановителя, впрыскивающее устройство для дозирования восстановителя по мере необходимости в ОГ и расположенный на пути их потока СКВ-катализатор.
В качестве СКВ-катализаторов используются, например, смешанные оксиды, основу которых составляют прежде всего диоксид титана и/или оксиды ванадия, например пентаоксид ванадия, и которые могут содержать другие оксиды, например оксиды кремния, молибдена, марганца, вольфрама и других элементов. Такие катализаторы подробно описаны в литературе, например в WO 89/03366 A1, ЕР 0345695 A2, ЕР 0385164 A2, WO 2011/013006 A2 и US 2013/205743.
Поскольку двигатели внутреннего сгорания на автомобилях работают в условиях постоянно меняющихся режимов их движения, СКВ-катализатор должен даже при существенно изменяющихся рабочих условиях обеспечивать максимально высокую степень превращения оксидов азота при хорошей селективности. СКВ-катализатор должен, таким образом, обеспечивать полное и селективное превращение образующихся количеств оксидов азота как при низких температурах ОГ, так и при высоких температурах ОГ, характерных, например, для режимов движения, в которых двигатель работает с полной нагрузкой.
Известные в настоящее время из уровня техники решения, однако, не позволяют оптимизировать ванадиевые СКВ-катализаторы одновременно в отношении их низкотемпературной активности (Т<250°C) и в отношении их высокотемпературной селективности (Т≥500°C). Улучшение низкотемпературной активности всегда сопряжено с ухудшением высокотемпературной селективности и наоборот.
Однако на рынке существует повышенная потребность именно в подобных катализаторах. Исходя из вышеизложенного, в основу настоящего изобретения была положена задача предложить ванадиевые СКВ-катализаторы, которые отличались бы хорошей низкотемпературной активностью при одновременно высокой высокотемпературной селективности.
Указанная задача решается с помощью катализатора для селективного восстановления оксидов азота, имеющего два каталитически активных слоя А и Б, при этом слой А содержит оксидный носитель, а также компоненты А1 и А2, а слой Б содержит оксидный носитель, а также компоненты Б1, Б2 и Б3, где А1 и Б1 обозначают по меньшей мере один оксид ванадия, А2 и Б2 обозначают по меньшей мере один оксид вольфрама и Б3 обозначает по меньшей мере один оксид кремния, и отличающегося тем, что доля компонента А1 в слое А в мас. % в пересчете на общую массу этого слоя А больше, чем доля компонента Б1 в слое Б в мас. % в пересчете на общую массу этого слоя Б, а доля слоя А в мас. % в пересчете на общую массу слоев А и Б больше, чем доля слоя Б.
В одном из вариантов осуществления настоящего изобретения слой А наряду с компонентами А1 и А2 содержит также компонент A3, где A3 обозначает по меньшей мере один оксид кремния, при этом доля компонента A3 в слое А в мас. % в пересчете на общую массу этого слоя А меньше, чем доля компонента Б3 в слое Б в мас. % в пересчете на общую массу этого слоя Б.
В зависимости от условий работы предлагаемого в изобретении катализатора компоненты А1-А3 и Б1-Б3 могут быть представлены в различных оксидных формах. К параметрам, которыми определяется та или иная конкретная оксидная форма, относятся, например, концентрация отдельных компонентов, температура и концентрация кислорода, воздействию которой подвержен катализатор. Однако соответствующее влияние может также оказывать способ изготовления предлагаемого в изобретении катализатора. Обычно ванадий представлен в виде его пентаоксида, вольфрам представлен в виде его триоксида, а кремний представлен в виде его диоксида. Однако в зависимости от концентрации кислорода ванадий, вольфрам и кремний могут быть также представлены в больших или меньших степенях окисления. Помимо этого все оксидные компоненты слоя А и/или все оксидные компоненты слоя Б могут также образовывать твердый раствор, в котором оксиды отдельных элементов более невозможно отличить один от другого. Однако данный фактор во всяком случае имеет второстепенное значение для эффективности СКВ-катализатора и не оказывает повышенного влияния на каталитическую активность. В остальном установить конкретную форму, в которой представлены компоненты предлагаемого в изобретении катализатора, можно пригодными для этой цели аналитическими методами.
В одном из вариантов реализации предлагаемого в изобретении катализатора он имеет по меньшей мере два каталитически активных слоя А и Б, при этом слой А содержит оксидный носитель, пентаоксид ванадия в качестве компонента А1 и три оксид вольфрама в качестве компонента А2, а слой Б содержит оксидный носитель, пентаоксид ванадия в качестве компонента Б1, триоксид вольфрама в качестве компонента Б2 и диоксид кремния в качестве компонента Б3, и отличается тем, что доля пентаоксида ванадия в слое А в мас. % в пересчете на общую массу этого слоя А больше, чем доля пентаоксида ванадия в слое Б в мас. % в пересчете на общую массу этого слоя Б, а доля слоя А в мас. % в пересчете на общую массу слоев А и Б больше, чем доля слоя Б.
В еще одном варианте реализации предлагаемого в изобретении катализатора доля компонента А2 в слое А и доля компонента Б2 в слое Б в мас. % в пересчете на общую массу этого слоя А, соответственно этого слоя Б равны или доля компонента А2 в слое А в мас. % в пересчете на общую массу этого слоя А меньше, чем доля компонента Б2 в слое Б в мас. % в пересчете на общую массу этого слоя Б.
Слои А и Б могут независимо друг от друга содержать еще и другие компоненты А4, соответственно Б4, где А4 обозначает один или несколько оксидов металлов, выбранных из группы, включающей оксиды меди, железа, марганца, молибдена, сурьмы, ниобия, серебра, палладия, платины и редкоземельных элементов, а Б4 независимо от А4 обозначает один или несколько оксидов металлов, выбранных из группы, включающей оксиды меди, железа, марганца, молибдена, сурьмы, ниобия, серебра и редкоземельных элементов.
Аналогично компонентам А1-А3 и Б1-Б3 оксидная форма компонентов А4 и Б4 также может быть различной и зависит, как описано выше, от условий работы предлагаемого в изобретении катализатора и от способа его изготовления. Кроме того, в зависимости от условий работы металлы, такие как серебро, палладий и платина, могут быть также представлены в металлической форме. Выбранная выше формулировка "оксиды серебра, платины и палладия" согласно настоящему изобретению охватывает также сами соответствующие металлы.
В варианте, в котором предлагаемый в изобретении катализатор содержит компоненты А4 и Б4, которыми является оксид редкоземельного элемента, прежде всего доля такого оксида редкоземельного элемента в слое А в мас. % в пересчете на общую массу этого слоя А меньше, чем доля такого оксида редкоземельного элемента в слое Б в мас. % в пересчете на общую массу этого слоя Б.
К предпочтительным редкоземельным элементам относятся лантан, церий, празеодим, неодим, самарий, гадолиний, тербий, диспрозий, эрбий и иттрий.
В варианте, в котором предлагаемый в изобретении катализатор содержит компоненты А4 и Б4, которыми является оксид меди, железа, марганца, молибдена, ниобия или серебра, прежде всего доля таких оксидов меди, железа, марганца, молибдена, ниобия или серебра в слое А в мас. % в пересчете на общую массу этого слоя А больше, чем доля таких оксидов меди, железа, марганца, молибдена, сурьмы, ниобия или серебра в слое Б в мас. % в пересчете на общую массу этого слоя Б.
В одном из вариантов реализации предлагаемого в изобретении катализатора он содержит компонент А4, но не компонент Б4. В этом случае доля компонента А4 в пересчете на общую массу слоя А составляет от 0,1 до 15 мас. %, при этом применительно к серебру, платине и палладию эта доля указана из расчета для содержания соответствующего металла, а применительно к остальным компонентам эта доля указана из расчета для содержания соответствующего оксида, а именно: CuO, Fe2O3, MnO, MoO3, Sb2O5, Nb2O5, CeO2, соответственно Er2O3.
Особенно предпочтительна возможность использования платины в слое А. Обусловлено это тем, что платина благодаря своей эффективности как катализатора окисления способна окислять не превращенный в ходе СКВ-реакции аммиак и предотвращать тем самым его попадание в окружающую среду. Подобное действие могут проявлять и другие обладающие окислительной активностью оксиды, например оксиды меди, марганца и серебра.
В еще одном варианте осуществления настоящего изобретения доля компонента A1 из расчета для содержания пентаоксида ванадия составляет от 1,5 до 5 мас. %, прежде всего от 2 до 4 мас. %, в пересчете на общую массу слоя А.
В еще одном варианте осуществления настоящего изобретения доля компонента Б1 из расчета для содержания пентаоксида ванадия составляет от 1 до 4 мас. %, прежде всего от 1,5 до 3,5 мас. %, в пересчете на общую массу слоя Б.
В еще одном варианте осуществления настоящего изобретения доля компонента А2 в пересчете на общую массу слоя А и доля компонента Б2 в пересчете на общую массу слоя Б равны. В этом случае такая доля из расчета для содержания триоксида вольфрама составляет прежде всего от 3 до 12 мас. %, предпочтительно от 4,5 до 10 мас. %.
В том случае, когда доля компонента А2 в пересчете на общую массу слоя А меньше, чем доля компонента Б2 в пересчете на общую массу слоя Б, доля компонента А2 из расчета для содержания триоксида вольфрама составляет прежде всего от 3 до 5,5 мас. %, предпочтительно от 4,5 до 5 мас. %. Доля же компонента Б2 в пересчете на общую массу слоя Б составляет в этом случае прежде всего от 4,5 до 12 мас. %, предпочтительно от 5 до 10 мас. %.
Доля компонента Б3 в пересчете на общую массу слоя Б и из расчета для содержания диоксида кремния составляет прежде всего от 3 до 12 мас. %, предпочтительно от 3,5 до 10 мас. %.
Доля компонента A3 в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния предпочтительно составляет от 0 до 5 мас. %. При наличии компонента A3 его доля в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния особенно предпочтительно составляет от 1 до 5 мас. %.
При наличии компонентов А4 или Б4 их доля в пересчете на общую массу слоя А, соответственно слоя Б составляет прежде всего от 0,1 до 15 мас. %. Эти данные о содержании таких компонентов за исключением серебра, платины и палладия, доля каждого из которых указана из расчета для содержания металла, указаны из расчета для содержания оксидов CuO, Fe2O3, MnO, MoO3, Sb2O5, Nb2O5, CeO2, Er2O3 и т.д.
В еще одном варианте осуществления настоящего изобретения доля компонента А1 из расчета для содержания пентаоксида ванадия составляет от 1,5 до 5 мас. % в пересчете на общую массу слоя А, а доля компонента Б1 из расчета для содержания пентаоксида ванадия составляет от 1 до 4 мас. % в пересчете на общую массу слоя Б, доля компонента А2 в пересчете на общую массу слоя А и доля компонента Б2 в пересчете на общую массу слоя Б равны и составляют из расчета для содержания триоксида вольфрама от 3 до 12 мас. % или доля компонента А2 в пересчете на общую массу слоя А меньше, чем доля компонента Б2 в пересчете на общую массу слоя Б, и составляет из расчета для содержания триоксида вольфрама от 3 до 5,5 мас. %, при этом доля компонента Б2 в пересчете на общую массу слоя Б составляет в данном случае от 4,5 до 12 мас. %, и доля компонента Б3 в пересчете на общую массу слоя Б и из расчета для содержания диоксида кремния составляет от 3 до 12 мас. %, при этом компонент A3 отсутствует или его доля в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния составляет от 1 до 5 мас. %.
В еще одном варианте осуществления настоящего изобретения доля компонента А1 из расчета для содержания пентаоксида ванадия составляет от 2 до 4 мас. % в пересчете на общую массу слоя А, а доля компонента Б1 из расчета для содержания пентаоксида ванадия составляет от 1,5 до 3,5 мас. % в пересчете на общую массу этого слоя Б, доля компонента А2 в пересчете на общую массу слоя А и доля компонента Б2 в пересчете на общую массу слоя Б равны и составляют из расчета для содержания триоксида вольфрама от 4,5 до 10 мас. % или доля компонента А2 в пересчете на общую массу слоя А меньше, чем доля компонента Б2 в пересчете на общую массу слоя Б, и составляет из расчета для содержания триоксида вольфрама от 4,5 до 5 мас. %, при этом доля компонента Б2 в пересчете на общую массу слоя Б составляет в данном случае от 5 до 10 мас. %, и доля компонента Б3 в пересчете на общую массу слоя Б и из расчета для содержания диоксида кремния составляет от 3,5 до 10 мас. %, при этом компонент A3 отсутствует или его доля в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния составляет от 1 до 5 мас. %.
В различных вариантах реализации предлагаемого в изобретении катализатора в качестве оксидного носителя в слое А и/или слое Б используют диоксид титана, диоксид циркония и/или оксид алюминия. В качестве оксидного носителя в слоях А и Б используют прежде всего диоксид титана. Предпочтителен диоксид титана, который на по меньшей мере 95% представлен в модификации анатаз и на максимум 5% представлен в модификации рутил. Его удельная поверхность, определяемая методом Брунауэра-Эммета-Теллера по адсорбции азота (БЭТ-поверхность), прежде всего превышает 80 м2/г и составляет, например, от 80 до 250 м2/г.
Доля оксидного носителя в мас. % в пересчете на соответствующий слой рассчитывается простым путем вычитанием суммы долей остальных компонентов, т.е., например, компонентов, A1, А2, A3 и А4, соответственно Б1, Б2, Б3 и Б4, из 100.
Согласно изобретению доля слоя А в мас. % в пересчете на общую массу слоев А и Б больше, чем доля слоя Б.
В различных вариантах осуществления настоящего изобретения доля слоя Б составляет от 12,5 до 25% в пересчете на общую массу слоев А и Б. Слой А используют прежде всего в удельных количествах от 100 до 220 г/л, предпочтительно от 120 до 210 г/л, а слой Б - в удельных количествах от 14 до 75 г/л, в каждом случае в пересчете на объем подложки.
Слои А и Б предлагаемого в изобретении катализатора в предпочтительном варианте нанесены на каталитически инертный корпус-носитель из керамического или металлического материала, имеющий первый конец а, второй конец b и длину L между этими концами а и b. При этом такой каталитически инертный корпус-носитель может представлять собой проточный сотовый элемент или фильтр с проницаемыми стенками каналов. При использовании фильтра с проницаемыми стенками каналов в качестве каталитически инертного корпуса-носителя предлагаемый в изобретении катализатор можно использовать в виде дизельного сажевого фильтра с СКВ-активным покрытием.
Расположение слоев А и Б на каталитически инертном корпусе-носителе может быть различным. Однако эти слои располагают прежде всего таким образом, чтобы при целевом применении предлагаемого в изобретении катализатора его можно было установить на автомобиле в положении, в котором нейтрализуемые ОГ входят в контакт со слоем Б до вхождения в контакт со слоем А. Так, например, слой А наносят непосредственно на инертный корпус-носитель по всей его длине, а слой Б наносят на слой А с полным его покрытием с обращенной к потоку ОГ стороны.
В еще одном варианте слой А может быть нанесен начиная от конца а каталитически инертного корпуса-носителя на длину La, а слой Б может быть нанесен начиная от конца b каталитически инертного корпуса-носителя на длину Lb, при этом длина La составляет от 50 до 75%, а длина Lb - от 25 до 50% длины L и сумма La и Lb равна полной длине L корпуса-носителя.
В еще одном варианте слой А и слой Б могут быть нанесены на два разных, соответственно раздельных, расположенных один за другим каталитически инертных корпуса-носителя. В этом случае при целевом применении предлагаемого в изобретении катализатора каталитически инертный корпус-носитель со слоем Б прежде всего располагается по ходу потока ОГ перед каталитически инертным корпусом-носителем со слоем А.
Помимо этого возможен также вариант, в котором слои А и Б не нанесены на каталитически инертный корпус-носитель, а вместо этого слой А выполнен в виде экструдированного корпуса-носителя, на который нанесен слой Б в виде покрытия.
Слои А и Б наносят на каталитически инертный корпус-носитель обычными методами нанесения покрытий погружением, соответственно прокачиванием и просасыванием с последующей термической обработкой (прокаливание и при необходимости восстановление формир-газом (газом из смеси водорода и азота) или водородом). Такие методы достаточно давно известны из уровня техники.
Предлагаемый в изобретении катализатор в высшей степени пригоден для снижения содержания оксидов азота в ОГ работающих на обедненных смесях ДВС, прежде всего дизельных двигателей.
В соответствии с этим объектом настоящего изобретения является также способ снижения содержания оксидов азота в отработавших газах (ОГ) работающих на обедненных смесях двигателей внутреннего сгорания, заключающийся в том, что в содержащие оксиды азота ОГ добавляют восстановитель и образовавшуюся смесь из содержащих оксиды азота ОГ и восстановителя пропускают через предлагаемый в изобретении катализатор, который при этом расположен таким образом, что смесь из содержащих оксиды азота ОГ и восстановителя входит в контакт сначала со слоем Б.
В качестве восстановителя используется прежде всего аммиак, при этом в особенно предпочтительном варианте в содержащие оксиды азота ОГ добавляют не сам аммиак, а его предшественник, прежде всего мочевину. Однако в качестве восстановителя можно также использовать углеводороды (метод удаления оксидов азота путем их взаимодействия с углеводородами, так называемый HC-деNOx-метод), которые можно дозировать в содержащие оксиды азота ОГ или которые могут образовываться в потоке ОГ (так называемый пассивный HC-деNOx-метод). Различные методы, соответственно различные восстановители известны специалисту и подробно описаны в литературе.
Предлагаемый в изобретении катализатор используют прежде всего в качестве компонента системы снижения токсичности ОГ, которая, например, наряду с предлагаемым в изобретении катализатором имеет расположенные по ходу потока ОГ перед ним катализатор окисления (каталитический нейтрализатор окислительного типа) и дизельный сажевый фильтр. При этом предлагаемый в изобретении катализатор может также присутствовать в виде покрытия на дизельном сажевом фильтре.
В соответствии с этим объектом настоящего изобретения является также система снижения токсичности отработавших газов (ОГ) дизельного двигателя, которая имеет расположенные в указанной последовательности в направлении потока ОГ катализатор окисления, дизельный сажевый фильтр и предлагаемый в изобретении катализатор или катализатор окисления и дизельный сажевый фильтр, на котором присутствует предлагаемый в изобретении катализатор в виде покрытия, при этом предлагаемый в изобретении катализатор расположен таким образом, что содержащие оксиды азота ОГ входят в контакт сначала со слоем Б.
Пригодные для применения в предлагаемой в изобретении системе снижения токсичности ОГ катализаторы окисления и дизельные сажевые фильтры известны специалисту и имеются в продаже.
Обычно предлагаемая в изобретении система снижения токсичности ОГ имеет расположенное по ходу потока перед предлагаемым в изобретении катализатором устройство для дозирования аммиака, соответственно соединения, из которого образуется аммиак, например мочевины.
Объектом настоящего изобретения является далее способ снижения содержания оксидов азота в отработавших газах (ОГ) работающих на обедненных смесях двигателей внутреннего сгорания, прежде всего дизельных двигателей, отличающийся тем, что ОГ пропускают через предлагаемую в изобретении систему снижения их токсичности.
Примеры 1-8
Приготовление порошковых катализаторов
А) Каталитический порошок А, содержащий TiO2 в качестве носителя в количестве 87,8 мас. %, V2O5 в количестве 2,2 мас. % и WO3 в количестве 10 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водный раствор метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Б) Каталитический порошок Б, содержащий TiO2 в качестве носителя в количестве 87,8 мас. %, V2O5 в количестве 2,2 мас. % и WO3 в количестве 10 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный оксидом вольфрама в количестве 10 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующем количестве растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
В) Каталитический порошок В, содержащий TiO2 в качестве носителя в количестве 79,4 мас. %, V2O5 в количестве 1,8 мас. %, WO3 в количестве 10 мас. % и SiO2 в количестве 8,8 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 10 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водный раствор метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Г) Каталитический порошок Г, содержащий TiO2 в качестве носителя в количестве 78,5 мас. %, V2O5 в количестве 1,8 мас. %, WO3 в количестве 10 мас. % и SiO2 в количестве 9,7 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 10 мас. % и оксидом вольфрама в количестве 9 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующем количестве растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Пример 1
а) Для изготовления предлагаемого в изобретении катализатора каталитический порошок А взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 210 г/л.
б) Затем каталитический порошок В взмучивали в воде и из полученной взвеси на полученную на предшествующей стадии а), покрытую каталитическим порошком А подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 70 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K1.
Пример 2
Каталитический порошок Г взмучивали в воде и из полученной взвеси на полученную согласно примеру 1а), покрытую каталитическим порошком А подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 70 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K2.
Пример 3
а) Для изготовления предлагаемого в изобретении катализатора каталитический порошок Б взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 210 г/л.
б) Затем каталитический порошок В взмучивали в воде и из полученной взвеси на полученную на предшествующей стадии а), покрытую каталитическим порошком Б подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 70 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K3.
Пример 4
Каталитический порошок Г взмучивали в воде и из полученной взвеси на полученную согласно примеру 3а), покрытую каталитическим порошком Б подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 70 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K4.
Пример 5
а) Для изготовления предлагаемого в изобретении катализатора каталитический порошок А взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента обычным путем наносили покрытие с одной его стороны на длину, составляющую 75% его полной длины. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 280 г/л.
б) Затем каталитический порошок В взмучивали в воде и из полученной взвеси на полученную на предшествующей стадии а), покрытую каталитическим порошком А подложку в виде проточного сотового элемента обычным путем наносили покрытие на остальные 25% его полной длины. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 280 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K5.
Пример 6
Каталитический порошок Г взмучивали в воде и из полученной взвеси на полученную согласно примеру 5 а) подложку в виде проточного сотового элемента, покрытую каталитическим порошком А на 75% его длины, обычным путем наносили покрытие на остальные 25% его полной длины. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 280 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K6.
Пример 7
а) Для изготовления предлагаемого в изобретении катализатора каталитический порошок Б взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента обычным путем наносили покрытие с одной его стороны на длину, составляющую 75% его полной длины. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 280 г/л.
б) Затем каталитический порошок В взмучивали в воде и из полученной взвеси на полученную на предшествующей стадии а), покрытую каталитическим порошком А подложку в виде проточного сотового элемента обычным путем наносили покрытие на остальные 25% его полной длины. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 280 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K7.
Пример 8
Каталитический порошок Г взмучивали в воде и из полученной взвеси на полученную согласно примеру 7а) подложку в виде проточного сотового элемента, покрытую каталитическим порошком Б на 75% его длины, обычным путем наносили покрытие на остальные 25% его полной длины. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, составило 280 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K8.
Сравнительный пример 1
Аналогично примеру 1а на подложку в виде имеющегося в продаже проточного сотового элемента по всей его длине наносили покрытие из каталитического порошка А в количестве 280 г/л.
Полученный таким путем катализатор ниже обозначается как СК1.
Сравнительный пример 2
Аналогично примеру 3а на подложку в виде имеющегося в продаже проточного сотового элемента по всей его длине наносили покрытие из каталитического порошка Б в количестве 280 г/л.
Полученный таким путем катализатор ниже обозначается как СК2.
Сравнительный пример 3
Для изготовления сравнительного катализатора каталитический порошок В взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 280 г/л.
Полученный таким путем катализатор ниже обозначается как СК3.
Сравнительный пример 4
Для изготовления сравнительного катализатора каталитический порошок Г взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента обычным путем наносили покрытие по всей его длине. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 280 г/л.
Полученный таким путем катализатор ниже обозначается как СК4.
Перед испытанием катализаторов из примеров 1-8 и сравнительных примеров 1-4 их сначала подвергали гидротермальному старению в течение 100 ч при 580°C в газовой атмосфере (10% O2, 10% H2O, остальное N2).
В случае слоистых катализаторов из примеров 1-4 для определения степени превращения NO на состаренных катализаторах испытания проводили в реакторе из кварцевого стекла на кернах с L=3'' и D=1% при разных значениях температуры от 150 до 540°C в стационарных условиях (среднечасовая скорость подачи газа (СЧСПГ): 30000 ч-1, состав искусственного газа : NO в количестве 500 част./млн, NH3 в количестве 450 част./млн (α=xNH3/xNOx=0,9; xNOx=xNO+xNO2, где x в каждом случае обозначает концентрацию), 5% O2, 5% H2O, остальное N2. Степень превращения NO на зональных катализаторах из примеров 5-8 определяли аналогичным образом, используя керны, у которых соотношение между длинами обеими зон, т.е. между длиной зоны с одним из покрытий и длиной зоны с другим из них, было таким же, что и у исходной подложки с обоими покрытиями.
В испытаниях были получены следующие результаты по определению степени превращения NO в %, нормированной на α:
Figure 00000001
Примеры 9-20
Для изготовления других предлагаемых в изобретении катализаторов использовали следующие каталитические порошки.
Д) Каталитический порошок Д, содержащий TiO2 в качестве носителя в количестве 87,8 мас. %, V2O5 в количестве 3,5 мас. %, WO3 в количестве 4,5 мас. % и SiO2 в количестве 4,6 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водный раствор метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Е) Каталитический порошок Е, содержащий TiO2 в качестве носителя в количестве 92,0 мас. %, V2O5 в количестве 3,0 мас. % и WO3 в количестве 5 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водный раствор метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Ж) Каталитический порошок Ж, содержащий TiO2 в качестве носителя в количестве 92,5 мас. %, V2O5 в количестве 2,5 мас. % и WO3 в количестве 5 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водный раствор метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
З) Каталитический порошок 3, содержащий TiO2 в качестве носителя в количестве 91,5 мас. %, V2O5 в количестве 2,5 мас. %, WO3 в количестве 5 мас. % и серебро в количестве 1 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы метавольфрамата аммония и ацетата серебра и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
И) Каталитический порошок И, содержащий TiO2 в качестве носителя в количестве 92,0 мас. %, V2O5 в количестве 2,5 мас. %, WO3 в количестве 5 мас. % и MnO в количестве 0,5 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы ацетата марганца и метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
К) Каталитический порошок К, содержащий TiO2 в качестве носителя в количестве 74,9 мас. %, V2O5 в количестве 4,0 мас. %, WO3 в количестве 8,3 мас. %, SiO2 в количестве 9,3 мас. % и Fe2O3 в количестве 3,5 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость и интенсивно смешивали с ванадатом железа в соответствующем количестве. Затем при постоянном перемешивании медленно добавляли в соответствующем количестве водный раствор метавольфрамата аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Л) Каталитический порошок Л, содержащий TiO2 в качестве носителя в количестве 88,6 мас. %, V2O5 в количестве 1,6 мас. %, WO3 в количестве 5,0 мас. %, SiO2 в количестве 4,3 мас. % и CuO в количестве 0,5 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы метавольфрамата аммония и ацетата меди и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
М) Каталитический порошок М, содержащий TiO2 в качестве носителя в количестве 87,2 мас. %, V2O5 в количестве 1,6 мас. %, WO3 в количестве 5,0 мас. %, SiO2 в количестве 4,2 мас. % и Nb2O5 в количестве 2,0 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы метавольфрамата аммония и оксалата аммония-ниобия и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Н) Каталитический порошок Н, содержащий TiO2 в качестве носителя в количестве 87,2 мас. %, V2O5 в количестве 1,6 мас. %, WO3 в количестве 5,0 мас. %, SiO2 в количестве 4,2 мас. % и MoO3 в количестве 2,0 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы метавольфрамата аммония и молибдата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
О) Каталитический порошок О, содержащий TiO2 в качестве носителя в количестве 88,8 мас. %, V2O5 в количестве 1,5 мас. %, WO3 в количестве 5,0 мас. % и SiO2 в количестве 4,7 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водный раствор метавольфрамата аммония и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
П) Каталитический порошок П, содержащий TiO2 в качестве носителя в количестве 75,8 мас. %, V2O5 в количестве 2,1 мас. %, WO3 в количестве 8,4 мас. %, SiO2 в количестве 9,4 мас. % и CeO2 в количестве 4,3 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 10 мас. % и WO3 в количестве 9 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы метавольфрамата аммония и ацетата церия и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Р) Каталитический порошок Р, содержащий TiO2 в качестве носителя в количестве 65,1 мас. %, V2O5 в количестве 3,2 мас. %, WO3 в количестве 7,2 мас. %, SiO2 в количестве 8,0 мас. %, Fe2O3 в количестве 2,8 мас. % и Er2O3 в количестве 13,6 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 10 мас. % и WO3 в количестве 9 мас. %, помещали в емкость и интенсивно смешивали с ванадатом железа-эрбия в соответствующем количестве. Затем при постоянном перемешивании медленно добавляли в соответствующем количестве водный раствор метавольфрамата аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
С) Каталитический порошок С, содержащий TiO2 в качестве носителя в количестве 87,7 мас. %, V2O5 в количестве 1,6 мас. %, WO3 в количестве 5,0 мас. %, SiO2 в количестве 4,2 мас. % и Sb2O5 в количестве 1,5 мас. %, приготавливали следующим путем. Имеющийся в продаже диоксид титана (анатаз) в порошкообразном виде, легированный SiO2 в количестве 5 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли в соответствующих количествах водные растворы метавольфрамата аммония и ацетата сурьмы и растворенный в щавелевой кислоте метаванадат аммония. Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Аналогично описанию в примерах 1-4 с использованием каталитических порошков Д-С получали предлагаемые в изобретении слоистые катализаторы в примерах 9-20 в соответствии с нижеследующей таблицей.
Figure 00000002
Для изготовления каждого из катализаторов из сравнительных примеров 5-12 на подложку в виде имеющегося в продаже проточного сотового элемента по всей его длине наносили покрытие из каталитического порошка Д, О, Е, З, П, Р, И, соответственно Л в количестве 160 г/л. Полученные таким путем катализаторы ниже обозначаются как СК5 (содержащий каталитический порошок Д), СК6 (содержащий каталитический порошок О), СК7 (содержащий каталитический порошок Е), СК8 (содержащий каталитический порошок 3), СК9 (содержащий каталитический порошок П), СК10 (содержащий каталитический порошок Р), СК11 (содержащий каталитический порошок И) и СК12 (содержащий каталитический порошок Л).
Степень превращения NO на свежеизготовленных катализаторах из примеров 10, 11, 12, 13, 16, 17 и 18 (ниже обозначаемых как K10, K11, K12, K13, K16, K17, соответственно K18), а также на сравнительных катализаторах СК5-СК12 определяли описанным выше путем.
В испытаниях были получены следующие результаты по определению степени превращения NO в %, нормированной на α:
Figure 00000003
Т) Каталитический порошок Т, содержащий TiO2 в качестве носителя в количестве 77,1 мас. %, V2O5 в количестве 3,61 мас. %, WO3 в количестве 11,17 мас. % и SiO2 в количестве 8,12 мас. %, приготавливали следующим путем. Смесь из 11,29 мас. % чистого, имеющегося в продаже диоксида титана (анатаз) и 81,23 мас. % имеющегося в продаже диоксида титана (анатаз), легированного SiO2 в количестве 10 мас. % и WO3 в количестве 9 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли водные растворы метавольфрамата аммония (3,86 мас. % из расчета для содержания WO3) и метаванадата аммония (3,61 мас. % из расчета для содержания V2O5). Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
У) Каталитический порошок У, содержащий TiO2 в качестве носителя в количестве 73,02 мас. %, V2O5 в количестве 3,42 мас. %, WO3 в количестве 15,87 мас. % и SiO2 в количестве 7,69 мас. %, приготавливали следующим путем. Смесь из 10,70 мас. % чистого, имеющегося в продаже диоксида титана (анатаз) и 76,94 мас. % имеющегося в продаже диоксида титана (анатаз), легированного SiO2 в количестве 10 мас. % и WO3 в количестве 9 мас. %, помещали в емкость. Затем при постоянном перемешивании медленно добавляли водные растворы метавольфрамата аммония (8,95 мас. % из расчета для содержания WO3) и метаванадата аммония (3,42 мас. % из расчета для содержания V2O5). Полученный таким путем порошок сушили при 110°C и затем прокаливали при 600°C в течение 6 ч.
Пример 21
а) Для изготовления предлагаемого в изобретении катализатора каталитический порошок У взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента длиной 3,0'' обычным путем наносили покрытие с одной его стороны на длину 1,2'', т.е. на длину, составляющую 40% его полной длины. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 160 г/л.
б) Затем каталитический порошок Т взмучивали в воде и из полученной взвеси на полученную на предшествующей стадии а), покрытую каталитическим порошком У подложку в виде проточного сотового элемента обычным путем наносили покрытие на остальные 60% его полной длины. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, также составило 160 г/л.
Полученный таким путем предлагаемый в изобретении катализатор ниже обозначается как K13.
Сравнительный пример 13
а) Для изготовления сравнительного катализатора каталитический порошок Т взмучивали в воде и из полученной взвеси на подложку в виде проточного сотового элемента длиной 3,0'' обычным путем наносили покрытие с одной его стороны на длину 1,2', т.е. на длину, составляющую 40% его полной длины. После этого сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия составило 160 г/л.
б) Затем каталитический порошок У взмучивали в воде и из полученной взвеси на полученную на предшествующей стадии а), покрытую каталитическим порошком Т подложку в виде проточного сотового элемента обычным путем наносили покрытие на остальные 60% его полной длины. После этого вновь сушили при 110°C и прокаливали при 600°C в течение 6 ч. Удельное количество нанесенного таким путем пористого покрытия, образованного вторым слоем, также составило 160 г/л.
Полученный таким путем катализатор ниже обозначается как СК13. У этого катализатора СК13 доля V2O5 в слое А (полученном на стадии а) слое) в мас. % в пересчете на общую массу этого слоя А меньше, чем доля V2O5 в слое Б (полученном на стадии б) слое) в мас. % в пересчете на общую массу этого слоя Б. В этом отношении катализатор СК13 соответствует катализатору из примера 2 в US 2013/205743.
Степень превращения NO на свежеизготовленных катализаторах K13 и СК15 определяли описанным выше путем.
В испытаниях были получены следующие результаты по определению степени превращения NO в %, нормированной на α:
Figure 00000004

Claims (25)

1. Катализатор для селективного восстановления оксидов азота, имеющий два каталитически активных слоя А и Б, при этом слой А содержит оксидный носитель, а также компоненты А1 и А2, а слой Б содержит оксидный носитель, а также компоненты Б1, Б2 и Б3, где А1 и Б1 обозначают по меньшей мере один оксид ванадия, А2 и Б2 обозначают по меньшей мере один оксид вольфрама и Б3 обозначает по меньшей мере один оксид кремния, отличающийся тем, что доля компонента А1 в слое А в мас. % в пересчете на общую массу этого слоя А больше, чем доля компонента Б1 в слое Б в мас. % в пересчете на общую массу этого слоя Б, а доля слоя А в мас. % в пересчете на общую массу слоев А и Б больше, чем доля слоя Б.
2. Катализатор по п.1, отличающийся тем, что слой А наряду с компонентами А1 и А2 содержит компонент A3, где A3 обозначает по меньшей мере один оксид кремния, при этом доля компонента A3 в слое А в мас. % в пересчете на общую массу этого слоя А меньше, чем доля компонента Б3 в слое Б в мас. % в пересчете на общую массу этого слоя Б.
3. Катализатор по п.1, отличающийся тем, что он имеет по меньшей мере два каталитически активных слоя А и Б, при этом слой А содержит оксидный носитель, пентаоксид ванадия в качестве компонента А1 и триоксид вольфрама в качестве компонента А2, а слой Б содержит оксидный носитель, пентаоксид ванадия в качестве компонента Б1, триоксид вольфрама в качестве компонента Б2 и диоксид кремния в качестве компонента Б3, отличающийся тем, что доля пентаоксида ванадия в слое А в мас. % в пересчете на общую массу этого слоя А больше, чем доля пентаоксида ванадия в слое Б в мас. % в пересчете на общую массу этого слоя Б, а доля слоя А в мас. % в пересчете на общую массу слоев А и Б больше, чем доля слоя Б.
4. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента А2 в слое А и доля компонента Б2 в слое Б в мас. % в пересчете на общую массу этого слоя А, соответственно этого слоя Б, равны или доля компонента А2 в слое А в мас. % в пересчете на общую массу этого слоя А меньше, чем доля компонента Б2 в слое Б в мас. % в пересчете на общую массу этого слоя Б.
5. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента А1 из расчета для содержания пентаоксида ванадия составляет от 1,5 до 5 мас. %, прежде всего от 2 до 4 мас. %, в пересчете на общую массу слоя А.
6. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента Б1 из расчета для содержания пентаоксида ванадия составляет от 1 до 4 мас. %, прежде всего от 1,5 до 3,5 мас. %, в пересчете на общую массу слоя Б.
7. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента А2 в пересчете на общую массу слоя А и доля компонента Б2 в пересчете на общую массу слоя Б равны и составляют из расчета для содержания триоксида вольфрама от 3 до 12 мас. %, предпочтительно от 4,5 до 10 мас. %.
8. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента А2 в пересчете на общую массу слоя А меньше, чем доля компонента Б2 в пересчете на общую массу слоя Б, и составляет из расчета для содержания триоксида вольфрама от 3 до 5,5 мас. %, предпочтительно от 4,5 до 5 мас. %, при этом доля компонента Б2 в пересчете на общую массу слоя Б составляет от 4,5 до 12 мас. %, предпочтительно от 5 до 10 мас. %.
9. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента Б3 в пересчете на общую массу слоя Б и из расчета для содержания диоксида кремния составляет от 3 до 12 мас. %, предпочтительно от 3,5 до 10 мас. %.
10. Катализатор по п.2, отличающийся тем, что доля компонента A3 в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния составляет от 0 до 5 мас. %.
11. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента А1 из расчета для содержания пентаоксида ванадия составляет от 1,5 до 5 мас. % в пересчете на общую массу слоя А, доля компонента Б1 из расчета для содержания пентаоксида ванадия составляет от 1 до 4 мас. % в пересчете на общую массу слоя Б, доля компонента А2 в пересчете на общую массу слоя А и доля компонента Б2 в пересчете на общую массу слоя Б равны и составляют из расчета для содержания триоксида вольфрама от 3 до 12 мас. % или доля компонента А2 в пересчете на общую массу слоя А меньше, чем доля компонента Б2 в пересчете на общую массу слоя Б, и составляет из расчета для содержания триоксида вольфрама от 3 до 5,5 мас. %, при этом доля компонента Б2 в пересчете на общую массу слоя Б составляет от 4,5 до 12, и доля компонента Б3 в пересчете на общую массу слоя Б и из расчета для содержания диоксида кремния составляет от 3 до 12 мас. %, при этом компонент A3 отсутствует или его доля в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния составляет от 1 до 5 мас. %.
12. Катализатор по одному из пп.1-3, отличающийся тем, что доля компонента А1 из расчета для содержания пентаоксида ванадия составляет от 2 до 4 мас. % в пересчете на общую массу слоя А, доля компонента Б1 из расчета для содержания пентаоксида ванадия составляет от 1,5 до 3,5 мас. % в пересчете на общую массу этого слоя Б, доля компонента А2 в пересчете на общую массу слоя А и доля компонента Б2 в пересчете на общую массу слоя Б равны и составляют из расчета для содержания триоксида вольфрама от 4,5 до 10 мас. % или доля компонента А2 в пересчете на общую массу слоя А меньше, чем доля компонента Б2 в пересчете на общую массу этого слоя Б, и составляет из расчета для содержания триоксида вольфрама от 4,5 до 5 мас. %, при этом доля компонента Б2 в пересчете на общую массу слоя Б составляет от 5 до 10 мас. %, и доля компонента Б3 в пересчете на общую массу слоя Б и из расчета для содержания диоксида кремния составляет от 3,5 до 10 мас. %, при этом компонент A3 отсутствует или его доля в пересчете на общую массу слоя А и из расчета для содержания диоксида кремния составляет от 1 до 5 мас. %.
13. Катализатор по одному из пп.1-3, отличающийся тем, что слои А и Б независимо друг от друга содержат также другие компоненты А4, соответственно Б4, где А4 обозначает один или несколько оксидов металлов, выбранных из группы, включающей оксиды меди, железа, марганца, молибдена, сурьмы, ниобия, серебра, палладия, платины и редкоземельных элементов, а Б4 независимо от А4 обозначает один или несколько оксидов металлов, выбранных из группы, включающей оксиды меди, железа, марганца, молибдена, сурьмы, ниобия, серебра и редкоземельных элементов.
14. Катализатор по п.13, отличающийся тем, что доля компонента А4 в пересчете на общую массу слоя А составляет от 0,1 до 15 мас. %, при этом применительно к серебру, платине и палладию эта доля указана из расчета для содержания соответствующего металла, а применительно к остальным компонентам эта доля указана из расчета для содержания соответствующего оксида, а именно: CuO, Fe2O3, MnO, MoO3, Sb2O5, Nb2O5, СеО2, соответственно Er2O3.
15. Катализатор по одному из пп.1-3, отличающийся тем, что оксидным носителем в слое А и/или слое В является диоксид титана, диоксид циркония, оксид алюминия или их смеси.
16. Катализатор по п.15, отличающийся тем, что оксидным носителем в слоях А и Б является диоксид титана.
17. Катализатор по одному из пп.1-3, отличающийся тем, что слои А и Б нанесены на каталитически инертный корпус-носитель из керамического или металлического материала, имеющий первый конец а, второй конец b и длину L между этими концами а и b.
18. Катализатор по п.17, отличающийся тем, что каталитически инертный корпус-носитель представляет собой проточный сотовый элемент или фильтр с проницаемыми стенками каналов.
19. Катализатор по п.17, отличающийся тем, что слой А нанесен непосредственно на инертный корпус-носитель по всей его длине, а слой Б нанесен на слой А с полным его покрытием с обращенной к потоку отработавших газов стороны.
20. Катализатор по п.17, отличающийся тем, что слой А нанесен начиная от конца а каталитически инертного корпуса-носителя на длину La, а слой Б нанесен начиная от конца b каталитически инертного корпуса-носителя на длину Lb, при этом длина La составляет от 50 до 75%, а длина Lb - от 25 до 50% длины L и сумма La и Lb равна полной длине L корпуса-носителя.
21. Катализатор по п.17, отличающийся тем, что слой А и слой Б нанесены на два разных, расположенных один за другим каталитически инертных корпуса-носителя.
22. Катализатор по одному из пп.1-3, отличающийся тем, что слой А выполнен в виде экструдированного корпуса-носителя, на который нанесен слой Б в виде покрытия.
23. Способ снижения содержания оксидов азота в отработавших газах (ОГ), работающих на обедненных смесях двигателей внутреннего сгорания, заключающийся в том, что в содержащие оксиды азота ОГ добавляют восстановитель и образовавшуюся смесь из содержащих оксиды азота ОГ и восстановителя, пропускают через катализатор по одному или нескольким из пп.1-22, который при этом расположен таким образом, что смесь из содержащих оксиды азота ОГ и восстановителя входит в контакт сначала со слоем Б.
24. Система снижения токсичности отработавших газов (ОГ), предназначенная для снижения содержания оксидов азота в ОГ работающих на обедненных смесях двигателей внутреннего сгорания и имеющая расположенные в указанной последовательности в направлении потока ОГ катализатор окисления, дизельный сажевый фильтр и катализатор по одному или нескольким из пп.1-22 или катализатор окисления и дизельный сажевый фильтр, на котором присутствует катализатор по одному или нескольким из пп.1-16 в виде покрытия, при этом катализатор по одному или нескольким из пп.1-16 расположен таким образом, что содержащие оксиды азота ОГ входят в контакт сначала со слоем Б.
25. Способ снижения содержания оксидов азота в отработавших газах (ОГ), работающих на обедненных смесях двигателей внутреннего сгорания, отличающийся тем, что ОГ пропускают через систему снижения их токсичности по п.24.
RU2016125301A 2013-11-25 2014-11-19 Катализатор селективного каталитического восстановления RU2666722C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13194249.2A EP2875863A1 (de) 2013-11-25 2013-11-25 SCR-Katalysator
EP13194249.2 2013-11-25
PCT/EP2014/075048 WO2015075083A1 (de) 2013-11-25 2014-11-19 Scr-katalysator

Publications (2)

Publication Number Publication Date
RU2016125301A RU2016125301A (ru) 2018-01-09
RU2666722C1 true RU2666722C1 (ru) 2018-09-12

Family

ID=49667015

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016125301A RU2666722C1 (ru) 2013-11-25 2014-11-19 Катализатор селективного каталитического восстановления

Country Status (9)

Country Link
US (1) US10022704B2 (ru)
EP (2) EP2875863A1 (ru)
JP (1) JP6496309B2 (ru)
KR (1) KR20160091394A (ru)
CN (1) CN105636690B (ru)
BR (1) BR112016011587B1 (ru)
PL (1) PL3074126T3 (ru)
RU (1) RU2666722C1 (ru)
WO (1) WO2015075083A1 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260371B2 (en) 2015-12-17 2022-03-01 Basf Corporation Selective catalytic reduction (SCR) catalyst comprising a composite oxide containing V and SB, preparation process thereof, and use thereof for nitrogen oxides removal
BR112019000787B1 (pt) * 2016-07-15 2022-05-24 Umicore Ag & Co. Kg Método para a preparação de um catalisador à base de vanádio
WO2018018406A1 (en) * 2016-07-26 2018-02-01 Basf Corporation Supported catalyst, monolithic selective catalytic reduction (scr) catalyst, preparation method therefor, and method for nitrogen oxides removal
CN106345454B (zh) * 2016-08-30 2019-08-23 山东海润环保科技有限公司 脱硝脱二噁英催化剂
JP6093101B1 (ja) 2016-09-12 2017-03-08 中国電力株式会社 脱硝触媒、及びその製造方法
GB201705279D0 (en) * 2017-03-31 2017-05-17 Johnson Matthey Plc Selective catalytic reduction catalyst
EP3482825A1 (de) 2017-11-14 2019-05-15 Umicore Ag & Co. Kg Scr-katalysator
EP3482824A1 (de) 2017-11-14 2019-05-15 Umicore Ag & Co. Kg Scr-katalysator
CN108380225B (zh) * 2018-02-07 2022-11-29 齐齐哈尔大学 一种低温高效抗失活脱硝催化剂的合成方法
CN112423864A (zh) * 2018-07-30 2021-02-26 巴斯夫公司 钒基选择性催化还原催化剂
CN109201067B (zh) * 2018-11-23 2021-08-31 中石化炼化工程(集团)股份有限公司 脱硝催化剂及其制备方法以及降低循环流化床锅炉氮氧化物排放的方法
JP7445925B2 (ja) * 2019-03-07 2024-03-08 中国電力株式会社 燃焼システム
US11602736B2 (en) * 2019-03-08 2023-03-14 Johnson Matthey Public Limited Company Vanadium SCR catalysts
CN110124661B (zh) * 2019-04-26 2022-03-29 昆明贵研催化剂有限责任公司 一种室温制备钒基scr催化剂的方法
CN114364447A (zh) * 2019-09-19 2022-04-15 巴斯夫公司 选择性催化还原催化剂组合物、包含其的催化制品和制备催化制品的方法
WO2022058404A1 (en) 2020-09-18 2022-03-24 Umicore Ag & Co. Kg Scr catalyst compositions and scr catalytic articles comprising said catalyst compositions
KR20240004113A (ko) * 2022-07-01 2024-01-11 (주)금강씨엔티 가스터빈 복합화력 발전소에서 기동 및 정지시 및 정상운전시발생하는 질소산화물 제거 촉매
CN115353387B (zh) * 2022-08-17 2023-10-03 电子科技大学 一种微波介质材料ErVO4及其制备方法
DE102022130469A1 (de) 2022-11-17 2024-05-23 Umicore Ag & Co. Kg Verfahren und Vorrichtung zum Herstellen eines Substrats für eine Abgasnachbehandlungseinrichtung
CN115739081B (zh) * 2022-12-28 2024-02-09 大唐(江苏)环保装备公司 一种脱硝催化剂及其制备方法
EP4360742A1 (en) 2023-08-03 2024-05-01 Umicore AG & Co. KG Enhancement of the denox scr performances of vandium-based scr catalysts by using washcoats with different vanadium contents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2058814C1 (ru) * 1989-02-28 1996-04-27 Дегусса Аг Катализатор для селективного восстановления окисей азота аммиаком и способ его приготовления
RU2200624C2 (ru) * 1997-11-21 2003-03-20 Сименс Акциенгезелльшафт Катализаторное тело
WO2011013006A2 (en) * 2009-07-31 2011-02-03 Millennium Inorganic Chemicals, Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
DE102012213639A1 (de) * 2011-08-03 2013-02-07 Johnson Matthey Public Ltd., Co. Extrudierter Wabenkatalysator
WO2013088129A2 (en) * 2011-12-12 2013-06-20 Johnson Matthey Public Limited Company Substrate monolith comprising scr catalyst
US20130205743A1 (en) * 2012-02-13 2013-08-15 Anatoly Sobolevskiy SELECTIVE CATALYTIC REDUCTION SYSTEM AND PROCESS FOR CONTROL OF NOx EMISSIONS IN A SULFUR-CONTAINING GAS STREAM
RU2497577C2 (ru) * 2008-04-11 2013-11-10 Умикоре Аг Унд Ко. Кг Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003366A1 (en) 1987-10-06 1989-04-20 Johnson Matthey Inc. Vanadium/tungsten catalyst and process
US4929586A (en) 1988-06-09 1990-05-29 W. R. Grace & Co.-Conn. Catalysts for selective catalytic reduction DeNOx technology
DE10022842A1 (de) * 2000-05-10 2001-11-22 Dmc2 Degussa Metals Catalysts Strukturierter Katalysator für die selektive Reduktion von Stickoxiden mittels Ammoniak unter Verwendung einer zu Ammoniak hydrolysierbaren Verbindung
JP4994008B2 (ja) * 2006-11-20 2012-08-08 バブコック日立株式会社 窒素酸化物および金属水銀を含む排ガスの浄化装置
CN104959169A (zh) * 2010-08-09 2015-10-07 康明公司 结构性催化剂本体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2058814C1 (ru) * 1989-02-28 1996-04-27 Дегусса Аг Катализатор для селективного восстановления окисей азота аммиаком и способ его приготовления
RU2200624C2 (ru) * 1997-11-21 2003-03-20 Сименс Акциенгезелльшафт Катализаторное тело
RU2497577C2 (ru) * 2008-04-11 2013-11-10 Умикоре Аг Унд Ко. Кг Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления
WO2011013006A2 (en) * 2009-07-31 2011-02-03 Millennium Inorganic Chemicals, Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
DE102012213639A1 (de) * 2011-08-03 2013-02-07 Johnson Matthey Public Ltd., Co. Extrudierter Wabenkatalysator
WO2013088129A2 (en) * 2011-12-12 2013-06-20 Johnson Matthey Public Limited Company Substrate monolith comprising scr catalyst
US20130205743A1 (en) * 2012-02-13 2013-08-15 Anatoly Sobolevskiy SELECTIVE CATALYTIC REDUCTION SYSTEM AND PROCESS FOR CONTROL OF NOx EMISSIONS IN A SULFUR-CONTAINING GAS STREAM

Also Published As

Publication number Publication date
RU2016125301A (ru) 2018-01-09
KR20160091394A (ko) 2016-08-02
CN105636690B (zh) 2019-06-18
WO2015075083A1 (de) 2015-05-28
US20160288094A1 (en) 2016-10-06
BR112016011587B1 (pt) 2020-12-15
US10022704B2 (en) 2018-07-17
EP2875863A1 (de) 2015-05-27
EP3074126B1 (de) 2018-05-02
JP6496309B2 (ja) 2019-04-03
JP2017503632A (ja) 2017-02-02
PL3074126T3 (pl) 2018-10-31
CN105636690A (zh) 2016-06-01
EP3074126A1 (de) 2016-10-05

Similar Documents

Publication Publication Date Title
RU2666722C1 (ru) Катализатор селективного каталитического восстановления
CN111356526B (zh) Scr催化剂
RU2559502C2 (ru) Усовершенствованный каталитический нейтрализатор окислительного типа для снижения токсичности отработавших газов дизельного двигателя
US8883100B2 (en) Particle reduction with combined SCR and NH3 slip catalyst
RU2497577C2 (ru) Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления
RU2584748C2 (ru) Катализатор для удаления оксидов азота из отработавших газов дизельных двигателей
US6813884B2 (en) Method of treating diesel exhaust gases
EP2368628A1 (en) Catalyst for a DeNOx-application and a process for selective catalytic reduction of nitrogen oxides
RU2706923C2 (ru) Катализированный сажевый фильтр для применения при пассивном селективном каталитическом восстановлении
US20230038263A1 (en) SCR Catalyst
CN110785546A (zh) 排气净化系统
EP2747878B1 (en) Process for preparing an oxidizing catalyst and a post-treatment system of an exhaust gas
US20230356204A1 (en) Bismut containing dieseloxidation catalyst
US10968802B2 (en) Method for preventing a selective catalytic reduction (SCR) catalyst from being contaminated with platinum
US11376550B2 (en) Nitrogen oxide storage catalyst
US20240159175A1 (en) Gasoline particle filter with increased fresh filtration
KR20230147151A (ko) 암모니아 산화 촉매 및 이의 제조 방법
JP2010051862A (ja) 触媒およびこれを備えた排ガス浄化装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201120