RU2665329C2 - Способ и устройство для наблюдения и анализа оптических особенностей стеклянных сосудов - Google Patents

Способ и устройство для наблюдения и анализа оптических особенностей стеклянных сосудов Download PDF

Info

Publication number
RU2665329C2
RU2665329C2 RU2015151757A RU2015151757A RU2665329C2 RU 2665329 C2 RU2665329 C2 RU 2665329C2 RU 2015151757 A RU2015151757 A RU 2015151757A RU 2015151757 A RU2015151757 A RU 2015151757A RU 2665329 C2 RU2665329 C2 RU 2665329C2
Authority
RU
Russia
Prior art keywords
vessel
observation
light
luminous surface
axisymmetric
Prior art date
Application number
RU2015151757A
Other languages
English (en)
Other versions
RU2015151757A3 (ru
RU2015151757A (ru
Inventor
Марк ЛЕКОНТ
Любен ФАЙОЛЬ
Эрик ПИРО
Original Assignee
Эм Эс Си Энд Эс Джи Си Си
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эм Эс Си Энд Эс Джи Си Си filed Critical Эм Эс Си Энд Эс Джи Си Си
Publication of RU2015151757A publication Critical patent/RU2015151757A/ru
Publication of RU2015151757A3 publication Critical patent/RU2015151757A3/ru
Application granted granted Critical
Publication of RU2665329C2 publication Critical patent/RU2665329C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9036Investigating the presence of flaws or contamination in a container or its contents using arrays of emitters or receivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3404Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level
    • B07C5/3408Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level for bottles, jars or other glassware
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/909Investigating the presence of flaws or contamination in a container or its contents in opaque containers or opaque container parts, e.g. cans, tins, caps, labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/845Objects on a conveyor

Abstract

Изобретение относится к способу наблюдения и анализа оптических особенностей в стеклянных сосудах. Способ наблюдения и анализа оптических особенностей, отклоняющих свет, находящихся на поверхности или в стенке стеклянного сосуда, имеющего ось симметрии, включает: освещение сосуда при помощи источника рассеянного света, характеризующегося изменением свойства света в направлении изменения, использование устройства получения изображений, чувствительного к указанному свойству света и его изменению, и обработку снимка для анализа оптических особенностей. Причем сосуд освещают снаружи при помощи светящейся поверхности с осевой симметрией относительно вертикальной оси (Z). В случае сосудов с низким коэффициентом пропускания получают снимок участка сосуда при помощи устройства получения изображений, принимающего световые лучи, происходящие от участка осесимметричной светящейся поверхности, находящегося с той же стороны сосуда, что и точка наблюдения (Р), и отражаемые поверхностью сосуда в соответствии с законами зеркального отражения. В случае сосудов с высоким коэффициентом пропускания получают снимок участка сосуда при помощи устройства получения изображений, принимающего световые лучи, происходящие от участка осесимметричной светящейся поверхности, диаметрально противоположного точке наблюдения (Р) по отношению к сосуду, и проходящие через стенки сосуда в соответствии с законами преломления. Технический результат заключается в технологии наблюдения и анализа оптических особенностей сосуда при любой пропускающей способности материала. 2 н. и 24 з.п. ф-лы, 10 ил.

Description

Настоящее изобретение относится к области наблюдения и анализа оптических особенностей, присутствующих в стеклянных сосудах, таких как бутылки, банки и флаконы.
Следует напомнить некоторые физические или математические понятия из оптики. В оптике светимость точки светящейся поверхности характеризует поток, излучаемый в полупространстве, на единицу площади излучающей поверхности с центром в этой точке. Иногда это понятие называют также лучеиспускаемой способностью или энергетической светимостью. Градиент является производной величины в одном или нескольких направлениях, иначе говоря, градиент означает изменение величины. Градиент светимости означает изменение светимости вдоль излучающей поверхности. Точно так же, градиент цвета означает изменение цвета излучаемого света вдоль излучающей поверхности. Рассеиватель является элементом из прозрачного или светопроницаемого материала, рассеивающим свет в своей массе и/или на поверхности.
Под особенностями следует понимать ограниченные участки сосуда или его поверхности, имеющие свойства, отличные от свойств окружающего их материала на или в сосуде. Таким образом, оптические особенности представляют собой участки сосуда, имеющие свойства, отличные от свойств окружающего их материала на или в сосуде. В данном случае эти оптические особенности в основном создают анормальный эффект преломления и/или отражения по сравнению со своим окружением. Преломляющие и/или отражающие дефекты, коды или декоративные элементы типа значка логотипа, нанесенные на поверхности сосудов, являются таким образом оптическими особенностями, которые отклоняют свет иначе, чем их окружение, либо при пропускании (через границу раздела), либо при зеркальном отражении.
С точки наблюдения оптики снимок является изображением, то есть двухмерным сигналом уровня серого или цветным сигналом, полученным путем проецирования сосуда при помощи оптического устройства получения изображений, которое может быть спаренным. Камера, оснащенная объективом, выдает по меньшей мере один снимок. Камера может производить одновременно несколько снимков, например, при помощи системы зеркал, делящей ее поле на N разных снимков. Эти снимки различаются, если точки наблюдения и направления наблюдения являются разными. Со снимком можно совместить увеличение. В настоящей заявке понятие «изображение» используется, чтобы обозначать сигнал, производимый камерой, при этом одно изображение может содержать несколько снимков.
Стекло является материалом, прозрачным в видимом свете. Вместе с тем, пропускание света для каждой длины волны зависит от цвета стекла и от толщины, через которую проходит рассматриваемый свет. Коэффициент пропускания стекла рассматривают как соотношение (в %) между падающим светом и пропускаемом светом при заданной толщине. При помощи спектрометра можно даже измерять пропускание в зависимости от длины волны для получения спектра пропускания, который характеризует цвет стекла. Для некоторых цветов с низким коэффициентом пропускания, то есть очень темных и даже черных на вид, и/или для некоторых толщин стекла (иногда до 5 мм), при которых через стенку сосуда проходит очень мало света, коэффициенты пропускания могут составлять менее 1% почти для всего видимого спектра.
Прозрачность стекла является свойством, широко используемым для обеспечения оптического контроля посредством получения изображений сосудов при пропускании и анализа этих изображений. Наиболее распространенные способы состоят в просвечивании сосудов сзади при помощи протяженного источника однородного света и в съемке изображений сосудов. При этом используют два явления, известных в области геометрической оптики: поглощение так называемыми непрозрачными дефектами или дефектами, пропускание которых отличается от стекла (постороннее тело или утолщение цветного стекла), и преломление света на поверхности особенностями, такими как морщины, свили, открытые пузыри, или полостями в материале, такими как пузырьки в стенке, или включениями, имеющими другой показатель преломления.
Для улучшения выявления так называемых преломляющих дефектов за счет усиления их контрастности в изображениях в патенте US 4487322 предложено использовать источник света с градиентом светимости. Поскольку дефекты отклоняют свет, они не освещаются той же частью источника, что и их окружение, и с учетом градиента светимости источника они не имеют в изображении такой же воспринимаемый световой уровень, как их окружение.
В патенте US 6424414 описаны способ и прибор для обнаружения светопреломляющих дефектов, которые могут содержаться в прозрачных сосудах. Описанный в этом патенте прибор содержит световой источник, имеющий градиент света в направлении вдоль оси сосуда. Световой источник находится на одной линии с камерой, в которую попадает свет, прошедший через сосуд. Такой прибор выполнен с возможностью обнаружения светопреломляющих дефектов при пропускании, но он не может снимать изображения при отражении от сосуда, в частности, для обеспечения анализа знаков или кодов, нанесенных на поверхности сосудов и имеющих слабую или сильную пропускную способность.
Как известно, в случае стеклянных сосудов в выдувных формах вытравливают номерной код формы при помощи шрифта «перл» в виде бусинок. Если знаки или коды, такие как номера форм, выполняют посредством формования, получаемые на сосудах рельефные элементы являются высокими (утолщение >0.5 мм), и эти рельефные элементы (называемые «бусинками») имеют размер порядка миллиметра (диаметр >0.8 мм).
Как известно, номера форм сосудов, выполненные при формовании, считывают в устройствах, в которых каждый сосуд приводят во вращение и освещают бусинки при помощи сфокусированных и направленных световых лучей (узкие, ограниченные и почти или совсем не расходящиеся световые пучки). Все указанные световые лучи имеют близкие друг к другу углы падения и отражаются от бусинок в точном направлении, определяемом углом падения и углом бусинок. Датчики улавливают отражения и их декодируют. Такие системы работают только на рельефных элементах достаточно большого размера и с вращением сосудов, что приводит к удорожанию и к усложнению производственных линий, в которых, как правило, применяют линейное перемещение.
В патенте FR 2780533 раскрыто устройство, в котором применяют этот оптический способ отражения от сосуда сфокусированного света, излучаемого источником, но этот способ предназначен для считывания в устройствах, перемещающих сосуды простым поступательным движением, то есть являющихся намного более быстрыми и экономичными в применении, чем системы вращения. Оптические средства выполнены с возможностью получения изображения всей придонной части вместе с кодом, при этом фоновая придонная часть на изображении имеет черный цвет, а код - белый. Сфокусированные падающие световые пучки попадают на периферию в виде светового конуса, а лучи, отраженные бусинками, отражаются от конусного зеркала в виде плоского изображения и попадают в устройство анализа. Устройства этого типа являются эффективными в случае кодов с относительно высоким рельефом, например, более 0.5 мм. Действительно, бусинки должны иметь достаточную поверхность, чтобы отражать основной световой поток в одном направлении наблюдения, а остальная часть падающего света отражается в любом другом направлении фоновой поверхностью, на которой выполнены указанные рельефные элементы.
Иначе говоря, эти технологии с направленным освещением и с заданным углом наблюдения работают только в случае высоких рельефных элементов, чтобы направление световых лучей, отражаемых бусинками, в достаточно степени отклонялось от направления световых лучей, отражаемых фоновой поверхностью. Следует отметить, что система этого типа позволяет визуально наблюдать свет, отраженный рельефными элементами, которые отображаются в белом цвете в отличие от поверхности (фона), которая остается черной. Кроме того, повышенный контраст дает почти бинарную информацию, бусинки наблюдаются или не наблюдаются, и различаются только части бусинок, причем с очень сильной интенсивностью по сравнению с их окружением. В случае незначительного рельефа, например, по причине износа выдувных форм, белые поверхности, соответствующие бусинкам в изображении, уменьшаются и могут даже не наблюдаться.
В патенте US 4644151 воспроизводится классическое решение, но предложено использовать камеры с источником, имеющим градиент светимости в направлении, параллельном оси вращения сосуда. Таким образом, эта система предполагает приведение сосуда во вращение с уже упомянутыми выше недостатками. Она не предназначена для считывания кодов на поступательно движущихся сосудах.
Если знаки, например, код Datamatrix, выполнены при помощи лазера на горячем стекле, как указано в патенте FR 2906370, рельефные элементы на поверхности сосудов являются гораздо более низкими, чем в случае номеров выдувных форм, и, кроме того, точки кода являются намного меньше и имеют диаметр менее 0.3 мм. Решение состоит в обеспечении преимущественно однородного освещения и в получении серии матричных изображений стенки вращающегося сосуда. Источник является протяженным и однородным (без отверстия), что позволяет получить однородный фон на изображении, но его размер все же ограничен для обеспечения определенного контраста. Эта система подходит для маркировок типа Datamatrix, полученных при помощи лазерного луча на не остывших сосудах, то есть имеющих невысокие рельефные элементы. Однако эта система предполагает приведение сосуда во вращение и не приспособлена для считывания кодов на поступательно перемещающихся сосудах.
Настоящее изобретение призвано устранить недостатки известных решений и предложить новую оптическую технологию наблюдения и анализа оптических особенностей, которые могут иметь слабую преломляющую способность и которые находятся в сосудах.
Изобретение призвано предложить новый метод, позволяющий наблюдать и анализировать оптические особенности на поверхности или в стенке сосуда, причем при любой пропускающей способности материала сосуда.
В связи с этим объектом настоящего изобретения является способ наблюдения и анализа оптических особенностей, отклоняющих свет, находящихся на поверхности или в стенке стеклянного сосуда, имеющего ось симметрии, при этом, согласно способу:
- сосуд освещают при помощи источника рассеянного света, характеризующегося изменением свойства света в направлении изменения,
- используют по меньшей мере одно устройство получения изображений, чувствительное к указанному свойству света и к его изменению, для получения по меньшей мере одного снимка участка сосуда, который может содержать оптические особенности, наблюдаемые по меньшей мере из одной точки наблюдения вдоль оси наблюдения,
- и указанный по меньшей мере один снимок обрабатывают с целью анализа оптических особенностей.
Согласно изобретению:
- сосуд освещают снаружи при помощи светящейся поверхности с осевой симметрией вокруг вертикальной оси, параллельной оси симметрии сосудов, с направлением изменения свойства света вдоль образующей светящейся поверхности в любой точке светящейся поверхности,
- в случае сосудов с низким коэффициентом пропускания получают снимок участка сосуда при помощи устройства получения изображений, принимающего световые пучки, поступающие от участка осесимметричной светящейся поверхности, находящегося с той же стороны сосуда, что и точка наблюдения, и отражаемые поверхностью сосуда в соответствии с законами зеркального отражения,
- или в случае сосудов с высоким коэффициентом пропускания получают снимок участка сосуда при помощи устройства получения изображений, принимающего световые пучки, поступающие от участка осесимметричной светящейся поверхности, диаметрально противоположного точке наблюдения по отношению к сосуду, и проходящие через стенки сосуда в соответствии с законами преломления.
Кроме того, способ в соответствии с изобретением может иметь комбинацию по меньшей мере из одного и/или другого из следующих дополнительных признаков:
- считается, что сосуды имеют высокий коэффициент пропускания, если в изображении появляются мешающие наблюдению оптических особенностей паразитные пятна, создаваемые паразитными световыми лучами, распространяющимися без ослабления в стенке, и считается, что сосуды имеют низкий коэффициент пропускания, если в них указанные паразитные лучи поглощаются цветом материала и не могут помешать анализу оптических особенностей,
- обеспечивают движение сосудов без вращения вокруг их оси в направлении перемещения, перпендикулярном и по существу пересекающем вертикальную ось симметрии осесимметричной светящейся поверхности,
- в двух противоположных сторонах светового источника выполняют проходы по меньшей мере для части движущегося сосуда,
- получают несколько снимков участка сосуда, которые могут содержать оптические особенности, вдоль разных осей наблюдения, распределенных в угловом направлении вокруг вертикальной оси сосуда, для обеспечения полного и даже избыточного анализа периферии сосуда,
- получают несколько снимков при помощи комбинации из камер и оптических систем таким образом, чтобы число камер было меньшим или равным числу точек наблюдения и направлений наблюдения,
- оси наблюдения ориентируют снизу вверх для анализа оптических особенностей, находящихся на горлышке сосудов,
- в качестве оптических особенностей анализируют маркировки и их интерпретируют для получения информации о сосуде или о его изготовлении по меньшей мере при одной из операций, таких как сортировка, отслеживание, идентификация, датировка, аутентификация сосуда,
- оптические особенности выявляют и/или идентифицируют как дефекты сосудов,
- во время наблюдения сосуда включают раздельно и последовательно разные угловые участки осесимметричной светящейся поверхности и в это же время синхронно с их включением получают снимки указанных угловых участков из точек наблюдения, противоположных или находящихся с одной стороны по отношению к сосуду,
- освещение производят при помощи источника рассеянного света, свойством света которого, меняющимся вдоль образующей осесимметричной светящейся поверхности, является светимость светящейся поверхности,
- свойством света, меняющимся вдоль образующей осесимметричной светящейся поверхности, является цвет излучаемого света,
- спектр излучения источника света адаптируют таким образом, чтобы увеличить или уменьшить и даже исключить энергию световых лучей, проходящих через стенки сосуда.
Настоящее изобретение призвано также предложить технологию, которая может работать с вращением или без вращения сосудов. В частности, она обеспечивает анализ оптических особенностей сосудов, перемещающихся по криволинейной траектории или просто поступательно в направлении движения.
Другим объектом изобретения является устройство наблюдения и анализа оптических особенностей, отклоняющих свет, находящихся на поверхности или в стенке стеклянного сосуда, имеющего ось симметрии, содержащее:
- источник рассеянного света, характеризующийся изменением свойства света в направлении изменения,
- по меньшей мере одно устройство получения изображений для получения по меньшей мере одного снимка участка сосуда, который может иметь оптические особенности, наблюдаемые по меньшей мере из одной точки наблюдения вдоль оси наблюдения,
- средства обработки по меньшей мере одного снимка с целью анализа особенностей.
Согласно изобретению:
- светящуюся поверхность располагают таким образом, чтобы освещать сосуд снаружи, причем эта поверхность является поверхностью с осевой симметрией вокруг вертикальной оси, параллельной оси симметрии сосудов, и чтобы в любой точке осесимметричной светящейся поверхности иметь направление изменения свойства света вдоль образующей светящейся поверхности,
- в случае сосудов с низким коэффициентом пропускания устройство получения изображений может производить снимок участка сосуда из точки наблюдения, принимая световые лучи, поступающие от участка осесимметричной светящейся поверхности, находящегося с той же стороны сосуда, что и точка наблюдения, и отражаемые поверхностью сосуда,
- или в случае сосудов с высоким коэффициентом пропускания устройство получения изображений может производить снимок участка сосуда, принимая световые лучи, поступающие от участка осесимметричной светящейся поверхности, диаметрально противоположного точке наблюдения по отношению к сосуду, и проходящие через стенки сосуда.
Кроме того, устройство в соответствии с изобретением может иметь комбинацию по меньшей мере из одного и/или другого из следующих дополнительных признаков:
- осесимметричная светящаяся поверхность является поверхностью вращения например, цилиндром, участком конуса, полусферой или диском,
- светимость осесимметричной светящейся поверхности меняется в любой точке осесимметричной светящейся поверхности вдоль образующей указанной поверхности,
- цвет света, излучаемого осесимметричной светящейся поверхностью, меняется в любой точке осесимметричной светящейся поверхности вдоль образующей указанной поверхности,
- источник света содержит по меньшей мере одно осветительное кольцо, освещающее нижний или верхний конец цилиндрического или усеченного конусного рассеивателя,
- источник света содержит осветительное кольцо, освещающее светорассеивающую полусферу противоположно своей экваториальной плоскости по-разному в зависимости от точки рассматриваемого рассеивателя, но имеющее симметрию с осью, равной оси полусферы,
- источник света содержит плоский рассеивающий диск, освещаемый в центре источником или на периферии осветительным кольцом по-разному в зависимости от точки рассматриваемого рассеивателя, но имеющее симметрию с осью, равной оси диска,
- спектр излучения источника света адаптируют таким образом, чтобы увеличить или уменьшить и даже исключить энергию световых лучей, проходящих через стенки сосуда,
- источник света содержит полностью освещаемый рассеиватель, на который с одной или с другой стороны нанесена пленка, коэффициент пропускания которой меняется по меньшей мере для одной длины волны вдоль образующей светящейся поверхности,
- осесимметричная светящаяся поверхность содержит различные угловые сектора, селективно управляемые на включение и/или на выключение,
- осесимметричная светящаяся поверхность содержит входной проход и выходной проход для части сосуда, расположенные симметрично относительно вертикальной оси,
- устройство содержит ряд устройств получения изображений, расположенных вокруг вертикальной оси для наблюдения сосуда из нескольких точек наблюдения, позволяющих наблюдать всю или часть его периферии,
- устройства получения изображений располагают с осью наблюдения снизу вверх, образующей с горизонталью угол от 3° до 10°.
Другие отличительные признаки будут более очевидны из нижеследующего описания не ограничительных вариантов выполнения изобретения со ссылками на прилагаемые чертежи, которые иллюстрируют в качестве не ограничительных примеров варианты выполнения изобретения и на которых:
Фиг. 1 - вид в перспективе первого варианта выполнения устройства наблюдения и анализа в соответствии с изобретением, содержащего осесимметричную светящуюся поверхность, например, типа цилиндра.
Фиг. 2 - фронтальный вид устройства наблюдения и анализа, показанного на фиг. 1.
Фиг. 3 - принципиальная схема, показывающая прохождение световых лучей, поступающих от светового источника с постоянным и не равным нулю градиентом светимости в систему получения изображений.
Фиг. 3А, 3В - примеры выполнения светового источника, имеющего градиент светимости, соответственно постоянный и не равный нулю или монотонно меняющийся по полиномиальной кривой.
Фиг. 4 - схема, иллюстрирующая принцип работы изобретения в режиме пропускания.
Фиг. 5 - схема, иллюстрирующая принцип работы изобретения в режиме отражения.
Фиг. 6 и 7 - схемы иллюстрирующие принцип прохождения световых лучей для сосудов соответственно с низким коэффициентом пропускания и с высоким коэффициентом пропускания.
Фиг. 8 - другой пример выполнения источника света, в котором применяют осесимметричную светящуюся поверхность типа усеченного конуса.
Фиг. 9 - другой вариант выполнения источника света, содержащего осесимметричную светящуюся поверхность типа полусферы.
Фиг. 10 - еще один вариант выполнения источника света, содержащего плоский рассеивающий диск.
На фиг. 1-3 показано заявленное устройство 1 наблюдения и анализа оптических особенностей 2, отклоняющих свет и находящихся на поверхности или в стенке стеклянного сосуда 3, имеющего ось симметрии S. Согласно предпочтительному примеру выполнения, сосуд 3 перемещают по криволинейной траектории или просто поступательным движением в направлении движения, показанном стрелкой f, таким образом, чтобы его могло наблюдать устройство 1. Так, сосуды 3 перемещаются, например, при помощи конвейера 4, последовательно проходя перед устройством 1.
В примере, представленном на чертежах, устройство 1 выполнено с возможностью наблюдения оптических особенностей, находящихся на горлышке 31 сосудов. В качестве оптических особенностей наблюдают и анализируют код, вытравленный, например, при помощи лазера на горлышке, или значок логотипа или декоративный элемент, выполненный посредством формования. Разумеется, устройство 1 может быть выполнено с возможностью наблюдения оптических особенностей, находящихся на других частях сосудов, например, таких как придонная часть или плечевая часть. Согласно другому варианту выполнения, оптическими особенностями являются отслеживаемые и выявляемые дефекты.
Устройство 1 содержит протяженный и рассеивающий источник 5 света, имеющий светящуюся поверхность 6 с осевой симметрией вокруг вертикальной оси Z, параллельной и даже совпадающей с осью симметрии S сосудов 3. Согласно изобретению, осесимметричная светящаяся поверхность имеет в направлении изменения этой светящейся поверхности градиент или изменение по меньшей мере одного свойства света, то есть величины, которая характеризует излучаемый свет и которую измеряют при помощи устройства получения изображений, такой как цвет или общая излучаемая интенсивность, то есть, более конкретно, светимость или продолжительность включения при импульсной работе. Это изменение по меньшей мере одного свойства света происходит в любой точке светящейся поверхности вдоль кривой, которая образована пересечением светящейся поверхности с плоскостью, содержащей ось Ζ и которая в дальнейшем тексте описания будет называться образующей. Иначе говоря, свойство излучаемого света следует закономерности распределения на светящейся поверхности 6, которая, с одной стороны, имеет симметрию вокруг вертикальной оси симметрии Ζ поверхности 6 и, с другой стороны, имеет градиент вдоль образующей, то есть кривой, образованной пересечением светящейся поверхности с плоскостью, содержащей вертикальную ось симметрии Ζ.
В предпочтительном варианте выполнения изобретения осесимметричная поверхность является, кроме того, поверхностью полного вращения, такой как цилиндр, или частичного вращения, такой как два участка цилиндра, разрезанные по образующим. Таким образом, в случае, когда осесимметричная светящаяся поверхность не является поверхностью вращения, все равно тоже считается, что изменение свойства света происходит вдоль образующей этой поверхности.
Если поверхность является поверхностью вращения, свойство излучаемого света меняется в любой точке вдоль образующей светящейся поверхности вращения. Из этого градиента вытекает, что в любой точке поверхности вдоль образующей, проходящей через эту точку, свет, исходящий из соседних точек источника, находящихся на этой образующей, имеет не одинаковое значение указанного свойства.
Согласно другому варианту выполнения, осесимметричная светящаяся поверхность имеет многоугольное горизонтальное сечение, например, шестиугольное, восьмиугольное и т.д. В этом варианте выполнения изобретения изменение свойства света происходит вдоль образующей, которая образована пересечением симметричной светящейся поверхности с плоскостью, содержащей вертикальную ось Ζ симметрии.
В предпочтительном варианте выполнения изобретения меняющимся свойством света является светимость. Иначе говоря, поверхность имеет градиент светимости I в направлении изменения вдоль образующей этой осесимметричной светящейся поверхности.
Согласно примеру, показанному на фиг. 1 и 2, осесимметричная светящаяся поверхность является поверхностью 6 вращения в виде цилиндра, имеющего вертикальную ось Ζ симметрии. Светимость I меняется между точкой С и точкой D в направлении, которое соответствует образующей цилиндра 6, параллельной вертикальной оси Ζ. С учетом осевой симметрии светящейся поверхности 6 образующая C'D' светящейся поверхности диаметрально противоположна образующей CD светящейся поверхности. Согласно варианту выполнения, показанному на фиг. 1 и 2, источник 5 света содержит осветительное кольцо 8, освещающее верхний конец цилиндрического рассеивателя, образующего осесимметричную светящуюся поверхность 6. Осветительное кольцо 8 содержит один или несколько источников света любого типа, выполненных с возможностью обеспечения освещения, изменяющегося от верхнего конца до нижнего конца. Частично освещая рассеиватель, например, вблизи одного из его концов при помощи осветительного кольца, при этом указанное кольцо имеет конус излучения, изменение светимости I получают в результате переменного освещения рассеивателя и/или в результате рассеивания рассеивателем.
Разумеется, осесимметричная светящаяся поверхность 6 может отличаться от цилиндра. Согласно примерам, показанным на фиг. 8, 9 и 10, осесимметричная светящаяся поверхность 6 представляет собой соответственно усеченный конус, полусферу и диск. На чертежах схематично показаны образующие CD и C'D', симметрично противоположные относительно вертикальной оси Ζ симметрии.
В примере, показанном на фиг. 8, осесимметричная светящаяся поверхность 6 содержит два участка усеченного конуса, разрезанного вдоль образующих усеченного конуса, из которого получены указанные участки. Изменение свойства света происходит вдоль образующих участков усеченного конуса, то есть вдоль кривой, образованной пересечением участков усеченного конуса с плоскостью, содержащей вертикальную ось Ζ. Светимость I меняется в направлении, которое соответствует образующей усеченного конуса 6 между точками С и D. В примере выполнения, представленном на фиг. 8, оба участка усеченного конуса вписываются, таким образом, с усеченный конус, который можно рассматривать как прерывистый. Разумеется, осесимметричная светящаяся поверхность 6 может быть также полной или сплошной поверхностью вращения предпочтительно с круглым основанием и с вертикальной осью Ζ симметрии. Согласно варианту, показанному на фиг. 8, источник 5 света содержит осветительное кольцо 8, освещающее верхний конец усеченного конусного рассеивателя, образующего осесимметричную светящуюся поверхность 6.
В примере выполнения, показанном на фиг. 9, осесимметричная светящаяся поверхность 6 тоже является поверхностью вращения и имеет форму полусферы с вертикальной осью Ζ симметрии. Светимость I меняется в направлении, которое соответствует образующей полусферы 6 между точками С и D. Согласно представленному варианту выполнения, источник 5 света содержит осветительное кольцо 8, освещающее светорассеивающую полусферу, образующую осесимметричную светящуюся поверхность 6 противоположно своей экваториальной плоскости.
Согласно варианту выполнения, показанному на фиг. 10, источник 5 света содержит плоский рассеиватель, такой как диск, образующий осесимметричную светящуюся поверхность 6 с вертикальной осью Ζ симметрии. Рассеивающий диск освещается светом 8 либо на своей периферии, либо в своем центре, как показано на чертеже. Светимость I меняется вдоль образующих между точками С и D, то есть вдоль радиусов диска 6.
В описанных выше примерах градиент светимости I получают при переменном освещении в заданном направлении тела, обеспечивающего рассеяние света. Разумеется, градиент светимости I можно получить и другим способом.
В целом, изменение свойства света, например, градиент цвета или светимости I может быть вызван окраской на поверхности или в массе рассеивающей светящейся поверхности 6 источника или при установке фильтра с переменным спектральным пропусканием перед рассеивающей светящейся поверхностью.
Необходимо отметить, что, если рассматривать любую образующую поверхности, функция, описывающая изменение свойства используемого света, может принимать разные формы между точками С и D.
Предпочтительно для того, чтобы изменение вдоль образующей гарантированно сохранялось в любой точке поверхности, изменение является непрерывным и монотонным между точками С и D. Например, как показано на фиг. 3, 3А или 3В, изменение светимости может происходить с положительным постоянным градиентом (фиг. 3), с отрицательным постоянным градиентом (фиг. 3А), с участком непрерывной полиномиальной функции (фиг. 3В).
Согласно отличительному признаку изобретения, осесимметричную светящуюся поверхность 6 располагают таким образом, чтобы освещать снаружи сосуд 3 и, в частности, наружную поверхность сосуда, которую, необходимо наблюдать и которая может содержать оптические особенности 2. Осесимметричную светящуюся поверхность 6 располагают таким образом, чтобы вертикальная ось Ζ была перпендикулярной и по существу пересекала направление движения f сосудов, но чтобы не мешать движению сосудов.
Согласно отличительному признаку изобретения, источник 5 света содержит входной проход 61 и выходной проход 62 для части сосуда, выполненные симметрично относительно вертикальной оси Z. Как вытекает, в частности, из вариантов выполнения, показанных на фиг. 1, 8 и 9, в качестве входного и выходного проходов 61, 62 в осесимметричной светящейся поверхности 6 выполнены два выреза, имеющие форму, соответствующую форме проходящей через них части сосуда. Для наблюдения горлышка или плеча сосудов входной и выходной проходы 61, 62 выполнены таким образом, чтобы пропускать все или часть горлышка сосудов. В примере, представленном на фиг. 8, входной и выходной проходы 61, 62 делят на две части осесимметричную светящуюся поверхность 6. Разумеется, в вариантах, представленных на фиг. 1 и 9, можно выполнить такие входные и выходные проходы 61, 62, которые выходят на оба конца светящейся поверхности. В случае осесимметричной светящейся поверхности 6, выполненной в виде диска, этот диск располагают над горлышком сосудов. В случае наблюдения придонной части сосудов 3 источник 5 света располагают симметрично наоборот относительно верха и низа сосуда.
Устройство 1 в соответствии с изобретением содержит также по меньшей мере одно, а в примерах на фиг. 1, 8, 9 и 10 несколько устройств 11 получения изображений для получения по меньшей мере одного снимка участка 3 сосуда, который может содержать оптические особенности 2, наблюдаемые по меньшей мере из одной точки наблюдения Ρ вдоль оси наблюдения X. Классически, каждое устройство 11 получения изображений содержит матричную камеру с объективом. Устройства 11 получения изображений связаны со средством обработки по меньшей мере одного и, как правило, нескольких полученных снимков с целью анализа присутствующих оптических особенностей.
Так, средства обработки снимков могут анализировать в качестве оптических особенностей маркировки и интерпретировать их для получения информации о сосуде или о его изготовлении по меньшей мере при одной из операций, таких как сортировка, отслеживание, идентификация, датировка, аутентификация сосуда. Например, такие оптические особенности могут представлять собой коды, вытравленные при помощи лазера на сосудах и, в частности, на уровне горлышка. Согласно другому варианту применения, такие оптические особенности могут представлять собой значки логотипа или декоративные элементы, выполненные на сосудах. Согласно еще одному варианту применения, оптическими особенностями являются преломляющие дефекты на сосудах 3.
Согласно изобретению, из симметрии светящейся поверхности вокруг вертикальной оси Ζ симметрии, как правило, по существу совпадающей с осью S симметрии сосудов, вытекает, что для любого участка, освещающего одну сторону сосуда, диаметрально противоположно относительно оси Ζ и, в целом, относительно оси симметрии S находится другой участок светящейся поверхности, имеющий по существу идентичную яркость.
Это позволяет из заданной точки наблюдения Ρ и в данном направлении наблюдения X принимать одновременно свет, проходящий через сосуд от противоположного участка источника, или свет, исходящий от участка источника, находящегося с той же стороны, что и сосуд, и отраженный стенкой сосуда.
На фиг. 3 в плоскости сечения, содержащей ось Ζ симметрии источника 5 и направление наблюдения X, представлен принцип сбора световых лучей, обеспечивающий обнаружение оптических особенностей 2. Свойство света меняется между точками С и D участка источника, противоположного точке наблюдения Ρ относительно сосуда. В предпочтительном варианте, в котором источник имеет градиент светимости, светимость I между точками С и D меняется между предельными значениями Imin и Imax. Световой луч, исходящий от светящейся поверхности 6 в точке А, отклоняется оптической особенностью 2, обладающей способностью преломления. Этот световой луч, исходящий от точки А светящейся поверхности со светимостью, равной I1, попадает в объектив камеры 11. Световой луч, излучаемый осесимметричной светящейся поверхностью 6 в точке В, проходит в непосредственной близости от оптической особенности 2, не отклоняясь, попадает в объектив камер и достигает датчика камеры вблизи точки попадания луча, исходящего от точки А. Этот световой луч излучается осесимметричной светящейся поверхностью 6 со значением светимости, равной I2. Поскольку осесимметричная светящаяся поверхность 6 имеет градиент светимость вдоль образующей, проходящей через точку А и через точку В, значения светимости I1 и I2 отличаются друг от друга настолько же, насколько удалены друг от друга точки А и В, то есть значения светимости I1 и I2 отличаются друг от друга пропорционально отклонению, вызываемому оптической особенностью 2, поэтому на снимке в месте оптической особенности отмечается значительный контраст, который увеличивается соответственно преломляющей способности оптических особенностей. Связанные с камерой средства обработки выполнены с возможностью выявления этих контрастов и их анализа с целью распознавания или идентификации соответствующих им оптических особенностей. Следует отметить, что, если бы источник света не имел градиента светимости, то значения светимости I1 и I2 были бы равны, и в месте нахождения оптической особенности не было бы контраста, что не позволило бы ее обнаружить.
В случае, когда свойством света, меняющимся между С и D, является цвет источника, камера является цветной камерой. Согласно этому варианту выполнения, цвет света, излучаемого точками А и В, различается, и связанные с цветной камерой средства обработки выполнены с возможностью выявления контрастов или отклонений цвета. Под изменением цвета следует понимать воспринимаемое камерой 11 изменение спектрального состава обнаруживаемого света.
Согласно этому варианту выполнения, цвет меняется постепенно между точками С и D, например, от красного к синему. Этот результат можно получить, например, при использовании многоцветного фильтра или при использовании разноцветных светодиодов, располагаемых, направляемых и управляемых по напряжению, току и/или по продолжительности импульсов таким образом, чтобы воспринимаемый цвет менялся между точками С и D.
Согласно отличительному признаку изобретения, способ осуществляют посредством адаптации к коэффициенту пропускания сосудов 3. Так, считается, что сосуды 3 имеют высокий коэффициент пропускания, если при наблюдении в режиме отражения оптических особенностей 2 и наружной поверхности сосудов 3, освещаемых падающим светом, в изображении появляются паразитные пятна, создаваемые паразитными световыми лучами, которые распространяются без ослабления в стенке сосудов и мешают наблюдению оптических особенностей. Эти паразитные пятна могут, например, появляться в результате отражения источника света в сосуде, отражения источника света на внутренней поверхности сосуда, отражения на внутренней поверхности сосуда изображения наблюдаемых оптических особенностей и т.д.
На фиг. 6 показан участок стенки 3а сосуда 3, ограниченной внутренней поверхностью 3i и наружной поверхностью 3е. Для упрощения чертежа другая стенка сосуда, через которую проходят лучи F, не показана. Световые лучи, исходящие от участка CD светящейся поверхности и прошедшие через первую стенку, обозначены F, тогда как световые лучи, исходящие от симметрично противоположного участка C'D' светящейся поверхности, обозначены Е. В случае сосуда с высоким коэффициентом пропускания, световые лучи Ε (исходящие от участка C'D' светящейся поверхности), освещающие наружную поверхность 3е, приводят к появлению световых лучей Ее, отраженных наружной поверхностью 3е, и световых лучей Ei, отраженных внутренней поверхностью 3i. Учитывая высокий коэффициент пропускания сосуда, лучи Ei, отраженные внутренней поверхностью 3i, лишь в незначительной степени ослабляются материалом сосуда и могут, таким образом, образовать паразитные отражения с соответствующей световой энергией, которой нельзя пренебречь, по сравнению с световой энергией лучей Ее, отраженных наружной поверхностью 3е и содержащих информацию об оптических особенностях. Следовательно, в полученном изображении энергия, переносимая паразитными световыми лучами Ei, может помешать анализу световых лучей Ее и, следовательно, анализу возможной оптической особенности 2. В частности, учитывая высокий коэффициент пропускания сосуда, оптические особенности 2 наружной поверхности 3е отражаются на внутренней поверхности 3i, что может привести к раздвоению изображения, которое препятствует анализу оптических особенностей особенно в случае, когда световые лучи Ei, отраженные внутренней поверхностью 3i, смешиваются с лучами Ее, отраженными наружной поверхностью 3е и соответствующими оптической особенности 2. Вместе с тем, световые лучи Ft, прошедшие через сосуд 3 и представляющие собой лучи F, исходящие от участка CD светящейся поверхности 6, достигают точки наблюдения Р, будучи мало поглощенными или не поглощенными по причине высокого коэффициента пропускания сосуда. Поэтому отраженными световыми лучами Ее, Ei можно пренебречь с учетом яркости прошедших через сосуд световых лучей Ft, и изображение, полученное при помощи пропускаемого света, не имеет или имеет мало паразитных пятен.
Сосуды 3 с низким коэффициентом пропускания являются сосудами, в которых паразитные световые лучи поглощаются цветом материала и не могут помешать анализу оптических особенностей. Это происходит, когда паразитные отражения источника света поглощаются цветом материала и не могут помешать анализу оптических особенностей 2. Как показано на фиг. 7, учитывая низкий коэффициент пропускания сосуда, световые лучи Ε освещения, исходящие от участка C'D', ослабляются при прохождении через стенку 3а сосуда в достаточной степени, чтобы их световая энергия, остающаяся на уровне устройства 11 получения изображений, была слишком слабой и не могла привести к раздвоению оптической особенности 2 на снимке. (Лучи Ei, отраженные внутренней поверхностью 3i, имеют ничтожную яркость). Таким образом, устройство 11 получения изображений принимает только световые лучи Ее, отраженные наружной поверхностью 3е. Точно так же, лучи F, исходящие от участка CD светящейся поверхности, поглощаются стенками сосуда, учитывая низкий коэффициент пропускания сосуда. Поэтому, учитывая низкий коэффициент пропускания сосуда, лучи освещения, проникающие в материал, ослабляются во время прохождения через стенки сосуда в достаточной степени, чтобы их яркость была слишком слабой и не могла привести к раздвоению оптической особенности на снимке.
Разумеется, свойство сильного и слабого пропускания находится во взаимосвязи со спектральным составом рассматриваемого света и, следовательно, света, излучаемого источником 5 света.
В случае сосудов 3 с высоким коэффициентом пропускания устройство 11 получения изображений располагают и/или регулируют таким образом, чтобы получить снимок участка сосуда из точки наблюдения Р, в которую попадают световые пучки, исходящие от участка осесимметричной светящейся поверхности 6, диаметрально противоположного относительно сосуда 3, и проходящие через стенки сосуда в соответствии с законами преломления. Как наглядно показано на фиг. 4, где представлен вариант работы при пропускании, устройство 11 получения изображений позиционируют и/или регулируют таким образом, чтобы принимать световые пучки F, исходящие от осесимметричной светящейся поверхности 6 и прошедшие через сосуд 3, например, световые пучки, исходящие от точек А и В, расположенных между крайними точками С и D. Точка наблюдения Ρ находится диаметрально противоположно относительно сосуда 3 к части осесимметричной светящейся поверхности 6, излучающей свет, который наблюдают в направлении наблюдения X.
Согласно изобретению, учитывая осевую симметрию источника, противоположно участку С, D источника находится диаметрально противоположный светящийся участок C'D'. Как показано на фиг. 4, в точке наблюдения Ρ и в направлении наблюдения X можно также принимать световые лучи, исходящие из участка светящейся поверхности 6, находящегося с той же стороны, что и точка наблюдения Р, относительно оси симметрии, то есть участка C'D' источника, после их отражения от стенки изделия. Вместе с тем, лучи, исходящие из точек F', В' и отраженные от стенки сосуда, имеют ничтожный уровень энергии по сравнению с лучами, исходящими из точек А и В, которые проходят через сосуд.
В случае сосудов с низким коэффициентом пропускания устройство 11 получения изображений производит снимок участка сосуда 3 из точки наблюдения Ρ и в направлении наблюдения X, принимая световые пучки, исходящие от участка C'D' осесимметричной светящейся поверхности 6, находящегося с этой же стороны сосуда, и отраженные поверхностью сосуда в соответствии с законами зеркального отражения. Таким образом, как показано, в частности, на фиг. 5, где представлен вариант работы при отражении, устройство 11 получения изображений располагают и/или регулируют таким образом, чтобы принимать световые пучки, исходящие от осесимметричной светящейся поверхности 6 и отраженные сосудом 3. На фиг. 5 видно также, что свет, исходящий от участка CD, противоположного точке наблюдения Р, поглощается стеклом с низким коэффициентом пропускания.
Разумеется, точки наблюдения Ρ можно регулировать по высоте, и/или направления наблюдения X можно регулировать по углу относительно вертикальной оси Ζ симметрии в зависимости от размеров и, например, от диаметра наблюдаемой части сосуда 3 и в зависимости от варианта работы при пропускании или при отражении.
Устройство 1 в соответствии с изобретением позволяет наблюдать и анализировать оптические особенности при любой способности пропускания сосудов 3.
Согласно варианту выполнения, спектр излучения источника 5 света адаптируют таким образом, чтобы увеличивать или уменьшать и даже устранять энергию световых пучков, пропускаемых через стенки 3а сосуда. Действительно, поскольку свойство низкого и высокого коэффициентов пропускания находится во взаимосвязи со спектральным составом рассматриваемого света и, следовательно, света, излучаемого источником 5 света, можно повысить качество изображений в режиме работы при пропускании или при отражении, адаптируя спектр пропускания сосуда, чтобы увеличить или уменьшить и даже устранить энергию световых пучков, пропускаемых через стенки 3а сосуда. Разумеется, при этой адаптации необходимо также учитывать спектр чувствительности устройства 11 получения изображений. Согласно этому варианту, спектр излучения источника 5 света адаптируют, например, при помощи управляемых комбинаций разноцветных светодиодов. В режиме работы при пропускании спектр излучения источника 5 света адаптируют или регулируют таким образом, чтобы увеличить энергию пропускаемых световых пучков Ft, и эти пучки приобретают энергию, намного превышающую энергию отражаемых пучков Ее и Ei. В режиме работы при отражении спектр излучения источника 5 света адаптируют или регулируют таким образом, чтобы уменьшить и даже исключить энергию пропускаемых световых пучков Ft и Ei, и эти пучки имеют, таким образом, ничтожную энергию по сравнению с отражаемыми пучками Ее.
Согласно варианту выполнения, устройство 1 обеспечивает получение нескольких снимков участка сосуда 3, который может содержать оптические особенности 2, вдоль разных осей наблюдения X, распределенных вокруг вертикальной оси Ζ сосуда 3, но предпочтительно сходящихся в Ζ, с целью обеспечения полного и даже избыточного анализа периферии сосуда. Эти снимки получают при помощи комбинации камер 11 и/или оптических систем. В примере, представленном на фиг. 1 и 2, устройство 1 содержит десять камер, распределенных вокруг осесимметричной светящейся поверхности 6, не мешая перемещению сосудов 3. Например, число камер 11 меньше или равно числу точек наблюдения Ρ и направлений наблюдения X.
Необходимо отметить, что положение камер 11 может соответствовать или не соответствовать положению точки наблюдения Р. Согласно некоторым вариантам конфигурации, оптические отклоняющие системы позволяют располагать камеры в месте, отличном от точки наблюдения Р. Предпочтительно оптические отклоняющие системы можно регулировать таким образом, чтобы корректировать ориентацию осей наблюдения X или положение точек наблюдения Р. Оптические отклоняющие системы могут быть системами любого типа, например, комбинациями зеркал и/или призм. Эти устройства позволяют также, в случае необходимости, использовать меньшее число камер 11, чем точек наблюдения Ρ и направлений наблюдения X.
Для анализа оптических особенностей 2, находящихся на горлышке сосудов 3 предпочтительно оси наблюдения X ориентируют снизу вверх либо посредством регулирования камер 11, либо используя оптические отклоняющие системы, получая угол, например, составляющий от 3° до 10° относительно горизонтали. Согласно предпочтительному признаку, источник света 5 располагают над плоскостью, которая пересекает оптическую особенность 2, тогда как точки наблюдения Ρ находятся под этой плоскостью.
В представленных выше примерах выполнения одновременно освещают всю осесимметричную светящуюся поверхность 6. Следует отметить, что осесимметричную светящуюся поверхность 6 можно разложить на угловые сектора, которые можно выборочно включать или отключать. Таким образом, можно включать раздельно и последовательно различные угловые участки осесимметричной светящейся поверхности 6 и одновременно синхронно производить съемки из точек наблюдения, расположенных противоположно или с одной и той же стороны указанных угловых участков. Источником 5 света можно управлять при помощи любых соответствующих средств по уровню света и/или по продолжительности включения.
Устройство 1 в соответствии с изобретением позволяет осуществлять способ наблюдения и анализа оптических особенностей 2, находящихся на поверхности или в стенке сосуда 3.
Согласно варианту осуществления, сосуд 3 можно приводить во вращение, чтобы располагать его перед одной или несколькими камерами.
Согласно предпочтительному варианту осуществления способа, перемещение сосудов обеспечивают без вращения этих сосудов вокруг их оси симметрии S в моментальном направлении поступательного движения, перпендикулярного и по существу пересекающего вертикальную ось Ζ осесимметричной светящейся поверхности 6. Согласно этому предпочтительному варианту, в осесимметричной светящейся поверхности выполнены проходы 61, 62 для части сосудов, что обеспечивает движение сосудов по определенной траектории.
В частности, устройство 1 в соответствии с изобретением, содержащее несколько точек наблюдения Ρ, распределенных вокруг сосуда с направлениями наблюдения X снизу вверх, сходящимися с вертикальной осью Ζ и направленными в сторону горлышка сосудов, осесимметричную светящуюся поверхность 6 с вертикальной осью Ζ, характеризующуюся монотонным изменением свойства света вдоль образующей, измеряемым при помощи систем 11 получения изображений, выполнено с возможностью работы без изменения в режимах при отражении и/или пропускании в зависимости от сосудов, считывания малоконтрастных кодов Datamatrix, полученных посредством лазерной маркировки горлышка сосудов, причем на единственном посту контроля сосудов с линейным перемещением.
Изобретение не ограничивается описанными примерами, и в него можно вносить различные изменения, не выходя за рамки его объема.

Claims (41)

1. Способ наблюдения и анализа оптических особенностей (2), отклоняющих свет, находящихся на поверхности или в стенке стеклянного сосуда (3), имеющего ось (S) симметрии, включающий:
- освещение сосуда при помощи источника (5) рассеянного света, характеризующегося изменением свойства света в направлении изменения,
- использование по меньшей мере одного устройства получения изображений, чувствительного к указанному свойству света и его изменению, для получения по меньшей мере одного снимка участка сосуда, который может содержать оптические особенности, наблюдаемые по меньшей мере из одной точки наблюдения (Р) вдоль оси наблюдения (X),
- и обработку указанного по меньшей мере одного снимка для анализа оптических особенностей,
отличающийся тем, что:
- сосуд освещают снаружи (3е) при помощи светящейся поверхности (6) с осевой симметрией относительно вертикальной оси (Z), параллельной оси (S) симметрии сосудов, при этом изменение свойства света направлено вдоль образующей светящейся поверхности в любой точке светящейся поверхности,
- в случае сосудов с низким коэффициентом пропускания получают снимок участка сосуда при помощи устройства получения изображений, принимающего световые лучи, происходящие от участка осесимметричной светящейся поверхности (6), находящегося с той же стороны сосуда, что и точка наблюдения (Р), и отражаемые поверхностью сосуда в соответствии с законами зеркального отражения,
- или, в случае сосудов с высоким коэффициентом пропускания получают снимок участка сосуда при помощи устройства получения изображений, принимающего световые лучи, происходящие от участка осесимметричной светящейся поверхности (6), диаметрально противоположного точке наблюдения (Р) по отношению к сосуду, и проходящие через стенки (3а) сосуда в соответствии с законами преломления.
2. Способ наблюдения и анализа по п. 1, отличающийся тем, что сосуды (3) считаются имеющими высокий коэффициент пропускания, если в изображении появляются мешающие наблюдению оптических особенностей паразитные пятна, создаваемые паразитными световыми лучами, распространяющимися без ослабления в стенке, и сосуды (3) считаются имеющими низкий коэффициент пропускания, если в них указанные паразитные лучи поглощаются цветом материала и не могут помешать анализу оптических особенностей.
3. Способ наблюдения и анализа по п. 1, отличающийся тем, что обеспечивают движение сосудов (3) без вращения вокруг их оси (S) в направлении перемещения (f), перпендикулярном и по существу пересекающем вертикальную ось (Z) симметрии осесимметричной светящейся поверхности (6).
4. Способ наблюдения и анализа по п. 3, отличающийся тем, что в двух противоположных сторонах осесимметричной светящейся поверхности (6) выполняют проходы (61, 62) по меньшей мере для части движущегося сосуда.
5. Способ наблюдения и анализа по п. 1, отличающийся тем, что получают несколько снимков участка сосуда (3), способных содержать оптические особенности (2), вдоль разных осей наблюдения (X), распределенных в угловом направлении относительно вертикальной оси сосуда, для обеспечения полного и даже избыточного анализа периферии сосуда.
6. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что получают несколько снимков при помощи комбинации камер и оптических систем таким образом, число камер меньше или равно числу точек наблюдения и направлений наблюдения.
7. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что оси наблюдения (X) ориентируют снизу вверх для анализа оптических особенностей (2), находящихся на горлышке (31) сосудов.
8. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что в качестве оптических особенностей (2) анализируют маркировки и интерпретируют их для получения информации о сосуде или о его изготовлении по меньшей мере на одной из операций, таких как сортировка, отслеживание, идентификация, датировка, аутентификация сосуда.
9. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что оптические особенности выявляют и/или идентифицируют как дефекты сосудов.
10. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что во время наблюдения сосуда включают раздельно и последовательно разные угловые участки осесимметричной светящейся поверхности (6) и в это же время синхронно с их включением получают снимки указанных угловых участков из точек наблюдения, противоположных или находящихся с одной стороны по отношению к сосуду (3).
11. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что освещение производят при помощи источника (5) рассеянного света, для которого свойством света, меняющимся вдоль образующей осесимметричной светящейся поверхности, является светимость светящейся поверхности.
12. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что свойством света, меняющимся вдоль образующей осесимметричной светящейся поверхности, является цвет излучаемого света.
13. Способ наблюдения и анализа по любому из пп. 1-5, отличающийся тем, что спектр излучения источника (5) света адаптируют таким образом, чтобы увеличить или уменьшить и даже исключить энергию световых лучей, проходящих через стенки (3а) сосуда.
14. Устройство для наблюдения и анализа оптических особенностей, отклоняющих свет, находящихся на поверхности или в стенке стеклянного сосуда (3), имеющего ось (S) симметрии, содержащее:
- источник (5) рассеянного света, характеризующийся изменением свойства света в направлении изменения,
- по меньшей мере одно устройство (11) получения изображений для получения по меньшей мере одного снимка участка сосуда, который может иметь оптические особенности, наблюдаемые по меньшей мере из одной точки наблюдения (Р) вдоль оси наблюдения (X),
- средства обработки по меньшей мере одного снимка для анализа особенностей,
отличающееся тем, что
- светящаяся поверхность расположена таким образом, чтобы освещать сосуд снаружи, причем эта поверхность является поверхностью (6) с осевой симметрией относительно вертикальной оси (Z), параллельной оси (S) симметрии сосудов, при этом в любой точке осесимметричная светящаяся поверхность имеет направление изменения свойства света вдоль образующей светящейся поверхности,
при этом устройство (11) получения изображений выполнено с возможностью:
- в случае сосудов (3) с низким коэффициентом пропускания, производить снимок участка сосуда из точки наблюдения (Р), принимая световые лучи, происходящие от участка осесимметричной светящейся поверхности (6), находящегося с той же стороны сосуда, что и точка наблюдения (Р), и отражаемые поверхностью сосуда,
- или, в случае сосудов (3) с высоким коэффициентом пропускания, производить снимок участка сосуда из точки наблюдения (Р), принимая световые лучи, происходящие от участка осесимметричной светящейся поверхности (6), диаметрально противоположного точке наблюдения (Р) по отношению к сосуду, и проходящие через стенки (3а) сосуда.
15. Устройство по п. 14, отличающееся тем, что осесимметричная светящаяся поверхность (6) является поверхностью вращения, например цилиндром, участком конуса, полусферой или диском.
16. Устройство по п. 14, отличающееся тем, что светимость осесимметричной светящейся поверхности (6) меняется в любой точке осесимметричной светящейся поверхности вдоль образующей указанной поверхности.
17. Устройство по п. 14, отличающееся тем, что цвет света, излучаемого осесимметричной светящейся поверхностью (6), меняется в любой точке осесимметричной светящейся поверхности вдоль образующей указанной поверхности.
18. Устройство по любому из пп. 14-17, отличающееся тем, что источник (5) света содержит осветительное кольцо, освещающее нижний или верхний конец цилиндрического или усеченного конусного рассеивателя.
19. Устройство по любому из пп. 14-16, отличающееся тем, что осесимметричный источник (6) света содержит осветительное кольцо, освещающее светорассеивающую полусферу напротив ее экваториальной плоскости, причем по-разному в зависимости от точки рассматриваемого рассеивателя, но осесимметрично, с осью, соответствующей оси полусферы.
20. Устройство по любому из пп. 14-16, отличающееся тем, что источник (5) света содержит плоский рассеивающий диск, освещаемый в центре источником или на периферии осветительным кольцом по-разному в зависимости от точки рассматриваемого рассеивателя, но имеющим симметрию с осью, соответствующей оси диска.
21. Устройство по любому из пп. 14-17, отличающееся тем, что спектр излучения источника (5) света адаптирован таким образом, чтобы увеличить или уменьшить и даже исключить энергию световых лучей, проходящих через стенки (3а) сосуда.
22. Устройство по любому из пп. 14-17, отличающееся тем, что источник (5) света содержит полностью освещаемый рассеиватель, на который с одной или с другой стороны нанесена пленка, коэффициент пропускания которой меняется по меньшей мере для одной длины волны вдоль образующей светящейся поверхности.
23. Устройство по п. 14, отличающееся тем, что осесимметричная светящаяся поверхность (6) содержит различные угловые сектора, селективно управляемые для включения и/или выключения.
24. Устройство по любому из пп. 14 или 15, отличающееся тем, что осесимметричная светящаяся поверхность (6) содержит входной проход (61) и выходной проход (62) для части сосуда, расположенные симметрично относительно вертикальной оси (Z).
25. Устройство по любому из пп. 14-17, отличающееся тем, что содержит ряд устройств (11) получения изображений, расположенных вокруг вертикальной оси для наблюдения сосуда из нескольких точек наблюдения, позволяющих наблюдать всю или часть его периферии.
26. Устройство по любому из пп. 14-17, отличающееся тем, что устройства (11) получения изображений расположены таким образом, что ось наблюдения (X), ориентированная снизу вверх, образует с горизонталью угол от 3 до 10°.
RU2015151757A 2013-05-03 2014-04-30 Способ и устройство для наблюдения и анализа оптических особенностей стеклянных сосудов RU2665329C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1354107 2013-05-03
FR1354107A FR3005354B1 (fr) 2013-05-03 2013-05-03 Procede et dispositif d'observation et d'analyse de singularites optiques portees par des recipients en verre
PCT/FR2014/051042 WO2014177814A1 (fr) 2013-05-03 2014-04-30 Procédé et dispositif d'observation et d'analyse de singularités optiques portées par des récipients en verre

Publications (3)

Publication Number Publication Date
RU2015151757A RU2015151757A (ru) 2017-06-08
RU2015151757A3 RU2015151757A3 (ru) 2018-03-13
RU2665329C2 true RU2665329C2 (ru) 2018-08-29

Family

ID=48746026

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015151757A RU2665329C2 (ru) 2013-05-03 2014-04-30 Способ и устройство для наблюдения и анализа оптических особенностей стеклянных сосудов

Country Status (12)

Country Link
US (1) US9746424B2 (ru)
EP (2) EP3702761B1 (ru)
JP (1) JP6445530B2 (ru)
CN (1) CN105431729B (ru)
BR (1) BR112015027351A2 (ru)
ES (1) ES2798118T3 (ru)
FR (1) FR3005354B1 (ru)
MX (1) MX355635B (ru)
PL (1) PL2992315T3 (ru)
RU (1) RU2665329C2 (ru)
WO (1) WO2014177814A1 (ru)
ZA (1) ZA201508483B (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190306385A1 (en) 2014-01-31 2019-10-03 Digimarc Corporation Concerning digital marking and reading of plastic items, useful in recycling
US11962876B2 (en) 2014-01-31 2024-04-16 Digimarc Corporation Recycling methods and systems, and related plastic containers
NL2014986B1 (en) 2015-06-18 2017-01-23 Filigrade B V Waste separation method.
DE102016209716A1 (de) * 2016-06-02 2017-12-07 Robert Bosch Gmbh Vorrichtung und Verfahren zur Inspektion von Behältnissen
FR3056297B1 (fr) * 2016-09-19 2018-10-05 Tiama Dispositif pour l'inspection optique de recipients en verre en sortie de machine de formage
US10422755B2 (en) 2016-12-07 2019-09-24 Applied Vision Corporation Identifying defects in transparent containers
JP6434083B1 (ja) * 2017-05-31 2018-12-05 日本耐酸壜工業株式会社 リターナブルガラス壜の再使用管理方法
FR3074907B1 (fr) 2017-12-08 2019-12-27 Tiama Methode et machine pour controler un procede de formage
CN110630915A (zh) * 2018-06-21 2019-12-31 苏州巨佳电子科技有限公司 一种弧形工业检测用led光源及检测系统
CN109580660A (zh) * 2018-12-29 2019-04-05 重庆荣成玻璃制品有限公司 玻璃生产用侧面光检测装置
DE102019205654A1 (de) * 2019-04-18 2020-10-22 Krones Ag Durchlichtinspektionsvorrichtung und -verfahren zur Inspektion von Behältern
US11713268B2 (en) 2019-05-30 2023-08-01 Owens-Brockway Glass Container Inc. Period-coded containers with a traceable material composition
DE102019208299A1 (de) * 2019-06-06 2020-12-10 Krones Ag Verfahren und Vorrichtung zur optischen Inspektion von Behältern
DE102019208295A1 (de) * 2019-06-06 2020-12-10 Krones Ag Verfahren und Vorrichtung zur optischen Inspektion von Behältern
CN110976336B (zh) * 2019-12-03 2020-12-22 浙江鼎兴企业管理有限公司 一种包装箱的检测装置
FR3109820B1 (fr) 2020-04-30 2024-01-19 Tiama Installation et procédé pour assurer la mise au point simultanée de systèmes optiques en fonction du diamètre des récipients
KR102272776B1 (ko) * 2020-07-17 2021-07-05 주식회사 포스코 열간 가공성 평가장치
CN111889394B (zh) * 2020-07-22 2021-06-04 迈克医疗电子有限公司 反应容器检测装置
US11047803B1 (en) * 2020-09-10 2021-06-29 Applied Vision Corporation Glass container inspection system
EP3968012A1 (en) * 2020-09-11 2022-03-16 Schott Ag Apparatus for the inspection of a circular elongated element
KR102535869B1 (ko) * 2021-03-02 2023-05-26 주식회사 디쌤 외관 검사 어셈블리

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644151A (en) * 1985-04-05 1987-02-17 Owens-Illinois, Inc. Identification of a molded container with its mold of origin
US6072575A (en) * 1996-10-30 2000-06-06 Krones Ag Device for inspecting bottles and the like
US6424414B1 (en) * 2000-10-16 2002-07-23 Agr International, Inc. Method and apparatus for detecting refractive defects in transparent containers
JP2004271205A (ja) * 2003-03-05 2004-09-30 Precision:Kk 容器口部の欠陥検査装置
DE102011106136A1 (de) * 2011-06-10 2012-12-13 Khs Gmbh Leerflascheninspektion

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367405A (en) * 1977-10-13 1983-01-04 Ti Fords Limited Bottle inspection apparatus
US4424441A (en) * 1981-06-12 1984-01-03 Owens-Illinois, Inc. Method and apparatus for inspecting glass containers
US4487322A (en) 1982-09-27 1984-12-11 Owens-Illinois, Inc. Method for inspecting glass containers
US4610542A (en) * 1984-11-16 1986-09-09 Owens-Illinois, Inc. System for detecting selective refractive defects in transparent articles
CN1008003B (zh) * 1985-04-01 1990-05-16 欧文斯-伊利诺衣公司 透明物体中折光缺陷的检测系统
US4701612A (en) * 1985-07-19 1987-10-20 Owens-Illinois, Inc. Inspection of container finish
US5072127A (en) * 1987-10-09 1991-12-10 Pressco, Inc. Engineered video inspecting lighting array
NL8802933A (nl) * 1988-11-28 1990-06-18 Heuft Qualiplus Bv Werkwijze en inrichting voor het inspekteren van de binnenwand van een lichaam.
JPH0718816B2 (ja) * 1991-06-11 1995-03-06 東洋ガラス株式会社 びん等の欠点検査方法及び装置
US5699152A (en) * 1995-04-03 1997-12-16 Alltrista Corporation Electro-optical inspection system and method
US6031221A (en) * 1998-02-19 2000-02-29 Emhart Glass S.A. Container inspection machine
FR2780533B1 (fr) 1998-06-26 2000-09-29 Bsn Sa Procede et dispositif de lecture de reliefs portes par un recipient transparent ou translucide
JP2002005853A (ja) * 2000-06-20 2002-01-09 Canon Inc レンズ検査装置
US6620352B1 (en) * 2000-07-27 2003-09-16 Ball Corporation Automated material distribution control for stretch blow molded articles
FR2846424B1 (fr) * 2002-10-25 2006-02-03 Bsn Glasspack Procede et dispositif d'eclairage pour detecter des defaut et/ou de manque de matiere sur la bague d'un recipient transparent ou translucide
AU2003295417A1 (en) * 2002-11-08 2004-06-03 Pressco Technology Inc. System and method for associating container defect information to a specific path of manufacturing
DE102005001810B3 (de) * 2005-01-13 2006-06-22 Heye International Gmbh Verfahren und Vorrichtung zum Prüfen einer Dichtfläche einer Behältermündung
FR2907370B1 (fr) 2006-10-18 2017-11-17 Tiama Procede et installation pour le marquage a chaud d'objets translucides ou transparents
JP5298327B2 (ja) * 2008-08-26 2013-09-25 キリンテクノシステム株式会社 異物検査装置及び異物検査システム
CN201637678U (zh) * 2009-12-29 2010-11-17 杭州中粮包装有限公司 金属罐制造的质量检测系统
JP2012150072A (ja) * 2011-01-21 2012-08-09 Dynatec Kk 透明容器口部の刻印検査
JP5683996B2 (ja) * 2011-02-24 2015-03-11 ニッカウヰスキー株式会社 瓶の欠陥検査装置、及び、瓶の欠陥検査方法
CA2842544C (en) * 2011-08-19 2017-10-03 Industries Machinex Inc. Apparatus and method for inspecting matter and use thereof for sorting recyclable matter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644151A (en) * 1985-04-05 1987-02-17 Owens-Illinois, Inc. Identification of a molded container with its mold of origin
US6072575A (en) * 1996-10-30 2000-06-06 Krones Ag Device for inspecting bottles and the like
US6424414B1 (en) * 2000-10-16 2002-07-23 Agr International, Inc. Method and apparatus for detecting refractive defects in transparent containers
JP2004271205A (ja) * 2003-03-05 2004-09-30 Precision:Kk 容器口部の欠陥検査装置
DE102011106136A1 (de) * 2011-06-10 2012-12-13 Khs Gmbh Leerflascheninspektion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 2005174571 A1 (PRESSCO TECHNOLOGY INC), 11.08.2005. *

Also Published As

Publication number Publication date
RU2015151757A3 (ru) 2018-03-13
FR3005354A1 (fr) 2014-11-07
FR3005354B1 (fr) 2015-05-15
PL2992315T3 (pl) 2020-11-02
EP3702761A1 (fr) 2020-09-02
CN105431729A (zh) 2016-03-23
ES2798118T3 (es) 2020-12-09
MX2015015262A (es) 2016-07-05
US20160077020A1 (en) 2016-03-17
BR112015027351A2 (pt) 2017-09-12
CN105431729B (zh) 2020-09-08
JP6445530B2 (ja) 2018-12-26
RU2015151757A (ru) 2017-06-08
US9746424B2 (en) 2017-08-29
JP2016517020A (ja) 2016-06-09
MX355635B (es) 2018-04-25
WO2014177814A1 (fr) 2014-11-06
EP2992315B1 (fr) 2020-04-22
EP2992315A1 (fr) 2016-03-09
EP3702761B1 (fr) 2022-03-16
ZA201508483B (en) 2017-08-30

Similar Documents

Publication Publication Date Title
RU2665329C2 (ru) Способ и устройство для наблюдения и анализа оптических особенностей стеклянных сосудов
US6122048A (en) Integral field lens illumination for video inspection
US7679756B2 (en) Device for a goniometric examination of optical properties of surfaces
US7276719B2 (en) Device for a goniometric examination of the optical properties of surfaces
US4606634A (en) System for detecting selective refractive defects in transparent articles
US8164746B2 (en) Illumination method and device for determining the presence of defects on the surface of a container collar
US20110310244A1 (en) System and method for detecting a defect of a substrate
CN101512322A (zh) 容器检测装置
US5466927A (en) Inspection of translucent containers
US11275033B2 (en) Device for optical inspection of empty and liquid-filled containers
US7057718B2 (en) Device and method for inspecting the transparent bottoms of bottles
US10491788B2 (en) Apparatus and method for controlling the quality of transparent objects
US20110108627A1 (en) Method and optical device for analyzing a mark on a translucent or transparent curved wall
CN101147042A (zh) 用于光学测量物体的形状和表面的设备
CN110044294A (zh) 图像检查装置及照明装置
CN110044849A (zh) 半封闭腔体内部缺陷检测装置
US4900916A (en) System employing preconditioned radiation for detecting defects in transparent objects
CN102454923A (zh) 用于自动光学检测的照明系统及其和成像系统的组合
US20070121109A1 (en) Lens inspection
JP6341821B2 (ja) 外観検査システム
RU69634U1 (ru) Прибор для обнаружения и классификации дефектов оптических объектов (варианты)
CN113203708A (zh) 一种光学设备
JPH10206327A (ja) 光透過性物体中異物の撮像方法