RU2661688C1 - Способ производства синтез-газа в цикле работы металлургического завода - Google Patents

Способ производства синтез-газа в цикле работы металлургического завода Download PDF

Info

Publication number
RU2661688C1
RU2661688C1 RU2016127975A RU2016127975A RU2661688C1 RU 2661688 C1 RU2661688 C1 RU 2661688C1 RU 2016127975 A RU2016127975 A RU 2016127975A RU 2016127975 A RU2016127975 A RU 2016127975A RU 2661688 C1 RU2661688 C1 RU 2661688C1
Authority
RU
Russia
Prior art keywords
gas
useful
stream
hydrogen
water
Prior art date
Application number
RU2016127975A
Other languages
English (en)
Inventor
Райнхольд АХАЦ
Йенс ВАГНЕР
Маркус ОЛЕС
Петер ШМЁЛЕ
Ральф Кляйншмидт
Денис КРОТОВ
Олаф Фон Морштайн
Карстен Бюкер
Original Assignee
Тиссенкрупп Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52134105&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2661688(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Тиссенкрупп Аг filed Critical Тиссенкрупп Аг
Application granted granted Critical
Publication of RU2661688C1 publication Critical patent/RU2661688C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/06Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/285Plants therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/24Increasing the gas reduction potential of recycled exhaust gases by shift reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

Изобретение относится к области металлургии и может быть использовано при производстве синтез-газа, при котором осуществляют смешивание части колошникового газа доменной печи, и/или части конвертерного газа, и/или части коксового газа с образованием по меньшей мере двух потоков полезного газа. Первый поток полезного газа образуют из смеси по меньшей мере двух потоков газа: колошникового газа доменной печи, конвертерного газа и коксового газа, второй поток полезного газа – из конвертерного газа, или колошникового газа доменной печи, или из смеси конвертерного газа и колошникового газа доменной печи, причем из полученного первого потока полезного газа получают при кондиционировании первый синтез-газ, содержащий в качестве основных компонентов СО и H2 или N2 и Н2, а из второго потока образуют свободный от H2 газ, содержащий в качестве основного компонента СО. Изобретение позволяет создать способ производства синтез-газа в цикле работы металлургического завода, с помощью которого возможно наиболее полное использование в производственных процессах сырых газов в разных объемах и с разным составом. 25 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способу производства синтеза-газа в цикле работы металлургического завода, содержащего по меньшей мере доменную печь для производства чугуна, конвертерную сталеплавильную установку и батарею коксовых печей.
В доменной печи чугун получают из железных руд, флюсов, а также кокса и других восстановителей, таких как уголь, мазут, газ, биомассы, подготовленных утилизированных полимерных материалов или содержащих прочие углеводороды материалов. В качестве продуктов реакций восстановления неизбежно возникают СО, СО2, водород и водяной пар. Оттянутый из процесса доменной печи колошниковый газ часто имеет, наряду с вышеупомянутыми составными частями, высокое содержание азота. Объем газа и состав колошникового газа зависит от используемой печи и от режима ее эксплуатации и подвержен колебаниям. Хотя обычно колошниковый газ доменной печи содержит от 35 до 60% объема N2, от 20 до 30% объема СО, от 20 до 30% объема CO2 и от 2 до 15% объема Н2. Примерно от 30 до 40% возникающего при производстве чугуна колошникового газа доменной печи используются, как правило, для разогрева в воздухонагревателях горячего воздуха для процесса доменной печи; остающийся объем колошникового газа может использоваться на других внешних заводских участках в целях нагревания или для выработки электроэнергии.
В конвертерной сталеплавильной установке, установленной ниже по потоку от доменной печи, чугун превращается в сырую сталь. Мешающие процессу загрязнения, такие как углерод, кремний, сера и фосфор удаляют, при нагнетании кислорода в жидкий чугун. Так как процессы окисления вызывают сильное тепловыделение, в качестве охлаждающего агента часто добавляют металлолом в объемах до 25% по отношению к чугуну. Кроме того, добавляют известь для образования шлаков и легирующих компонентов. Из конвертера для производства стали оттягивается конвертерный газ, имеющий высокое содержание СО, а кроме того, он содержит азот, водород и CO2. Типичный состав конвертерного газа имеет от 50 до 70% объема СО, от 10 до 20% объема N2, примерно 15% объема CO2 и примерно 2% объема Н2. Конвертерный газ либо сжигают в факеле, либо - в современных сталеплавильных комбинатах - улавливают и подводят для получения энергии.
В батарее коксовых печей уголь превращают посредством процесса коксования в кокс. При этом выделяется коксовый газ, имеющий высокое содержание водорода и значительные объемы СН4. Обычно коксовый газ содержит от 55 до 70% объема Н2, от 20 до 30% объема СН4, около 10% объема N2 и от 5 до 10% объема СО. Дополнительно коксовый газ имеет части СО2, NH3 и H2S. На практике коксовый газ используют на различных заводских участках в нагревательных целях и в процессе работы электростанции для выработки электроэнергии. Кроме того, известно, что коксовый газ вместе с колошниковым газом доменной печи или с конвертерным газом используют для производства синтез-газа. Согласно известному из WO 2010/136313 А1 способу коксовый газ разделяют на обогащенный водородом поток газа и на содержащий СН4 и СО поток остаточного газа, причем поток остаточного газа подводят к процессу доменной печи, а обогащенный водородом поток газа смешивают с колошниковым газом доменной печи и перерабатывают его в синтез-газ. Из ЕР 0200880 А2 известно смешивание конвертерного и коксового газа и использование в качестве синтез-газа для синтеза метанола.
На интегрированном металлургическом заводе, эксплуатируемом в комплексе с батареей коксовых печей, почти от 40 до 50% неочищенного газа, выделяющегося в виде колошникового газа доменной печи, конвертерного газа и коксового газа, используют для технологических процессов. Почти от 50 до 60% возникающих газов могут использоваться для производства электроэнергии или использоваться как сырые газы для производства синтез-газа. Применение газов для производства синтез-газа может повысить экономичность металлургического завода. Одновременно улучшается также баланс CO2 металлургического завода, так как углерод связывается в химических продуктах и не выпускается в виде СО2. Однако при этом нужно учитывать, что сырые объемы газа, которые могут использоваться для производства синтез-газа, подвержены значительным временным колебаниям.
В частности, при использовании сырых газов для производства синтез-газа, требуется сокращать выработку электроэнергии электростанцией, эксплуатируемой в комплексе с металлургическим заводом и получать электрический ток из внешних источников для покрытия потребности в электрическом токе металлургического завода. При наличии в распоряжении электрического тока по минимальным ценам и в достаточных объемах, например, из возобновляемых источников энергии, большой объем сырого газа может использоваться для производства синтеза-газа. Напротив, при высоком тарифе на электроэнергию для получаемого из внешнего источника электрического тока необходимо по экономическим соображениям использовать выделяющийся в металлургическом заводе используемый объем сырого газа по меньшей мере предпочтительно для производства электроэнергии и сокращать производство синтеза-газа. Учитывая это, в основе изобретения лежит задача предложить способ для производства синтез-газа в цикле работы металлургического завода, с помощью которого возможно наиболее полное использование в производственных процессах сырых газов, выделяющихся на металлургическом заводе в разных объемах и с разным составом.
Предметом изобретения и решением этой задачи является способ согласно пункту 1 формулы изобретения. Предпочтительные варианты выполнения соответствующего изобретению способа описываются в пп. 2-11 формулы изобретения.
Согласно изобретению часть возникающего при производстве чугуна колошникового газа доменной печи и/или часть выделяющегося в конвертерной сталеплавильной установке конвертерного газа, и/или часть возникающего в батарее коксовых печей коксового газа смешивают. При этом два или большее количество потоков полезного газа производят посредством выбора сведенных в смешанный газ потоков газа и/или посредством изменения соотношений компонентов смеси сведенных потоков газа, отличающихся в отношении их состава и соответственно подготавливаемых для образования потоков синтез-газа.
Подготовка потоков полезного газа включает в себя, в частности, очистку и кондиционирование газа. Для кондиционирования газа может применяться, например, паровой риформинг с помощью водяного пара, частичное окисление воздухом или кислородом и реакция конверсии водяного газа для процесса конверсии доли СО. Этапы кондиционирования могут находить применение по отдельности или также в комбинации.
Говоря о произведенных согласно предложенному способу потоках синтез-газа, речь идет о газовых смесях, используемых для синтеза. Под понятие "синтез-газ", подпадают, например, смеси из N2 и Н2 для синтеза аммиака и прежде всего газовые смеси, содержащие предпочтительно СО и Н2 или CO2 и Н2 или СО, CO2 и Н2. Из синтез-газа могут производиться в химической установке химические продукты, содержащие соответственно реагирующие компоненты. Химическими продуктами могут быть, например, аммиак, или метанол, или также другие углеводородные соединения.
Для производства аммиака необходимо подготовить синтез-газ, содержащий в правильном соотношении азот и водород. Азот можно добывать из колошникового газа доменной печи. В качестве источника водорода можно использовать колошниковый газ доменной печи или конвертерный газ, причем водород производят посредством процесса конверсии водяного газа составной части СО
Figure 00000001
. Для производства синтез-газа для синтеза аммиака может использоваться также смесь из коксового газа и колошникового газа доменной печи или смешанный газ из коксового газа, конвертерного газа и колошникового газа доменной печи. Для производства углеводородных соединений, например метанола, нужно подготовить состоящий, по существу, из СО и/или двуокиси углерода и Н2 синтез-газ, содержащий в правильном соотношении компоненты окиси углерода и/или двуокиси углерода и водорода. Соотношение описывается часто модулем (Н2-CO2)/(СО+CO2). Водород можно производить, например, посредством реакции конверсии водяного газа составной части СО в колошниковом газе доменной печи. Для подготовки СО можно задействовать конвертерный газ. В качестве источника CO2 может служить колошниковый газ доменной печи и/или конвертерный газ. Для производства углеводородных соединений подходит также смешанный газ из коксового газа и колошникового газа доменной печи или смешанный газ из коксового газа, конвертерного газа и колошникового газа доменной печи.
В рамках изобретения вместо химической установки для производства продуктов из синтез-газа также может использоваться биотехнологическая установка. При этом речь идет об установке для ферментации синтез-газа. Под синтез-газом в данном случае понимают смесь из СО и Н2, с помощью которых можно изготавливать спирты, ацетон или органические кислоты. Водород поступает при осуществлении биохимического процесса, по существу, из воды, используемой при ферментации в качестве среды. Как источник СО используют предпочтительно конвертерный газ. Также возможно использование колошникового газа доменной печи или смешанного газа из конвертерного и колошникового газа. И, напротив, применение коксового газа неблагоприятно для биотехнологического процесса. Следовательно, посредством биотехнологического процесса могут изготавливаться продукты, содержащие углерод из доли СО выделяющихся на металлургическом заводе сырых газов и водород - из использованной в процессе ферментации воды.
С помощью соответствующего изобретению способа из сырых газов, выделяющихся на металлургическом заводе при производстве чугуна, при производстве сырой стали и при производстве кокса, могут одновременно производиться потоки синтез-газа, используемые в химической установке и в параллельно эксплуатируемой для этого биотехнологической установке для производства химических продуктов. Химическая установка и биотехнологическая установка подключены параллельно и могут эксплуатироваться одновременно или также поочередно. Это обеспечивает экономичный режим эксплуатации металлургического завода, прежде всего, даже если применяемые для производства синтез-газа объемы газа подвержены ежедневным колебаниям.
Предпочтительное выполнение способа согласно изобретению предусматривает, что образуется первый содержащий Н2 поток полезного газа, из которого производят при кондиционировании газа первый синтез-газ, содержащий, например, СО и Н2 или N2 и Н2 в качестве основных компонентов, и что производят, по существу, свободный от Н2 второй поток полезного газа, содержащий в качестве основного компонента СО. Второй поток полезного газа может состоять, в частности, из конвертерного газа или колошникового газа доменной печи или образованного из конвертерного газа и колошникового газа доменной печи смешанного газа.
Другой вариант выполнения соответствующего изобретению способа предусматривает, что первый поток полезного газа образован смесью по меньшей мере двух потоков газа, выделяющихся, как колошниковый газ доменной печи, конвертерный газ или коксовый газ, и что второй поток полезного газа состоит только из колошникового газа доменной печи, конвертерного газа или коксового газа.
Коксовый газ и/или колошниковый газ целесообразно очищать уже перед применением в качестве полезного объема газа, причем посредством очистки удаляются, в частности, сажа, высококипящие углеводороды, ароматные углеводороды (ВТХ), сера и соединения серы. При этом целесообразно очищать потоки полезного газа перед кондиционированием газа.
Другой вариант осуществления соответствующего изобретению способа предусматривает, что содержание водорода по меньшей мере одного потока полезного газа регулируют посредством отделения водорода, например, с помощью адсорбционной установки с изменением давления или посредством обогащения водородом. Необходимый для обогащения водород может производиться на металлургическом заводе, например, при электролизе воды. Кроме того, содержание водорода по меньшей мере одного потока полезного газа можно регулировать посредством конвертирования СО при реакции конверсии водяного газа или посредством риформинга СН4.
Далее приводится разъяснение изобретения посредством изображающего только один пример выполнения чертежа.
Изображенный на чертеже комплекс установок содержит металлургический завод 1, содержащий по меньшей мере одну доменную печь 2 для производства чугуна, конвертерную сталеплавильную установку 3 и батарею 4 коксовых печей.
В доменной печи 2 чугун добывают, по существу, из железной руды и восстановителей, в частности, кокса и угля, мазута, газа, биомассы и подготовленных полимерных материалов или прочих содержащих углерод и/или водород соединений. Вследствие реакции восстановления возникает колошниковый газ 6 доменной печи, содержащий в качестве основных компонентов N, СО, CO2 и небольшую долю Н2. В конвертерной сталеплавильной установке 3, установленной после доменной печи, чугун превращают в сталь. Вредные загрязнения, в частности углерод, кремний и фосфор, удаляют нагнетанием кислорода в жидкий чугун. В верхней части конвертера вытягивают конвертерный газ 7, имеющий большую долю СО. Металлургический завод 1 содержит также батарею 4 коксовых печей. При коксовании угля в кокс выделяется коксовый газ 8, содержащий большую долю водорода и СН4.
Согласно изображенному на чертеже общему итогу углерод 9 подводят в комплекс установок в качестве восстановителя в виде угля и кокса, а также железной руды 10. В качестве продуктов выделяются сырая сталь 11 и сырые газы 6, 7 и 8, отличающиеся по объему, составу и чистоте, и повторно используются в различных местах в комплексе установок. При общем рассмотрении от 40 до 50%, предпочтительно почти 45%, сырых газов 6, 7 и 8 повторно возвращаются в металлургический завод 1 для производства чугуна или производства сырой стали. От 50 и 60%, предпочтительно около 55%, сырых газов 6, 7 и 8 могут использоваться для производства синтеза-газа.
Согласно изображенной на чертеже схеме установок часть возникающего при производстве чугуна колошникового газа 6 доменной печи, и/или часть выделяющихся в конвертерной сталеплавильной установке 3 конвертированных газов 7, и/или часть возникающих в батарее 4 коксовых печей коксовых газов 8 смешивают, причем посредством выбора сведенных к смешанному газу потоков газа и/или изменения соотношений компонентов смеси сведенных потоков газа производят по меньшей мере два потока 13, 14 полезного газа, отличающихся относительно их состава и соответственно подготавливаемых для получения потоков синтез-газа.
В примере выполнения изобретения образуется первый содержащий Н2 поток 13 полезного газа, из которого производят при кондиционировании газа первый синтез-газ 13', содержащий, например, СО и Н2 или N2 и Н2 в качестве основных компонентов. В химической установке 15 синтез-газ 13' используют для синтеза химических продуктов, например аммиака, метанола или других углеводородных соединений. Кроме того, производится, по существу, свободный от Н2 второй поток 14 полезного газа, содержащий СО в качестве основного компонента. Второй поток 14 полезного газа состоит из конвертерного газа 7 или колошникового газа 6 доменной печи или из образованной из конвертерного газа 7 и колошникового газа 6 доменной печи смешанного газа. В биотехнологической установке 16 изготавливают продукты, содержащие углерод из доли СО указанных газов и водород. При этом водород получаемый, по существу, из воды, используют при ферментации в качестве среды. Химическую установку 15 и биотехнологическую установку 16 можно эксплуатировать параллельно или также попеременно. Они подключены в примере выполнения параллельно к электростанции 17, сконструированной как газотурбинная электростанция или газопаротурбинная электростанция и эксплуатируется с помощью коксового газа 8, колошникового газа 6 доменной печи, или конвертерного газа 7, или состоящего из этих газовых компонентов смешанного газа. Для покрытия потребности в электрическом токе комплекса установок привлекается получаемый из внешнего источника электрический ток и электрический ток, вырабатываемый электростанцией 17 комплекса установок. Для достижения наиболее экономичной эксплуатации комплекса установок электрический ток дополнительно закупают в периоды низких тарифов на электроэнергию и снижают эксплуатацию электростанции 17. Соответственно для производства синтез-газа можно использовать большой поток объема сырого газа. При отсутствии в распоряжении в достаточном объеме электрического тока, например, из возобновляемых источников энергии и по приемлемым ценам, производство синтеза-газа уменьшают, а сырой газ 6, 7, 8 усиленно используют в электростанции 17 для производства электроэнергии.

Claims (26)

1. Способ производства синтез-газа в производственном цикле получения стали металлургического завода, содержащем по меньшей мере доменную печь для производства чугуна, конвертерную сталеплавильную установку и батарею коксовых печей, включающий смешивание части возникающего при производстве чугуна колошникового газа доменной печи, и/или части выделяющегося в конвертерной сталеплавильной установке конвертерного газа, и/или части возникающего в батарее коксовых печей коксового газа с образованием по меньшей мере двух потоков полезного газа посредством выбора подаваемых в смешанный газ потоков газа и/или посредством изменения соотношений компонентов смеси сведенных потоков газа, отличающихся по составу и соответственно подготовленных для образования потоков синтез-газа, отличающийся тем, что первый поток (13) полезного газа образуют из смеси по меньшей мере двух потоков газа, включающей колошниковый газ (6) доменной печи, конвертерный газ (7) и коксовый газ (8), второй поток (14) полезного газа – из конвертерного газа, или колошникового газа доменной печи, или из смеси конвертерного газа и колошникового газа доменной печи, причем из полученного первого потока (13) полезного газа получают при кондиционировании первый синтез-газ (13’), содержащий в качестве основных компонентов СО и H2 или N2 и Н2, а из второго потока (14) образуют свободный от H2 газ, содержащий в качестве основного компонента СО.
2. Способ по п. 1, отличающийся тем, что потоки (13, 14) полезного газа подвергают очистке и кондиционированию.
3. Способ по п. 2, отличающийся тем, что для кондиционирования газа используют паровой риформинг с помощью водяного пара, и/или частичное окисление воздухом или кислородом, и/или реакцию конверсии водяного газа.
4. Способ по любому из пп. 1–3, отличающийся тем, что для образования потоков синтез-газа используют потоки (13, 14) полезного газа, отличающиеся по составу и используемые для производства различных химических продуктов.
5. Способ по любому из пп. 1–3, отличающийся тем, что коксовый газ (8) и/или колошниковый газ (6) доменной печи очищают перед применением в качестве полезного газа, причем посредством очистки удаляют, в частности, сажу, высококипящие углеводороды, ароматические углеводороды, серу и соединения серы.
6. Способ по п. 4, отличающийся тем, что коксовый газ (8) и/или колошниковый газ (6) доменной печи очищают перед применением в качестве полезного газа, причем посредством очистки удаляют, в частности, сажу, высококипящие углеводороды, ароматические углеводороды, серу и соединения серы.
7. Способ по любому из пп. 1–3, отличающийся тем, что потоки (13, 14) полезного газа перед кондиционированием газа очищают, причем посредством очистки удаляют, в частности, сажу, высококипящие углеводороды, ароматические углеводороды, серу и соединения серы.
8. Способ по п. 4, отличающийся тем, что потоки (13, 14) полезного газа перед кондиционированием газа очищают, причем посредством очистки удаляют, в частности, сажу, высококипящие углеводороды, ароматические углеводороды, серу и соединения серы.
9. Способ по любому из пп. 1–3, 6, 8, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством отделения водорода с помощью адсорбционной установки с изменением давления или посредством обогащения водородом.
10. Способ по п. 4, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством отделения водорода с помощью адсорбционной установки с изменением давления или посредством обогащения водородом.
11. Способ по п. 5, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством отделения водорода с помощью адсорбционной установки с изменением давления или посредством обогащения водородом.
12. Способ по п. 7, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством отделения водорода с помощью адсорбционной установки с изменением давления или посредством обогащения водородом.
13. Способ по любому из пп. 1–3, 6, 8, 10–12, отличающийся тем, что по меньшей мере один из потоков (13) полезного газа обогащают водородом, полученным на металлургическом заводе, предпочтительно посредством электролиза воды.
14. Способ по п. 4, отличающийся тем, что по меньшей мере один из потоков (13) полезного газа обогащают водородом, полученным на металлургическом заводе, предпочтительно посредством электролиза воды.
15. Способ по п. 5, отличающийся тем, что по меньшей мере один из потоков (13) полезного газа обогащают водородом, полученным на металлургическом заводе, предпочтительно посредством электролиза воды.
16. Способ по п. 7, отличающийся тем, что по меньшей мере один из потоков (13) полезного газа обогащают водородом, полученным на металлургическом заводе, предпочтительно посредством электролиза воды.
17. Способ по п. 9, отличающийся тем, что по меньшей мере один из потоков (13) полезного газа обогащают водородом, полученным на металлургическом заводе, предпочтительно посредством электролиза воды.
18. Способ по любому из пп. 1–3, 6, 8, 10–12, 14–17, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством конвертирования СО при реакции конверсии водяного газа.
19. Способ по п. 4, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством конвертирования СО при реакции конверсии водяного газа.
20. Способ по п. 5, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством конвертирования СО при реакции конверсии водяного газа.
21. Способ по п. 7, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством конвертирования СО при реакции конверсии водяного газа.
22. Способ по п. 9, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством конвертирования СО при реакции конверсии водяного газа.
23. Способ по п. 13, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством конвертирования СО при реакции конверсии водяного газа.
24. Способ по п. 13, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством риформинга СН4.
25. Способ по п. 18, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством риформинга СН4.
26. Способ по любому из пп. 14–17, 19–23, отличающийся тем, что содержание водорода по меньшей мере одного потока (13) полезного газа регулируют посредством риформинга СН4.
RU2016127975A 2013-12-12 2014-12-11 Способ производства синтез-газа в цикле работы металлургического завода RU2661688C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013113933.7A DE102013113933A1 (de) 2013-12-12 2013-12-12 Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113933.7 2013-12-12
PCT/EP2014/003317 WO2015086151A1 (de) 2013-12-12 2014-12-11 Verfahren zur erzeugung von synthesegas im verbund mit einem hüttenwerk

Publications (1)

Publication Number Publication Date
RU2661688C1 true RU2661688C1 (ru) 2018-07-19

Family

ID=52134105

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016127975A RU2661688C1 (ru) 2013-12-12 2014-12-11 Способ производства синтез-газа в цикле работы металлургического завода

Country Status (13)

Country Link
US (1) US10697032B2 (ru)
EP (1) EP3080307B1 (ru)
KR (1) KR102298465B1 (ru)
CN (2) CN113444849A (ru)
AU (1) AU2014361206B2 (ru)
BR (1) BR112016011580B1 (ru)
CA (1) CA2930463C (ru)
DE (1) DE102013113933A1 (ru)
MX (1) MX2016006560A (ru)
RU (1) RU2661688C1 (ru)
TW (1) TWI648390B (ru)
UA (1) UA119339C2 (ru)
WO (1) WO2015086151A1 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102016209028A1 (de) * 2016-05-24 2017-11-30 Thyssenkrupp Ag Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102019213494A1 (de) 2019-09-05 2021-03-11 Thyssenkrupp Ag Verfahren zur Herstellung von Alkenen
DE102019213493A1 (de) 2019-09-05 2021-03-11 Thyssenkrupp Ag Verfahren zur Herstellung von Alkoholen
DE102019124078A1 (de) * 2019-09-09 2021-03-11 Thyssenkrupp Ag Verfahren zur Synthese eines Stoffs
DE112021007680T5 (de) * 2021-05-18 2024-03-07 Arcelormittal Betriebsverfahren für einen Anlagenverbund
US11857938B2 (en) 2021-11-16 2024-01-02 Infinium Technology, Llc Systems and methods for controlling a Power-to-X process to reduce feedstock costs
CN114854455B (zh) * 2022-04-20 2023-03-31 北京科技大学 生物质合成气定向制备与高炉冶炼耦合联产新工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200880A2 (de) * 1985-04-27 1986-11-12 Ruhrkohle Aktiengesellschaft Verfahren zur Herstellung von Chemierohstoffen
EP0244551A1 (de) * 1986-05-07 1987-11-11 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Integriertes Hüttenwerk
US20060027043A1 (en) * 2004-08-03 2006-02-09 Hylsa S.A. De C.V. Method and apparatus for producing clean reducing gases from coke oven gas
RU2353036C1 (ru) * 2008-05-12 2009-04-20 Юрий Петрович Баталин Способ электроэнергоснабжения потребителя

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595619A (en) * 1968-03-29 1971-07-27 Texaco Inc Shift conversion process for production of hydrogen
BE791243A (fr) * 1971-12-23 1973-05-10 Texaco Development Corp Procede de production d'un melange gazeux reducteur
FR2420568A1 (fr) 1978-03-24 1979-10-19 Texaco Development Corp Procede pour produire un gaz de synthese nettoye et purifie et un gaz riche en co
DE3044478A1 (de) 1980-11-26 1982-06-03 Didier Engineering Gmbh, 4300 Essen Weiterverarbeitungsverfahren fuer koksofengas und gichtgas
DE3101067A1 (de) * 1981-01-15 1982-07-22 Didier Engineering Gmbh, 4300 Essen "verfahren zur erzeugung von ammoniak-synthesegas nach dem steam-reforming-prozess"
US4759864A (en) 1987-09-04 1988-07-26 Texaco Inc. & S.A. Texaco Petro, N.V. Corrosion-inhibited antifreeze formulation
JPH0826384B2 (ja) * 1989-03-28 1996-03-13 日本鋼管株式会社 転炉ガスの自動配分制御方法
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
US6030430A (en) 1998-07-24 2000-02-29 Material Conversions, Inc. Blast furnace with narrowed top section and method of using
JP2003192624A (ja) * 2001-12-27 2003-07-09 Nippon Steel Corp ジメチルエーテルの合成方法
JP2004224926A (ja) * 2003-01-23 2004-08-12 Jfe Steel Kk 製鉄所副生ガスの利用方法
MXPA05012242A (es) 2003-05-15 2006-02-08 Hylsa Sa Metodo y aparato para el uso mejorado de fuentes primarias de energia en plantas integrales de acero.
CN1803746A (zh) * 2005-06-23 2006-07-19 昆山市迪昆精细化工公司 以钢铁企业焦炉气、转炉气为原料制取甲醇的工艺
AR067187A1 (es) * 2007-06-29 2009-09-30 Uhde Gmbh Procedimiento para separar hidrocarburos aromaticos de gas de hornos de coque
CN101343580A (zh) * 2008-08-22 2009-01-14 四川天一科技股份有限公司 一种以焦炉气和高炉气制取甲醇合成气的方法
CN101372627B (zh) * 2008-09-28 2012-07-04 陕西金巢能源化工技术有限公司 以焦炉气为原料生产清洁燃料油及高纯度化工产品的方法
DE102009022510B4 (de) 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Verfahren zur gleichzeitigen Herstellung von Eisen und eines CO und H2 enthaltenden Rohsynthesegases
DE102009022509B4 (de) * 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Verfahren zur Herstellung von Synthesegas
CA2769950C (en) 2009-08-13 2017-08-15 Silicon Fire Ag Method and system for providing a hydrocarbon-based energy carrier using a portion of renewably produced methanol and a portion of methanol that is produced by means of direct oxidation, partial oxidation, or reforming
EP2543743B1 (en) 2010-03-02 2017-11-29 JFE Steel Corporation Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
JP5640803B2 (ja) 2010-03-29 2014-12-17 Jfeスチール株式会社 高炉又は製鉄所の操業方法
CN102211977A (zh) * 2011-04-07 2011-10-12 杨皓 一种利用焦炉气和高炉气联合生产合成氨与甲醇的工艺
WO2012145910A1 (zh) * 2011-04-28 2012-11-01 四川达兴能源股份有限公司 生产甲醇的方法和设备
DE102011077819A1 (de) 2011-06-20 2012-12-20 Siemens Aktiengesellschaft Kohlendioxidreduktion in Stahlwerken
DE102011113547A1 (de) * 2011-09-15 2013-03-21 Linde Aktiengesellschaft Verfahren zur Gewinnung von Olefinen aus Ofengasen von Stahlwerken
IN2014CN02719A (ru) * 2011-09-15 2015-07-03 Linde Ag
KR101351317B1 (ko) * 2011-12-12 2014-01-15 재단법인 포항산업과학연구원 코크스 오븐 가스 및 제철 부생가스를 이용한 환원가스의 제조방법
KR101898728B1 (ko) * 2011-12-27 2018-09-14 재단법인 포항산업과학연구원 제철공정 또는 석탄화학 공정의 부산물 및 부생가스를 이용한 사이클로헥산 제조방법
KR101321823B1 (ko) * 2011-12-28 2013-10-23 주식회사 포스코 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 제조방법
US20150299594A1 (en) * 2012-10-23 2015-10-22 Haldor Topsoe A/S Process for the preparation of hydrocarbons
CN103525965B (zh) * 2013-10-08 2015-12-02 中国石油大学(北京) 利用焦炉气非催化转化生产气基直接还原铁的方法及系统
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113942A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Reduzierung von CO2-Emissionen beim Betrieb eines Hüttenwerks
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113980A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Herstellung von Ammoniakgas und CO2 für eine Harnstoffsynthese
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200880A2 (de) * 1985-04-27 1986-11-12 Ruhrkohle Aktiengesellschaft Verfahren zur Herstellung von Chemierohstoffen
EP0244551A1 (de) * 1986-05-07 1987-11-11 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Integriertes Hüttenwerk
US20060027043A1 (en) * 2004-08-03 2006-02-09 Hylsa S.A. De C.V. Method and apparatus for producing clean reducing gases from coke oven gas
RU2353036C1 (ru) * 2008-05-12 2009-04-20 Юрий Петрович Баталин Способ электроэнергоснабжения потребителя

Also Published As

Publication number Publication date
CA2930463C (en) 2019-02-12
KR102298465B1 (ko) 2021-09-06
WO2015086151A1 (de) 2015-06-18
AU2014361206B2 (en) 2019-02-14
TWI648390B (zh) 2019-01-21
AU2014361206A1 (en) 2016-07-14
KR20160097311A (ko) 2016-08-17
CN105980583A (zh) 2016-09-28
EP3080307A1 (de) 2016-10-19
CN113444849A (zh) 2021-09-28
MX2016006560A (es) 2016-12-09
TW201527512A (zh) 2015-07-16
UA119339C2 (uk) 2019-06-10
US10697032B2 (en) 2020-06-30
US20160348196A1 (en) 2016-12-01
BR112016011580B1 (pt) 2020-12-01
CA2930463A1 (en) 2015-06-18
BR112016011580A2 (pt) 2017-08-08
DE102013113933A1 (de) 2015-06-18
EP3080307B1 (de) 2020-09-30

Similar Documents

Publication Publication Date Title
RU2661688C1 (ru) Способ производства синтез-газа в цикле работы металлургического завода
RU2709323C1 (ru) Комплекс установок для производства стали и способ эксплуатации комплекса установок
RU2670513C1 (ru) Комплекс установок для производства стали и способ эксплуатации комплекса установок
RU2670822C1 (ru) Комплекс установок для производства стали и способ эксплуатации комплекса установок
AU2019203801B2 (en) Combined system for producing steel and method for operating the combined system
KR20160098339A (ko) 야금 플랜트의 작동 시에 co2 방출을 감소시키는 방법