CN105980583A - 用于与冶炼厂结合来制造合成气体的方法 - Google Patents

用于与冶炼厂结合来制造合成气体的方法 Download PDF

Info

Publication number
CN105980583A
CN105980583A CN201480067680.7A CN201480067680A CN105980583A CN 105980583 A CN105980583 A CN 105980583A CN 201480067680 A CN201480067680 A CN 201480067680A CN 105980583 A CN105980583 A CN 105980583A
Authority
CN
China
Prior art keywords
gas
gas stream
blast furnace
available
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480067680.7A
Other languages
English (en)
Inventor
赖因霍尔德·阿卡兹
詹斯·瓦格纳
马库斯·奥莱希
彼得·施默勒
拉尔夫·克莱因施密特
丹尼斯·克罗托夫
奥拉夫·冯·莫施泰因
卡斯滕·比克尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
Original Assignee
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52134105&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105980583(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp AG filed Critical ThyssenKrupp AG
Priority to CN202110467871.4A priority Critical patent/CN113444849A/zh
Publication of CN105980583A publication Critical patent/CN105980583A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/002Evacuating and treating of exhaust gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/06Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/285Plants therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/044Hydrogen or oxygen by electrolysis of water producing mixed hydrogen and oxygen gas, e.g. Brown's gas [HHO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/24Increasing the gas reduction potential of recycled exhaust gases by shift reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mechanical Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Industrial Gases (AREA)
  • Manufacture Of Iron (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本发明涉及一种用于与冶炼厂(1)结合来制造合成气体的方法,该冶炼厂至少包括生产生铁的高炉(2)、转炉炼钢设备(3)和焦炉设备(4),将在生铁生产中产生的高炉煤气(6)的一部分和/或在转炉炼钢设备(3)中产生的转炉煤气(7)的一部分和/或焦炉设备(4)中产生的焦炉煤气(8)的一部分混合。通过对组成混合气体的气流进行选择和/或通过改变所组成的气流的混合比例而至少生成两股可用气体流(13、14),这两股可用气体流鉴于自身的组成成分而有区别并且分别制备成为合成气体流。

Description

用于与冶炼厂结合来制造合成气体的方法
技术领域
本发明涉及一种用于与冶炼厂结合来制造合成气体的方法,该方法至少包括用于生产生铁的高炉、转炉炼钢设施和炼焦炉设施。
背景技术
在高炉中,由铁矿石、添加剂以及焦炭及其他例如煤、油、气体、生物质、废塑料或其他含有碳和/或氢的材料这样的还原剂中获得生铁。作为还原反应的产物必然生成CO、CO2、氢气和水蒸气。从高炉工序中抽取的高炉煤气除了前述的组成部分以外通常还具有高含量的氮气。高炉煤气的气体量和组成取决于投料和操作方式并且存在不稳定性。尽管如此,高炉煤气通常含有35至60体积%的N2,20至30体积%的CO、20至30体积%的CO2以及2至15体积%的H2。通常,将大概30至40%的生铁生产过程中产生的高炉煤气用于对高炉工艺中的热风炉中的热风进行加热;剩余的煤气量则能够为了加热目的而用在外部的其他设备区域中或用于发电。
在该高炉工艺之后下游的转炉炼钢设备中,将生铁转换为粗钢。通过在液态的生铁上吹入氧气,将像是碳、硅、硫和磷这样的干扰性杂质去除。因为氧化过程导致了剧烈的放热,通常加入了相对于生铁而言最多25%的量的废料作为冷却剂。此外,还添加了用于成渣的石灰和合金用剂。从炼钢转炉中抽取转炉煤气,该转炉煤气具有高含量的CO并且还含有氮、氢和CO2。常见的转炉煤气组成包括:50至70体积%的CO、10至20体积%的N2、约15体积%的CO2以及约2体积%的H2。或者将转炉煤气燃尽,或者在现代的炼钢厂中将其收集并引入用于能源利用。
在炼焦炉设施中,通过炼焦过程将煤转换为焦炭。在此产生了焦炉煤气,其含有高氢气含量以及可观含量的CH4。通常焦炉煤气含有55至70体积%的H2、20至30体积%的CH4、大约5至10体积%的N2以及大约5体积%的CO。该焦炉煤气另外还具有CO2、NH3及H2S这些成分。在实际应用中,为了加热目的而将焦炉煤气用在不同的工作区域并且为了发电而用于发电过程。此外,还已知的是,将焦炉煤气与高炉煤气或者与转炉煤气共同用于制造合成气。根据从WO2010/136313A1中已知的方法,将焦炉煤气分成含氢气的气流以及含CH4和CO剩余气流,其中将剩余气流引入高炉过程并且将含氢气的气流与高炉煤气混合并且进一步加工成合成气。从EP 0 200 880 A2中已知,将转炉煤气与焦炉煤气混合并且作为合成气用于合成甲醇。
在与炼焦厂结合来运作的集成的冶炼厂中,使用大约40至50%的作为高炉煤气、转炉煤气和焦炉煤气而产生的粗煤气用于工艺过程。将所产生的大约50至60%的气体用于发电或者作为粗煤气而用于制造合成气体。通过使用该气体用于制造合成气体能够优化冶炼厂的经济性。与此同时,也优化了该冶炼厂的CO2产耗结构,因为将碳结合到化学产品中并且并不以CO2的形式而排放。然而在此值得注意的是,能够用于制造合成气体的粗煤气的量受到时间性波动的影响。
只要将粗煤气用于制造合成气体,那么必须对通过与冶炼厂结合运作的发电厂来进行的发电进行节制并且采用外部来源的电流以满足冶炼厂的用电需求。当低成本地并且以足够的量(例如从可再生的能源)供电时,那么能够将很大的粗煤气量用于合成气体的制造。相反,在外部引入的电流的电价高的时候,出于经济性的考量必要的是,将在冶炼厂中产生的能够使用的粗煤气量至少绝大部分地用于发电并且降低合成气体的制造。
发明内容
在该背景下,本发明的目的在于提供一种用于与冶炼厂结合来制造合成气体的方法,通过该方法实现了,在经济的工艺过程中尽可能完全地利用在冶炼厂中以不同量和不同组成成分而产生的粗煤气。
本发明的主体和上述目的的解决方案是根据权利要求1所述的方法。根据本发明的方法的有利的设计方案在权利要求2至11中描述。
根据本发明,使在生产生铁过程中产生的高炉煤气的一部分和/或在转炉炼钢设备中产生的转炉煤气的一部分和/或在炼焦炉设施中产生的焦炉煤气的一部分混合在一起。就此,通过对组成为混合气体的气流进行选择和/或通过改变组成为气体流的混合比例而产生两股或更多的可用气体流,这些可用气体流鉴于其组成成分方面有区别并且分别备用于构成合成气体气流。
可用气体的制备特别包括了:气体清洁和气体调节。为了气体调节能够例如使用:以水蒸气进行的蒸汽重整、以空气或氧气而进行的部分氧化以及用于转化CO成分的水-煤气变换反应。这些调整步骤能够单独地应用或者也能够结合地应用。
根据本发明的方法制造的合成气体流涉及到的是用于合成的气体混合物。“合成气”例如包括:用于合成氨的由N2和H2组成的混合物以及特别是主要含有CO和H2的、或者含有CO2和H2的或者含有CO、CO2和H2的气体混合物。能够在化学设备中由合成气体产生化学产品,这些化学产品分别含有反应物的成分。化学产品能够例如是氨或甲醇或者也能够是其他碳氢化合物。
为了制造氨必须提供含有正确比例的氮和氢的合成气体。氮气能够从高炉煤气中获得。作为氢气来源则能够使用高炉煤气或转炉煤气,其中通过CO成分的转化、通过水-煤气变换反应 而生成氢气。为了制造用于合成氨的合成气体也能够使用由焦炉煤气和高炉煤气组成的混合物或由焦炉煤气、转炉煤气和高炉煤气组成的混合气体。为了制造碳氢化合物,例如甲醇,必须提供基本上由CO和/或CO2以及H2组成的合成气,该合成气含有准确比例的一氧化碳和/或二氧化碳以及氢气。该比例通常由(H2-CO2)/(CO+CO2)模块来表述。氢例如能够通过在高炉煤气中的CO份额的转化通过水-煤气变换反应来获得。为了提供CO能够使用转炉煤气。作为CO2来源则能够使用高炉煤气和/或转炉煤气。适合用于制造碳氢化合物的还有由焦炉煤气和转炉煤气组成的混合气体或者由焦炉煤气、转炉煤气和高炉煤气组成的混合气体。
代替由合成气体制造化学产品的化学设备,在本发明的范围内也能够使用生物技术的设备。就此涉及到的是用于以合成气来发酵的设备。在此情况下,合成气体理解为由CO和H2组成的混合物,通过这些混合物能够制造醇、丙酮或有机酸。然而就此,在生物技术过程的应用中,氢基本上来自于在发酵过程中用作为介质的水。作为CO来源优选使用转炉煤气。高炉煤气或由转炉煤气和高炉煤气组成的混合气体的使用同样是可能的。相反,对于生物技术过程而言焦炉煤气的使用则是不利的。借助于生物技术过程能够制造以下产品:由在冶炼厂中产生的粗煤气中的CO成分来制造碳并且从在发酵过程中使用的水中获取氢。
通过根据本发明的方法,能够从冶炼厂中在生铁生产、粗钢生产和焦炭生产的过程中所产生的粗煤气同时制造合成气体流,将这些合成气体流利用在化学设备和与该化学设备并行运行的生物技术设备,以用于制造化学产品。化学设备和生物技术设备是平行连接的并且能够同时地或者也能够交替地运作。这实现了冶炼厂的经济的运行方式,特别是当能够为了制造合成气体而利用的气体量每天处于波动时。
根据本发明的方法的有利的设计方案设置为,构成含有H2的第一可用气流,通过气体调节由该可用气流中制造第一合成气体,该合成气体作为主要成分例如含有CO和H2或者N2和H2,并且制造基本上不含H2的第二可用气流,该气流含有作为主要成分的CO。第二可用气流能够特别由转炉煤气组成或由高炉煤气组成或者由转炉煤气和高炉煤气所构成的混合气体组成。
根据本发明的方法的另一个实施变体设置为,通过至少两股作为高炉煤气、转炉煤气或焦炉煤气而产生的气流的混合而构成第一可用气流并且仅由高炉煤气、转炉煤气或焦炉煤气来组成第二可用气流。
焦炉煤气和/或高炉煤气针对性地在用作为可用气体之前就得到清洁,其中借助于清洁能够另外去除炭灰、高沸点的碳氢化合物、芳香族碳氢化合物(BTX)、硫以及硫化合物。在此,针对性地在气体调节前清洁这些可用气体流。
根据本发明的方法的另一种设计方案设置为,例如借助于变压吸附设备通过分离氢气或者通过加入氢气来调整至少一股可用气体流的氢含量。用于加入的必须的氢气能够在冶炼厂中例如通过电解水而产生。此外,能够通过在水-煤气变换反应中CO的转换或者通过对CH4的重整来调整至少一股可用气体流的氢含量。
附图说明
下面参照仅示出一个实施例的附图来说明本发明。
具体实施方式
在附图中示出的设备组合包括冶炼厂1,冶炼厂则至少包括用于生产生铁的高炉2、转炉炼钢设备3和焦炉设备4。
在高炉2中,基本上由铁矿石和还原剂(特别是焦炭和煤、油、气体、生物质和废塑料或其他含有碳和/或氢的化合物)来获得生铁。通过还原反应而产生了高炉煤气6,高炉煤气含有作为主要成分的氮气、CO、CO2和低含量的H2。在高炉过程之后下游的转炉炼钢设备3中,将生铁转化为粗钢。通过在液态的生铁上吹入氧气来去除干扰性的杂质,特别是碳、硅和磷。在转炉的顶部抽取转炉煤气7,该转炉煤气具有高含量的CO。冶炼厂1还包括了焦炉设备4。在由煤炼焦成焦炭的过程中产生了焦炉煤气8,该焦炉煤气含有高含量的氢气和CH4
根据在附图中示出的总体平衡(Gesamtbilanz),向设备组合添加以煤和焦炭的形式的、作为还原剂的碳9以及铁矿石10。作为产物而产生了粗钢11和粗煤气6、7和8,这些产物在数量上、成分上以及纯度上都不同并且在该设备组合中的不同位置再次得以使用。在总体统筹中,将40%至50%的、通常约为45%的粗煤气6、7和8再次导回至用于生产生铁或生产粗钢的冶炼厂1中。能够将50%至60%之间的、通常约为55%的粗煤气6、7和8用于合成气体的制造。
根据附图中所示出的设备示意图,将在生产生铁过程中产生的高炉煤气6的一部分和/或在转炉炼钢设备3中产生的转炉煤气7的一部分和/或在焦炉设备4中产生的焦炉煤气8的一部分混合,其中通过选择组成混合气体的气流和/或通过改变组成的气流的混合比例而至少产生了两股可用气体流13、14,这些气体流鉴于其组成成分而有区别并且分别将其制备为合成气体流。
在该实施例中形成含有H2的第一股可用气体流13,由该气体流而通过气体调节制造出第一合成气体流13’,该第一合成气体流作为主要成分例如含有CO和H2或含有N2和H2。在化学设备15中将该合成气体流13’用于合成化学产物,例如氨、甲醇或其他碳氢化合物。此外,制造基本上不含H2的第二股可用气体流14,该可用气体流作为主要成分含有CO。第二股可用气体流14由转炉煤气7组成或高炉煤气6组成或由转炉煤气7和高炉煤气6所形成的混合气体组成。在生物技术设备16中制造出的产品含有来自上述的煤气的CO成分的碳以及含有氢。在此,所述氢基本上来自于在发酵过程中作为介质而使用的水。化学设备15和生物技术设备16能够并行地或者也能够交替地工作。这些设备在该实施例中与发电站17平行地连接,该发电站设计为燃气涡轮机发电站或燃气涡轮机及蒸汽轮机发电站并且通过焦炉煤气8、高炉煤气6或转炉煤气7运作或者通过这些气体成分所组成的混合气体而运作。为了满足该设备组合的用电需求,采用了从外部引入的电流和由该设备组合的发电站17产生的发电站电流。为了达到该设备组合的尽可能经济的运作而在低电价的时候采购电流并对该发电站17进行关闭。相应地,能够将大量的粗煤气量用于制造合成气体。当外部的电流(例如来自于可再生的能源)并不能够以足够的程度并且以能接受的价格来使用时,减少合成气体的制造并且在发电站17中加强地使用粗煤气6、7、8来用于发电。

Claims (13)

1.一种用于与冶炼厂(1)结合来制造合成气体的方法,所述冶炼厂至少包括生产生铁的高炉(2)、转炉炼钢设备(3)和焦炉设备(4),
其中将在生铁生产中产生的高炉煤气(6)的一部分和/或在所述转炉炼钢设备(3)中产生的转炉煤气(7)的一部分和/或在所述焦炉设备(4)中产生的焦炉煤气(8)的一部分混合,
其中通过对组成混合气体的气流进行选择和/或通过改变所组成的气流的混合比例而至少产生了两股可用气体流(13、14),这两股所述可用气体流鉴于自身的组成成分而有区别并且分别制备成为合成气体流。
2.根据权利要求1所述的方法,其特征在于,所述可用气体流(13、14)的制备包括:气体清洁和气体调节。
3.根据权利要求2所述的方法,其特征在于,为了所述气体调节而使用:以水蒸气进行的蒸汽重整和/或以空气或氧气而进行的部分氧化和/或水-煤气变换反应。
4.根据权利要求1至3中任意一项所述的方法,其特征在于,将所述可用气体流(13、14)制备成为合成气体流,所述合成气体流鉴于自身的组成方面有区别并且用于制造不同的化学产品。
5.根据权利要求1至4中任意一项所述的方法,其特征在于,第一股所述可用气体流(13)通过对至少两股作为所述高炉煤气(6)、所述转炉煤气(7)或所述焦炉煤气(8)而产生的气体流的混合而构成,并且第二股所述可用气体流(14)仅由所述高炉煤气(6)、所述转炉煤气(7)或所述焦炉煤气(8)组成。
6.根据权利要求1至5中任意一项所述的方法,其特征在于,
形成含有H2的第一股所述可用气体流(13),通过气体调节而由第一股所述可用气体流制造出第一合成气体流(13’),所述第一合成气体流作为主要成分例如含有CO和H2或含有N2和H2,并且,制造基本上不含H2的第二股所述可用气体流(14),第二股所述可用气体流作为主要成分含有CO。
7.根据权利要求6所述的方法,其特征在于,第二股所述可用气体流(14)由所述转炉煤气(7)或由所述高炉煤气(6)组成或由所述转炉煤气(7)与所述高炉煤气(6)所组成的混合气体组成。
8.根据权利要求1至7中任一项所述的方法,其特征在于,在作为可用气体使用之前先对所述焦炉煤气(8)和/或所述高炉煤气(6)进行清洁,其中借助于清洁能够另外去除炭灰、高沸点的碳氢化合物、芳香族碳氢化合物(BTX)、硫以及硫化合物。
9.根据权利要求1至7中任一项所述的方法,其特征在于,在气体调节之前对所述可用气体流(13、14)进行清洁,其中借助于清洁另外还去除了炭灰、高沸点的碳氢化合物、芳香族碳氢化合物、硫以及硫化合物。
10.根据权利要求1至9中任意一项所述的方法,其特征在于,通过分离氢,例如借助于变压吸附设备,或通过添加氢来调整至少一股所述可用气体流(13、14)的氢含量。
11.根据权利要求1至10中任一项所述的方法,其特征在于,向所述可用气体流(13、14)中的至少一股加入在所述冶炼厂(1)中优选通过水电解而产生的氢气。
12.根据权利要求1至11中任一项所述的方法,其特征在于,通过在水-煤气变换反应中CO的转化来调整至少一股可用气体流(13、14)的氢含量。
13.根据权利要求11或12所述的方法,其特征在于,通过对CH4的重整来调整至少一股所述可用气体流(13、14)的氢含量。
CN201480067680.7A 2013-12-12 2014-12-11 用于与冶炼厂结合来制造合成气体的方法 Pending CN105980583A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110467871.4A CN113444849A (zh) 2013-12-12 2014-12-11 用于与冶炼厂结合来制造合成气体的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013113933.7 2013-12-12
DE102013113933.7A DE102013113933A1 (de) 2013-12-12 2013-12-12 Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
PCT/EP2014/003317 WO2015086151A1 (de) 2013-12-12 2014-12-11 Verfahren zur erzeugung von synthesegas im verbund mit einem hüttenwerk

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110467871.4A Division CN113444849A (zh) 2013-12-12 2014-12-11 用于与冶炼厂结合来制造合成气体的方法

Publications (1)

Publication Number Publication Date
CN105980583A true CN105980583A (zh) 2016-09-28

Family

ID=52134105

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480067680.7A Pending CN105980583A (zh) 2013-12-12 2014-12-11 用于与冶炼厂结合来制造合成气体的方法
CN202110467871.4A Pending CN113444849A (zh) 2013-12-12 2014-12-11 用于与冶炼厂结合来制造合成气体的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110467871.4A Pending CN113444849A (zh) 2013-12-12 2014-12-11 用于与冶炼厂结合来制造合成气体的方法

Country Status (13)

Country Link
US (1) US10697032B2 (zh)
EP (1) EP3080307B1 (zh)
KR (1) KR102298465B1 (zh)
CN (2) CN105980583A (zh)
AU (1) AU2014361206B2 (zh)
BR (1) BR112016011580B1 (zh)
CA (1) CA2930463C (zh)
DE (1) DE102013113933A1 (zh)
MX (1) MX2016006560A (zh)
RU (1) RU2661688C1 (zh)
TW (1) TWI648390B (zh)
UA (1) UA119339C2 (zh)
WO (1) WO2015086151A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102016209028A1 (de) * 2016-05-24 2017-11-30 Thyssenkrupp Ag Anlagenverbund zur Herstellung mineralischer Baustoffe sowie ein Verfahren zum Betreiben des Anlagenverbundes
DE102019213494A1 (de) 2019-09-05 2021-03-11 Thyssenkrupp Ag Verfahren zur Herstellung von Alkenen
DE102019213493A1 (de) * 2019-09-05 2021-03-11 Thyssenkrupp Ag Verfahren zur Herstellung von Alkoholen
DE102019124078A1 (de) * 2019-09-09 2021-03-11 Thyssenkrupp Ag Verfahren zur Synthese eines Stoffs
DE112021007680T5 (de) * 2021-05-18 2024-03-07 Arcelormittal Betriebsverfahren für einen Anlagenverbund
US11857938B2 (en) * 2021-11-16 2024-01-02 Infinium Technology, Llc Systems and methods for controlling a Power-to-X process to reduce feedstock costs
CN114854455B (zh) * 2022-04-20 2023-03-31 北京科技大学 生物质合成气定向制备与高炉冶炼耦合联产新工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200880A2 (de) * 1985-04-27 1986-11-12 Ruhrkohle Aktiengesellschaft Verfahren zur Herstellung von Chemierohstoffen
EP0244551A1 (de) * 1986-05-07 1987-11-11 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Integriertes Hüttenwerk
CN1803746A (zh) * 2005-06-23 2006-07-19 昆山市迪昆精细化工公司 以钢铁企业焦炉气、转炉气为原料制取甲醇的工艺
CN101343580A (zh) * 2008-08-22 2009-01-14 四川天一科技股份有限公司 一种以焦炉气和高炉气制取甲醇合成气的方法
CN101372627A (zh) * 2008-09-28 2009-02-25 陕西金巢投资有限公司 以焦炉气为原料生产清洁燃料油及高纯度化工产品的方法
CN102448874A (zh) * 2009-05-25 2012-05-09 蒂森克虏伯伍德有限公司 用于制备合成气的方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595619A (en) * 1968-03-29 1971-07-27 Texaco Inc Shift conversion process for production of hydrogen
BE791243A (fr) * 1971-12-23 1973-05-10 Texaco Development Corp Procede de production d'un melange gazeux reducteur
FR2420568A1 (fr) 1978-03-24 1979-10-19 Texaco Development Corp Procede pour produire un gaz de synthese nettoye et purifie et un gaz riche en co
DE3044478A1 (de) 1980-11-26 1982-06-03 Didier Engineering Gmbh, 4300 Essen Weiterverarbeitungsverfahren fuer koksofengas und gichtgas
DE3101067A1 (de) * 1981-01-15 1982-07-22 Didier Engineering Gmbh, 4300 Essen "verfahren zur erzeugung von ammoniak-synthesegas nach dem steam-reforming-prozess"
US4759864A (en) 1987-09-04 1988-07-26 Texaco Inc. & S.A. Texaco Petro, N.V. Corrosion-inhibited antifreeze formulation
JPH0826384B2 (ja) * 1989-03-28 1996-03-13 日本鋼管株式会社 転炉ガスの自動配分制御方法
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
US6030430A (en) 1998-07-24 2000-02-29 Material Conversions, Inc. Blast furnace with narrowed top section and method of using
JP2003192624A (ja) * 2001-12-27 2003-07-09 Nippon Steel Corp ジメチルエーテルの合成方法
JP2004224926A (ja) * 2003-01-23 2004-08-12 Jfe Steel Kk 製鉄所副生ガスの利用方法
MXPA05012242A (es) 2003-05-15 2006-02-08 Hylsa Sa Metodo y aparato para el uso mejorado de fuentes primarias de energia en plantas integrales de acero.
CN101023023B (zh) 2004-08-03 2012-12-26 海尔萨可变资产股份有限公司 由焦炉气制备清洁的还原性气体的方法和设备
AR067187A1 (es) * 2007-06-29 2009-09-30 Uhde Gmbh Procedimiento para separar hidrocarburos aromaticos de gas de hornos de coque
RU2353036C1 (ru) 2008-05-12 2009-04-20 Юрий Петрович Баталин Способ электроэнергоснабжения потребителя
DE102009022510B4 (de) 2009-05-25 2015-03-12 Thyssenkrupp Industrial Solutions Ag Verfahren zur gleichzeitigen Herstellung von Eisen und eines CO und H2 enthaltenden Rohsynthesegases
US20120226080A1 (en) 2009-08-13 2012-09-06 Silicon Fire Ag Method and system for providing a hydrocarbon-based energy carrier using a portion of renewably produced methanol and a portion of methanol that is produced by means of direct oxidation, partial oxidation, or reforming
JP5640803B2 (ja) 2010-03-29 2014-12-17 Jfeスチール株式会社 高炉又は製鉄所の操業方法
EP2543743B1 (en) 2010-03-02 2017-11-29 JFE Steel Corporation Blast furnace operation method, iron mill operation method, and method for utilizing a gas containing carbon oxides
CN102211977A (zh) * 2011-04-07 2011-10-12 杨皓 一种利用焦炉气和高炉气联合生产合成氨与甲醇的工艺
EP2657215B1 (en) * 2011-04-28 2017-06-28 Sichuan Daxing Energy Co., Ltd Method and device for producing methanol
DE102011077819A1 (de) 2011-06-20 2012-12-20 Siemens Aktiengesellschaft Kohlendioxidreduktion in Stahlwerken
EP2756249B1 (de) * 2011-09-15 2015-09-16 Linde Aktiengesellschaft Verfahren zur gewinnung von olefinen aus ofengasen von stahlwerken
DE102011113547A1 (de) * 2011-09-15 2013-03-21 Linde Aktiengesellschaft Verfahren zur Gewinnung von Olefinen aus Ofengasen von Stahlwerken
KR101351317B1 (ko) * 2011-12-12 2014-01-15 재단법인 포항산업과학연구원 코크스 오븐 가스 및 제철 부생가스를 이용한 환원가스의 제조방법
KR101898728B1 (ko) * 2011-12-27 2018-09-14 재단법인 포항산업과학연구원 제철공정 또는 석탄화학 공정의 부산물 및 부생가스를 이용한 사이클로헥산 제조방법
KR101321823B1 (ko) * 2011-12-28 2013-10-23 주식회사 포스코 일산화탄소 및 수소를 포함하는 합성가스 제조장치 및 제조방법
CN104736473B (zh) * 2012-10-23 2017-06-23 托普索公司 制备烃的方法
CN103525965B (zh) * 2013-10-08 2015-12-02 中国石油大学(北京) 利用焦炉气非催化转化生产气基直接还原铁的方法及系统
DE102013113980A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Herstellung von Ammoniakgas und CO2 für eine Harnstoffsynthese
DE102013113921A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113933A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Erzeugung von Synthesegas im Verbund mit einem Hüttenwerk
DE102013113950A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113913A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113958A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Anlagenverbund zur Stahlerzeugung und Verfahren zum Betreiben des Anlagenverbundes
DE102013113942A1 (de) 2013-12-12 2015-06-18 Thyssenkrupp Ag Verfahren zur Reduzierung von CO2-Emissionen beim Betrieb eines Hüttenwerks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0200880A2 (de) * 1985-04-27 1986-11-12 Ruhrkohle Aktiengesellschaft Verfahren zur Herstellung von Chemierohstoffen
EP0244551A1 (de) * 1986-05-07 1987-11-11 VOEST-ALPINE INDUSTRIEANLAGENBAU GESELLSCHAFT m.b.H. Integriertes Hüttenwerk
CN1803746A (zh) * 2005-06-23 2006-07-19 昆山市迪昆精细化工公司 以钢铁企业焦炉气、转炉气为原料制取甲醇的工艺
CN101343580A (zh) * 2008-08-22 2009-01-14 四川天一科技股份有限公司 一种以焦炉气和高炉气制取甲醇合成气的方法
CN101372627A (zh) * 2008-09-28 2009-02-25 陕西金巢投资有限公司 以焦炉气为原料生产清洁燃料油及高纯度化工产品的方法
CN102448874A (zh) * 2009-05-25 2012-05-09 蒂森克虏伯伍德有限公司 用于制备合成气的方法

Also Published As

Publication number Publication date
CA2930463C (en) 2019-02-12
TWI648390B (zh) 2019-01-21
BR112016011580A2 (pt) 2017-08-08
EP3080307B1 (de) 2020-09-30
DE102013113933A1 (de) 2015-06-18
US20160348196A1 (en) 2016-12-01
AU2014361206B2 (en) 2019-02-14
US10697032B2 (en) 2020-06-30
TW201527512A (zh) 2015-07-16
CA2930463A1 (en) 2015-06-18
RU2661688C1 (ru) 2018-07-19
UA119339C2 (uk) 2019-06-10
EP3080307A1 (de) 2016-10-19
KR20160097311A (ko) 2016-08-17
AU2014361206A1 (en) 2016-07-14
KR102298465B1 (ko) 2021-09-06
MX2016006560A (es) 2016-12-09
WO2015086151A1 (de) 2015-06-18
BR112016011580B1 (pt) 2020-12-01
CN113444849A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN105980583A (zh) 用于与冶炼厂结合来制造合成气体的方法
AU2019202471B2 (en) Plant complex for steel production and method for operating the plant complex
CA2930469C (en) Plant complex for steel production and method for operating the plant complex
CA2930471C (en) Plant complex for steel production and method for operating the plant complex
AU2019203801B2 (en) Combined system for producing steel and method for operating the combined system
KR20160098339A (ko) 야금 플랜트의 작동 시에 co2 방출을 감소시키는 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928