RU2661242C2 - Способ навигации беспилотного аппарата в присутствии постороннего летательного аппарата и беспилотный аппарат для осуществления способа - Google Patents

Способ навигации беспилотного аппарата в присутствии постороннего летательного аппарата и беспилотный аппарат для осуществления способа Download PDF

Info

Publication number
RU2661242C2
RU2661242C2 RU2016148537A RU2016148537A RU2661242C2 RU 2661242 C2 RU2661242 C2 RU 2661242C2 RU 2016148537 A RU2016148537 A RU 2016148537A RU 2016148537 A RU2016148537 A RU 2016148537A RU 2661242 C2 RU2661242 C2 RU 2661242C2
Authority
RU
Russia
Prior art keywords
aircraft
extraneous
unmanned vehicle
estimated
bearing
Prior art date
Application number
RU2016148537A
Other languages
English (en)
Other versions
RU2016148537A3 (ru
RU2016148537A (ru
Inventor
Жульен ФАРЖОН
Original Assignee
Сафран Электроникс Энд Дифенс
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Электроникс Энд Дифенс filed Critical Сафран Электроникс Энд Дифенс
Publication of RU2016148537A3 publication Critical patent/RU2016148537A3/ru
Publication of RU2016148537A publication Critical patent/RU2016148537A/ru
Application granted granted Critical
Publication of RU2661242C2 publication Critical patent/RU2661242C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0078Surveillance aids for monitoring traffic from the aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

Способ навигации беспилотного аппарата в присутствии по меньшей мере одного постороннего летательного аппарата в зоне пространства, окружающего беспилотный аппарат, согласно которому на основании мощности принимаемого сигнала вычисляют оценочное расстояние между беспилотным аппаратом и посторонним летательным аппаратом и подтверждают его, если оценочное значение данных позиционирования, вычисленное беспилотным аппаратом с использованием оценочного расстояния, по существу, соответствует измеренному значению данных позиционирования. Беспилотный аппарат выполнен с возможностью применения этого способа. Улучшается надежность определения траектории уклонения. 2 н. и 13 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к предотвращению столкновений между летательными аппаратами и, в частности, к способу навигации беспилотных аппаратов.
Объектом изобретения является также беспилотный аппарат для осуществления такого способа навигации.
Уровень техники
Беспилотный аппарат является летательным аппаратом без пилота на борту. Этот летательный аппарат может быть оснащен автоматическими системами и может осуществлять свой полет автономно; он может быть также оснащен датчиками, соединенными с устройством автоматического пилотирования и/или с устройством дистанционного управления, которое использует пилот на земле. Беспилотные аппараты все чаще применяют в военной области, в частности, для наблюдения за полем боя, для разведки и даже для атаки на наземные цели.
Было предложено использовать беспилотные аппараты в гражданской области, в частности, для осуществления операций воздушного наблюдения за территориями. Действительно, эти беспилотные аппараты представляют интерес, так как обладают большой автономией полета. С другой стороны, они страдают низкой маневренностью. Отсутствие пилота на борту не позволяет беспилотному аппарату соблюдать действующие правила полетов в гражданском воздушном пространстве, которые предусматривают, в частности, чтобы летательный аппарат мог обеспечивать функцию «видеть и избегать», позволяющую ему предотвращать столкновения. Поэтому беспилотным аппаратам не разрешается летать в воздушном пространстве, специально не выделенном для этой цели, то есть в тех же местах и в то же время, что и гражданские летательные аппараты с пилотом на борту.
Как известно, на летательных аппаратах установлены транспондеры (работающие в режиме А, С или S для гражданских летательных аппаратов), позволяющие, в частности, вспомогательным радиолокационным станциям воздушного контроля определять положение этих летательных аппаратов и идентифицировать их в контролируемом пространстве. Для этого вспомогательные радиолокационные станции запрашивают транспондеры летательных аппаратов, пролетающих в контролируемой зоне пространства, и транспондеры передают в ответ сигнал, содержащий идентификатор, а также высоту полета, в зависимости от режима работы транспондера.
Существует система предупреждения столкновений, предназначенная для оснащения некоторых управляемых летательных аппаратов, которая известна под названием NCAS и соответствует стандарту ACAS, определенному в Конвенции о международной гражданской авиации. В Европе использование этой системы получает все большее распространение, и все пассажирские самолеты вместимостью более восемнадцати мест должны быть обязательно оснащены версией II этой системы, включающей в себя транспондер режима S. Система выполнена с возможностью сбора данных о курсе и положении любого летательного аппарата, называемого посторонним летательным аппаратом, пролетающем в пространстве, окружающем рассматриваемый летательный аппарат в радиусе от 2,5 миль (4 км) до 30 миль (48 км). Эти данные включают в себя в основном расстояние до этих летательных аппаратов, их высоту полета и приблизительные данные азимута. Данные получают путем запроса транспондера режима S постороннего летательного аппарата и используют для системы TCAS II, чтобы определить возможно ли столкновение с этим посторонним летательным аппаратом. В случае риска столкновения, обнаруживаемого системой TCAS, происходит оповещение пилота каждого летательного аппарата при помощи звукового сигнала в кабине экипажа. Если после этого тревожного сигнала риск не уменьшился и столкновение кажется неизбежным, система TCAS определяет команду маневра для пилота: сохранять текущую траекторию, произвести набор высоты, снижение или контроль вертикальной скорости.
Однако использование системы TCAS является сложным и не подходит для беспилотных аппаратов, которые, как правило, имеют относительно низкую стоимость.
Задача изобретения
Задачей изобретения является облегчение навигации беспилотного аппарата и повышение его безопасности за счет обеспечения учета присутствия по меньшей мере одного постороннего летательного аппарата в пространстве, окружающем беспилотный аппарат.
Сущность изобретения
Для этого изобретением предложен способ навигации беспилотного аппарата в присутствии по меньшей мере одного постороннего летательного аппарата в зоне пространства, окружающего беспилотный аппарат. Этот способ содержит этапы, осуществляемые на уровне беспилотного аппарата, на которых:
- принимают сигнал от постороннего летательного аппарата и вычисляют оценочное расстояние между беспилотным аппаратом и посторонним летательным аппаратом на основании мощности принимаемого сигнала;
- снимают по меньшей мере одно изображение постороннего летательного аппарата и на основании этого изображения определяют пеленг постороннего летательного аппарата;
- из сигнала выделяют высоту полета, переданную посторонним летательным аппаратом;
- используя оценочное расстояние, вычисляют оценочное значение данных позиционирования постороннего летательного аппарата или беспилотного аппарата;
- оценочное значение данных позиционирования сравнивают с измеренным значением данных позиционирования и вычисленное расстояние принимают в расчет для навигации, если оценочное значение по существу соответствует измеренному значению.
Данными позиционирования может быть высота полета постороннего летательного аппарата (при этом измеренное значение является переданной высотой полета) или пеленг постороннего летательного аппарата относительно беспилотного аппарата (при этом измеренное значение пеленга является значением, определенным на изображении). Таким образом, поскольку при вычислении оценочного значения данных позиционирования используют оценочное расстояние, то сравнение оценочного значения и измеренного значения позволяет проверить достоверность оценочного расстояния между беспилотным аппаратом и посторонним летательным аппаратом. Это позволяет ограничить риск ошибки. Оценочное и подтвержденное расстояние можно учитывать для навигации, в частности, чтобы предусмотреть маневр уклонения от постороннего летательного аппарата или чтобы среди имеющихся данных идентифицировать наиболее надежные данные для использования в целях навигации. Не обязательно оборудовать беспилотный аппарат запросчиком транспондера, поскольку приемник беспилотного аппарата принимает, например, сигналы, передаваемые транспондером режима С или S постороннего летательного аппарата, после того как его запросит либо вспомогательная радиолокационная станция, либо другой летательный аппарат, оборудованный запросчиком; приемник беспилотного аппарата может также принимать, например, сигналы, автоматически передаваемые устройством типа ADS-B (от английского "Automatic Dependent Surveillance-Broadcast"). Таким образом, заявленный способ можно осуществлять при помощи только пассивных датчиков, в частности, если беспилотный аппарат должен летать только в окружающей среде в радиусе охвата вспомогательных радиолокационных станций.
Объектом изобретения является также беспилотный аппарат, содержащий устройство пилотирования, соединенное с инструментом измерения высоты полета, с оптоэлектронным устройством обнаружения, выполненным с возможностью определения пеленга постороннего летательного аппарата, летящего в зоне, окружающей беспилотный аппарат, и с приемником для приема сигнала, который передается посторонним летательным аппаратом и который содержит высоту полета постороннего летательного аппарата. Устройство пилотирования беспилотного аппарата выполнено с возможностью:
- вычисления оценочного расстояния между беспилотным аппаратом и посторонним летательным аппаратом на основании мощности сигнала, принимаемого приемником;
- съемки по меньшей мере одного изображения постороннего летательного аппарата при помощи оптоэлектронного устройства и определения пеленга постороннего летательного аппарата на основании этого изображения;
- выделения из указанного сигнала высоты полета, переданной посторонним летательным аппаратом;
- вычисления оценочной высоты полета постороннего летательного аппарата на основании пеленга и вычисленного расстояния;
- сравнения оценочной высоты полета с переданной высотой и учета вычисленного расстояния для навигации, если оценочная высота полета по существу соответствует переданной высоте.
Другие признаки и преимущества изобретения будут более очевидны из нижеследующего описания частных и не ограничительных вариантов осуществления изобретения.
Это описание представлено со ссылками на прилагаемые чертежи, на которых:
Фиг. 1 - схематичный вид в перспективе ситуации пересечения курсов летательного аппарата и заявленного беспилотного аппарата.
Фиг. 2 - схема устройства пилотирования заявленного беспилотного аппарата.
Как показано на фигурах, заявленный беспилотный аппарат имеет общую форму самолета и содержит фюзеляж 1 и крылья 2, которые оснащены несущими поверхностями, перемещаемыми при помощи приводов, соединенных с устройством пилотирования, установленным в беспилотном аппарате. Сама конструкция беспилотного аппарата не является объектом изобретения, поэтому ее подробное описание опускается.
Устройство пилотирования, обозначенное общей позицией 3, содержит блок 4 обработки данных, соединенный с инструментом 5 измерения высоты, с оптоэлектронным устройством 6 обнаружения и с приемником 7. Как известно, устройство 3 пилотирования содержит также средства управления приводами несущих поверхностей и двигателем беспилотного аппарата.
Блок 4 обработки данных является компьютерным блоком, который содержит, в частности, процессор для обработки данных и запоминающее устройство для записи данных.
Инструмент 5 измерения высоты является классическим барометрическим инструментом.
Оптоэлектронное устройство 6 обнаружения содержит датчик изображения, связанный со съемочным блоком и ориентированный таким образом, чтобы его поле охватывало контролируемую зону пространства, находящуюся спереди беспилотного аппарата. Датчик устройства 6 обнаружения выполнен с возможностью работать в инфракрасной области и/или в видимой области спектра. Датчик обладает достаточными характеристиками, чтобы обеспечивать обнаружение в получаемых изображениях летательного аппарата (называемого посторонним летательным аппаратом), находящегося в контролируемой зоне пространства на максимальном расстоянии от 8 до 10 км. Блок 4 обработки включает в себя модуль (программный или аппаратный) обработки изображения, выполненный с возможностью определения пеленга постороннего летательного аппарата, летящего в контролируемой зоне пространства.
Приемник 7 имеет направленную антенну и выполнен с возможностью приема сигнала, передаваемого транспондерами режима S летательных аппаратов, летящих недалеко от беспилотного аппарата. В данном случае приемник работает на частоте 1090 МГц. Сигнал содержит барометрическую высоту постороннего летательного аппарата, код транспондера и шестнадцатеричный код идентификатора каждого летательного аппарата, оснащенного транспондером режима S.
Устройство 3 пилотирования выполнено и запрограммировано с возможностью:
- вычисления оценочного расстояния между беспилотным аппаратом и посторонним летательным аппаратом на основании мощности сигнала, принимаемого приемником 7;
- съемки по меньшей мере одного изображения постороннего летательного аппарата при помощи оптоэлектронного устройства и определения пеленга постороннего летательного аппарата на основании этого изображения;
- выделения из сигнала высоты полета, переданной посторонним летательным аппаратом;
- вычисления оценочной высоты полета постороннего летательного аппарата на основании пеленга и вычисленного расстояния;
- сравнения оценочной высоты полета с переданной высотой и учета вычисленного расстояния для навигации, если оценочная высота полета по существу соответствует переданной высоте.
Блок 4 обработки запрограммирован для применения фильтров Калмана, в частности, для вычисления:
- высоты и вертикальной скорости постороннего летательного аппарата на основании переданной высоты, содержащейся в принятых сигналах;
- оценочного расстояния и относительной скорости (или скорости сближения) между беспилотным аппаратом и посторонним летательным аппаратом на основании мощности каждого принятого сигнала;
- оценочной высоты и оценочной вертикальной скорости на основании пеленга и оценочного расстояния.
Блок 4 обработки дополнительно содержит модуль (программный или аппаратный) сопоставления данных, выделяемых только из принятого сигнала (переданная высота, оценочное расстояние, оценочная скорость сближения, вертикальная скорость), и данных, выделяемых также из изображений (оценочная вертикальная скорость, оценочная высота).
Далее с целью детального изложения заявленного способа следует описание ситуации потенциального столкновения между заявленным беспилотным аппаратом и посторонним летательным аппаратом.
Когда беспилотный аппарат А находится в полете, оптоэлектронное устройство 6 передает изображения в блок 4 обработки, который обрабатывает эти изображения для выявления в них присутствия постороннего летательного аппарата. Как только модуль обработки изображения обнаруживает посторонний летательный аппарат С в одном из изображений, переданных оптоэлектронным устройством 6, модуль обработки изображения определяет на основании изображения пеленг постороннего летательного аппарата С, присутствующего на изображении.
Совершающий полет беспилотный аппарат А параллельно принимает сигналы от транспондеров летательных аппаратов, отвечающих вспомогательной радиолокационной станции В, которая находится на земле S и наблюдает за зоной контроля, в которой летят указанные летательные аппараты и беспилотный аппарат А. Блок 4 обработки данных беспилотного аппарата выделяет содержащуюся в сигнале переданную высоту, идентификатор летательного аппарата, передавшего сигнал, и определяет мощность принятого сигнала.
Оценочное расстояние между беспилотным аппаратом и посторонним летательным аппаратом вычисляют при помощи фильтра Калмана на основании мощности принятого сигнала и передают в модуль сопоставления.
Блок 4 обработки данных использует также оценочное расстояние для вычисления оценочной высоты постороннего летательного аппарата на основании оценочного расстояния и пеленга.
Разумеется, что вычисление оценочного расстояния является достоверным, только если прием сигнала и съемка изображения являются близкими друг от друга по времени. Таким образом, можно предусмотреть, чтобы блок 3 пилотирования мог управлять оптоэлектронным устройством 6 таким образом, чтобы прием сигнала автоматически запускал съемку изображения оптоэлектронным устройством 6.
Оценочную высоту вычисляют в локальной наземной системе координат (например, в системе координат NED или ENU). В данном случае точность оценочной высоты тоже зависит от близости во времени сигнала и съемки изображения.
Мощность принимаемого сигнала используют в данном случае в виде отношения сигнала к шуму принятого сигнала. Это отношение зависит от расстояния между транспондером и приемником, от мощности передачи (мощность транспондера от 1 до 5 ватт включительно), от коэффициента усиления передающей антенны (антенна транспондера постороннего летательного аппарата С), от коэффициента усиления антенны приемника 7 и от атмосферного затухания. Вместе с тем, экспериментально удалось установить, что расстояние можно аппроксимировать при помощи правила второй степени отношения сигнала к шуму. Выбранное правило действует в рассматриваемом диапазоне расстояния, в данном случае от 1 до 10 км.
Если удалось осуществить сопоставление с переданным идентификатором, то данные, которые будут извлечены из изображений постороннего летательного аппарата С или из сигналов, которые будут в дальнейшем переданы посторонним летательным аппаратом С, будут сопоставляться с указанным идентификатором.
На основании данных, получаемых из двух последовательных сигналов, фильтры Калмана блока 4 обработки данных могут вычислить, используя оценочные расстояния, скорость сближения постороннего летательного аппарата С и беспилотного аппарата А и оценочное время до столкновения между посторонним летательным аппаратом С и беспилотным аппаратом А.
Фильтры Калмана выполнены с возможностью отслеживания изменения данных во времени, обнаружения ошибок, сглаживания результатов.
Значения переданных высот, оценочных расстояний, оценочных скоростей сближения (вычисленных по разности оценочных расстояний за данное время), вертикальных скоростей (вычисленных по разности значений переданной высоты за данное время), оценочной высоты (вычисленных на основании оценочных расстояний и пеленгов) и оценочных скоростей набора высоты поступают в блок 4 обработки, который выполнен с возможностью сопоставления этих данных с кодом идентификации данных, таким как идентификатор постороннего летательного аппарата (переданный в принятом сигнале).
Таким образом, модуль сопоставления выполнен с возможностью сравнения высот, то есть:
- прямого сравнения высот (переданной высоты и оценочной высоты постороннего летательного аппарата); и/или
- сравнения вертикальных скоростей (полученных по разности последовательно переданных высот и по разности высот, оцениваемых на основании двух последовательных изображений, приведенных соответственно к времени между двумя приемами последовательных сигналов и к времени между съемками последовательных изображений).
На основании оценочного времени до столкновения блок 4 обработки данных передает в устройство 3 пилотирования команду на уклонение, при этом команда уклонения может быть систематически одинаковой (поворот вправо или поворот влево) или может учитывать, например, вертикальную скорость (набор высоты или снижение) постороннего летательного аппарата.
Таким образом, понятно, что для навигации беспилотного аппарата А было учтено подтвержденное оценочное расстояние.
Следует отметить, что модуль сопоставления выбирает в качестве идентификатора тот идентификатор, для которого оценочная высота по существу равна переданной высоте (при этом оценочное расстояние подтверждено). Если предположить, что были выбраны несколько идентификаторов, то в качестве идентификатора модуль сопоставления выбирает тот, который соответствует наименее благоприятному случаю, характеризующемуся наименьшим оценочным расстоянием и наиболее высокой скоростью сближения.
Если ни одна из переданных высот по существу не равна оценочной высоте, выбранный код идентификации будет принадлежать к модулю сопоставления то тех пор, пока данные, связанные с этим кодом идентификации, не будут соответствовать переданному идентификатору и связанным с ним данным.
Так, код идентификации принадлежит к модулю сопоставления, если не был принят ни один сигнал, или к выделенному из сигнала идентификатору, если такой сигнал был принят.
Следует также отметить, что направленная антенна позволяет устранить разночтения во время сопоставления, позволяя определить направление передачи сигнала и проверить его совместимость с пеленгом, определенным на изображении. В этом случае предпочтительно также выделять на изображениях угол места, для которого можно проверить соответствие с направлением передачи. Кроме того, угол места можно использовать, чтобы определять траекторию постороннего летательного аппарата с целью выработки маневра уклонения и/или уточнения вероятности столкновения.
Кроме того, предпочтительно блок 4 обработки выполнен также с возможностью определения скорости сближения с посторонним летательным аппаратом на основании размера постороннего летательного аппарата на двух последовательных изображениях, снятых оптоэлектронным устройством. Для этого модуль обработки изображения выделяет в каждом изображении телесный угол, образованный поверхностью постороннего летательного аппарата на каждом изображении, или размер в пикселях постороннего летательного аппарата на каждом изображении. Путем сравнения с сигнатурами, содержащимися в банке сигнатур летательных аппаратов, можно определить оценочное расстояние между беспилотным аппаратом и посторонним летательным аппаратом (можно также использовать размер постороннего летательного аппарата, полученный на основании данных, содержащихся в сигнале режима S). Блок 4 обработки выполнен с возможностью выдавать периодически значения скорости сближения на основании изменения телесного угла или размера в пикселях постороннего летательного аппарата, полученного путем сравнения этих данных на двух последовательных изображениях.
Таким образом, в отсутствие транспондера на постороннем летательном аппарате для определения риска столкновения и необходимого маневра уклонения используют только данные, выделенные на изображениях, полученных от оптоэлектронного устройства обнаружения.
Кроме того, если посторонний летательный аппарат оснащен транспондером, скорости сближения, полученные путем обработки изображений, можно сравнить со скоростями сближения, полученными в зависимости от изменения оценочного расстояния, вычисленного в зависимости от мощности принятых сигналов. Это позволяет подтвердить или скорректировать результаты, выданные модулем сопоставления. Таким образом, можно сравнивать и анализировать полученные результаты, используя только данные, поступающие от оптоэлектронного устройства 6, и полученные результаты, используя также данные, выделенные в сигналах, чтобы выбрать наименее зашумленные результаты.
В варианте блок 4 обработки связан также с запросчиком, выполненным с возможностью передачи запросов в транспондеры близко летящих летательных аппаратов.
Разумеется, изобретение не ограничивается описанными вариантами осуществления и охватывает любую версию, не выходящую за рамки изобретения, определенные в формуле изобретения.
В частности, изобретение можно применять с транспондерами, работающими в других режимах, отличных от режима S, например, в режиме С или в режимах транспондеров военных самолетов. Если сигнал не содержит идентификатора, в принятом сигнале выявляют соответствующие данные для идентификации соответствующего канала.
Изобретение можно также применять с системой автоматического зависимого контроля ADS-B, в которой посторонний летательный аппарат периодически и во всех направлениях передает сигнал, содержащий, в частности, его положение и его высоту.
В варианте изобретения данными позиционирования является пеленг постороннего летательного аппарата, при этом способ содержит этапы, на которых:
- вычисляют оценочный пеленг постороннего летательного аппарата на основании высоты полета беспилотного аппарата, переданной высоты и оценочного расстояния;
- оценочный пеленг сравнивают с пеленгом, определенным на основании изображения, и для навигации учитывают оценочное расстояние, если оценочный пеленг по существу соответствует пеленгу, определенному на основании изображения.
Блок обработки данных может быть выполнен с возможностью извлечения из изображения других данных, отличных от вышеуказанных, например, угла места постороннего летательного аппарата. В описанном способе этот угол места не используют, так как считается, что посторонний летательный аппарат летит прямо на беспилотный аппарат, чтобы принимать во внимание наиболее критическую ситуации для навигации беспилотного аппарата. Угол места можно использовать для определения траектории постороннего летательного аппарата, чтобы уточнить вероятность столкновения и необходимый маневр уклонения.
Используемыми высотами могут быть барометрические высоты и/или высоты, полученные при помощи устройства спутниковой геолокализации.

Claims (29)

1. Способ навигации беспилотного аппарата в присутствии по меньшей мере одного постороннего летательного аппарата в зоне пространства, окружающего беспилотный аппарат, отличающийся тем, что содержит этапы, выполняемые на беспилотном аппарате, на которых:
- принимают сигнал от постороннего летательного аппарата, причем сигнал содержит, по меньшей мере, высоту постороннего летательного аппарата, и вычисляют оценочное расстояние между беспилотным аппаратом и посторонним летательным аппаратом на основании мощности принимаемого сигнала;
- снимают по меньшей мере одно изображение постороннего летательного аппарата и на основании этого изображения определяют пеленг постороннего летательного аппарата;
- из указанного сигнала выделяют высоту полета, переданную посторонним летательным аппаратом;
- используя указанное оценочное расстояние, вычисляют оценочное значение данных позиционирования постороннего летательного аппарата или беспилотного аппарата;
- сравнивают указанное оценочное значение данных позиционирования с измеренным значением данных позиционирования и принимают в расчет вычисленное расстояние для навигации, если оценочное значение, по существу, соответствует измеренному значению.
2. Способ по п. 1, в котором данными позиционирования является высота постороннего летательного аппарата, при этом способ содержит этапы, на которых:
- вычисляют оценочную высоту постороннего летательного аппарата на основании указанных пеленга и оценочного расстояния;
- сравнивают оценочную высоту с переданной высотой и учитывают оценочное расстояние для навигации, если оценочная высота, по существу, соответствует переданной высоте.
3. Способ по п. 1, в котором данными позиционирования является указанный пеленг постороннего летательного аппарата, при этом способ содержит этапы, на которых:
- вычисляют оценочный пеленг постороннего летательного аппарата на основании высоты полета беспилотного аппарата, указанной переданной высоты и указанного оценочного расстояния;
- сравнивают оценочный пеленг с пеленгом, определенным на основании изображения, и учитывают оценочное расстояние для навигации, если оценочный пеленг, по существу, соответствует пеленгу, определенному на основании изображения.
4. Способ по п. 1, содержащий последующий этап, на котором вычисляют, по меньшей, мере скорость сближения беспилотного аппарата и постороннего летательного аппарата и оценочное время до столкновения на основании оценочного расстояния, вычисленного при помощи двух последовательных изображений.
5. Способ по п. 4, содержащий этапы, на которых вычисляют скорость сближения беспилотного аппарата и постороннего летательного аппарата на основании размера постороннего летательного аппарата на двух последовательных изображениях и сравнивают скорость сближения, определенную на основании размера постороннего летательного аппарата на двух последовательных изображениях, и скорость сближения, определенную на основании оценочного расстояния, вычисленного при помощи двух последовательных изображений.
6. Беспилотный аппарат, содержащий устройство пилотирования, содержащее блок обработки данных, соединенный с инструментом измерения высоты полета, с оптоэлектронным устройством обнаружения, выполненным с возможностью определения пеленга постороннего летательного аппарата, летящего в зоне, окружающей беспилотный аппарат, и с приемником для приема сигнала, который передается посторонним летательным аппаратом и который содержит высоту полета постороннего летательного аппарата, при этом устройство пилотирования беспилотного аппарата выполнено с возможностью:
- вычисления оценочного расстояния между беспилотным аппаратом и посторонним летательным аппаратом на основании мощности сигнала, принимаемого приемником;
- съемки по меньшей мере одного изображения постороннего летательного аппарата при помощи оптоэлектронного устройства и определения пеленга постороннего летательного аппарата на основании этого изображения;
- выделения из указанного сигнала высоты полета, переданной посторонним летательным аппаратом;
- вычисления при помощи указанного оценочного расстояния оценочного значения данных позиционирования постороннего летательного аппарата или беспилотного аппарата;
- сравнения оценочного значения данных позиционирования с измеренным, если оценочное значение, по существу, соответствует измеренному значению.
7. Беспилотный аппарат по п. 6, содержащий запросчик, выполненный с возможностью передачи запроса на транспондер постороннего летательного аппарата.
8. Беспилотный аппарат по п. 6, в котором блок обработки данных содержит средство оценки скорости сближения с посторонним летательным аппаратом.
9. Беспилотный аппарат по п. 8, в котором средство оценки является блоком обработки изображения, выполненным с возможностью определения скорости сближения с посторонним летательным аппаратом в зависимости от размера постороннего летательного аппарата на двух последовательных изображениях, снятых оптоэлектронным устройством.
10. Беспилотный аппарат по п. 8, в котором средство оценки содержит фильтр Калмана для вычисления скорости сближения на основании указанных оценочных расстояний.
11. Беспилотный аппарат по п. 10, в котором фильтр Калмана выполнен с возможностью периодически выдавать оценочные расстояния и скорости сближения на основании изображений, получаемых от оптоэлектронного устройства, и высоты, преданной летательным аппаратом.
12. Беспилотный аппарат по п. 11, в котором оценочные расстояния и скорости сближения сопоставляются с идентификатором постороннего летательного аппарата, при этом идентификатор выделяется из сигнала, принятого транспондером беспилотного аппарата.
13. Беспилотный аппарат по п. 6, в котором приемник содержит направленную антенну.
14. Беспилотный аппарат по п. 6, в котором данными позиционирования является высота, переданная посторонним летательным аппаратом.
15. Беспилотный аппарат по п. 6, в котором данными позиционирования является пеленг постороннего летательного аппарата.
RU2016148537A 2014-05-12 2015-04-30 Способ навигации беспилотного аппарата в присутствии постороннего летательного аппарата и беспилотный аппарат для осуществления способа RU2661242C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1454215A FR3020892B1 (fr) 2014-05-12 2014-05-12 Procede de navigation d'un drone aerien en presence d'un aeronef intrus et drone pour la mise en œuvre de ce procede
FR1454215 2014-05-12
PCT/EP2015/059603 WO2015173033A1 (fr) 2014-05-12 2015-04-30 Procede de navigation d'un drone aerien en presence d'un aeronef intrus et drone pour la mise en œuvre de ce procede

Publications (3)

Publication Number Publication Date
RU2016148537A3 RU2016148537A3 (ru) 2018-06-13
RU2016148537A RU2016148537A (ru) 2018-06-13
RU2661242C2 true RU2661242C2 (ru) 2018-07-13

Family

ID=51830389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148537A RU2661242C2 (ru) 2014-05-12 2015-04-30 Способ навигации беспилотного аппарата в присутствии постороннего летательного аппарата и беспилотный аппарат для осуществления способа

Country Status (8)

Country Link
US (1) US10157547B2 (ru)
EP (1) EP3143608A1 (ru)
CN (1) CN106463066B (ru)
FR (1) FR3020892B1 (ru)
IL (1) IL248823A0 (ru)
MX (1) MX360561B (ru)
RU (1) RU2661242C2 (ru)
WO (1) WO2015173033A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244364B1 (en) * 2016-04-21 2019-03-26 uAvionix Corporation System and method for location determination using received ADS-B accuracy data
CN106986027A (zh) * 2017-05-10 2017-07-28 佛山市神风航空科技有限公司 一种空中竞技无人机
CN108986552A (zh) * 2017-06-02 2018-12-11 北京石油化工学院 一种无人机避险方法、装置与系统
JP6988200B2 (ja) * 2017-06-29 2022-01-05 株式会社デンソー 車両制御装置
US10074282B1 (en) * 2017-07-31 2018-09-11 The Boeing Company Display of flight interval management data
WO2019036742A1 (en) * 2017-08-25 2019-02-28 Aline Consultancy Pty Ltd COLLISION AVOIDANCE SYSTEM WITH A DRONE
US11161611B2 (en) 2019-03-15 2021-11-02 Yan Zhang Methods and systems for aircraft collision avoidance
CN115267870B (zh) * 2022-07-28 2024-05-17 昆明物理研究所 一种反无人机目标遴选方法、存储介质及系统
FR3139919A1 (fr) * 2022-09-16 2024-03-22 Safran Electronics & Defense Procédé de contrôle de la trajectoire d’un aéronef
FR3140197A1 (fr) * 2022-09-28 2024-03-29 Safran Electronics & Defense Dispositif de détection, par un drone, d'au moins un aéronef habité en approche et procédé de détection associé

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177427A1 (en) * 2007-01-19 2008-07-24 Thales Device and method for measuring dynamic parameters of an aircraft progressing over an airport zone
US20090184862A1 (en) * 2008-01-23 2009-07-23 Stayton Gregory T Systems and methods for multi-sensor collision avoidance
US20110160950A1 (en) * 2008-07-15 2011-06-30 Michael Naderhirn System and method for preventing a collision

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581250A (en) * 1995-02-24 1996-12-03 Khvilivitzky; Alexander Visual collision avoidance system for unmanned aerial vehicles
JP2003329510A (ja) * 2002-05-08 2003-11-19 Nittobo Acoustic Engineering Co Ltd 航空機の多チャンネル方向推定装置
FR2863584B1 (fr) * 2003-12-12 2007-01-26 Thales Sa Systeme optronique modulaire embarquable sur un porteur
EP2167920B1 (en) 2007-07-18 2013-09-18 Elbit Systems Ltd. Aircraft landing assistance
EP2506032B1 (en) * 2008-06-18 2013-10-02 Saab Ab Validity check of vehicle position information
ES2400708T3 (es) * 2008-08-27 2013-04-11 Saab Ab Utilización de un sensor de imágenes y de un filtro de seguimiento de tiempo restante para evitar colisiones en vuelo
KR102396455B1 (ko) * 2009-02-02 2022-05-10 에어로바이론먼트, 인크. 멀티모드 무인 항공기
FR2949867B1 (fr) * 2009-09-04 2012-04-27 Thales Sa Dispositif radar aeroporte multifonction a large bande de large couverture angulaire permettant la detection et le pistage, notamment pour une fonction de detection et evitement
US8373591B2 (en) * 2009-10-30 2013-02-12 Jed Margolin System for sensing aircraft and other objects
US8868265B2 (en) * 2011-11-30 2014-10-21 Honeywell International Inc. System and method for aligning aircraft and runway headings during takeoff roll
FR2990290B1 (fr) * 2012-05-02 2015-04-03 Sagem Defense Securite Procede d'evitement d'un aeronef et drone equipe d'un systeme mettant en oeuvre ce procede

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177427A1 (en) * 2007-01-19 2008-07-24 Thales Device and method for measuring dynamic parameters of an aircraft progressing over an airport zone
US20090184862A1 (en) * 2008-01-23 2009-07-23 Stayton Gregory T Systems and methods for multi-sensor collision avoidance
US20110160950A1 (en) * 2008-07-15 2011-06-30 Michael Naderhirn System and method for preventing a collision

Also Published As

Publication number Publication date
CN106463066A (zh) 2017-02-22
EP3143608A1 (fr) 2017-03-22
FR3020892B1 (fr) 2016-05-27
MX2016014766A (es) 2017-08-24
WO2015173033A1 (fr) 2015-11-19
US10157547B2 (en) 2018-12-18
RU2016148537A3 (ru) 2018-06-13
FR3020892A1 (fr) 2015-11-13
CN106463066B (zh) 2021-06-11
IL248823A0 (en) 2017-01-31
RU2016148537A (ru) 2018-06-13
US20170178519A1 (en) 2017-06-22
MX360561B (es) 2018-11-07

Similar Documents

Publication Publication Date Title
RU2661242C2 (ru) Способ навигации беспилотного аппарата в присутствии постороннего летательного аппарата и беспилотный аппарат для осуществления способа
RU2581455C1 (ru) Способ предупреждения столкновения с воздушным судном и беспилотный аппарат, оснащённый системой для осуществления этого способа
US9933521B2 (en) Aerial positioning systems and methods
US7864096B2 (en) Systems and methods for multi-sensor collision avoidance
US20080027647A1 (en) Collision Avoidance System
US20110169943A1 (en) Utilizing Polarization Differencing Method For Detect, Sense And Avoid Systems
De Haag et al. Flight-test evaluation of small form-factor LiDAR and radar sensors for sUAS detect-and-avoid applications
US9435635B1 (en) System and methods of detecting an intruding object in a relative navigation system
US10198956B2 (en) Unmanned aerial vehicle collision avoidance system
Zarandy et al. A novel algorithm for distant aircraft detection
US20190156687A1 (en) Unmanned aerial vehicle collision avoidance system
US11150671B2 (en) Method and system for jamming localization and supporting navigation system
KR101842217B1 (ko) 비행 제어 장치, 그 방법 및 이를 포함하는 비행 제어 시스템
EP3091525A1 (en) Method for an aircraft for handling potential collisions in air traffic
Zsedrovits et al. Distant aircraft detection in sense-and-avoid on kilo-processor architectures
WO2020226523A1 (en) Method and system for jamming localization and supporting navigation system
BR112016026439B1 (pt) Método para navegar um drone aéreo na presença de uma aeronave intrusa, e drone para implementar dito método
EP3975156A1 (en) Method to obtain a recognized air picture of an observation space surrounding an automated aerial vehicle
IL287739A (en) Front scatter sensing systems and methods