RU2659608C1 - Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала - Google Patents

Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала Download PDF

Info

Publication number
RU2659608C1
RU2659608C1 RU2017133341A RU2017133341A RU2659608C1 RU 2659608 C1 RU2659608 C1 RU 2659608C1 RU 2017133341 A RU2017133341 A RU 2017133341A RU 2017133341 A RU2017133341 A RU 2017133341A RU 2659608 C1 RU2659608 C1 RU 2659608C1
Authority
RU
Russia
Prior art keywords
digital
sfaar
block
unit
matrix
Prior art date
Application number
RU2017133341A
Other languages
English (en)
Inventor
Андрей Германович Зайцев
Original Assignee
Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт Войск воздушно-космической обороны Минобороны России (ФГБУ "ЦНИИ ВВКО Минобороны России")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт Войск воздушно-космической обороны Минобороны России (ФГБУ "ЦНИИ ВВКО Минобороны России") filed Critical Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт Войск воздушно-космической обороны Минобороны России (ФГБУ "ЦНИИ ВВКО Минобороны России")
Priority to RU2017133341A priority Critical patent/RU2659608C1/ru
Application granted granted Critical
Publication of RU2659608C1 publication Critical patent/RU2659608C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано при проектировании радиоэлектронных средств и систем различного целевого назначения, например систем космической связи с подвижными объектами. Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки (МЛ СФААР) с использованием параметрической модели корреляционной матрицы (КМ) принимаемого сигнала включает задание исходных данных по количеству антенных элементов (АЭ) N, их характеристикам, положению в пространстве, количеству и характеристикам аналого-цифровых преобразователей (АЦП), типу и технической реализации блока цифровой диаграммообразующей схемы (ДОС) и блока цифрового адаптивного процессора (АП), образованного блоком цифрового сигнального процессора (СП) и блоком цифрового устройства управления (УУ), вычисляющего значение вектора весовых коэффициентов (ВВК) МЛ СФААР, обеспечивающее максимальный коэффициент направленного действия (КНД) антенны, при этом синтез блока цифрового СП выполняется как синтез цифрового устройства, раздельно вычисляющего значения амплитудно-фазового распределения сигналов источников излучения (ИИ) на апертуре МЛ СФААР при произвольной форме их фазового фронта. Синтезируемая МЛ СФААР состоит из блоков АЭ, параллельно соединенных через блоки АЦП с блоком цифровой ДОС и блоком цифрового АП, включающего блок цифрового СП, вычисляющего АФР сигналов ИИ, значения которых передаются в блок цифрового УУ, вычисляющего ВВК МЛ СФААР, значение которого передается в блок цифровой ДОС для выполнения взвешенного суммирования сигналов, принятых блоками АЭ, выход блока цифровой ДОС является выходом МЛ СФААР. Технический результат заключается в повышении эффективности приема сигналов МЛ СФААР. 5 ил.

Description

Изобретение относится к радиотехнике и может быть использовано при проектировании радиоэлектронных средств и систем различного целевого назначения, например, систем космической связи с подвижными объектами.
Известен способ синтеза антенн по заданной диаграмме излучения [1], включающий создание на излучающей поверхности требуемого амплитудно-фазового распределения (АФР) поверхностных источников токов (излучения). При этом форму излучающей поверхности задают независимо от формируемой диаграммы излучения и выполняют, например, в виде плоского листа, сферы, кругового цилиндра и т.д., а затем на этой поверхности возбуждают источники излучения с таким АФР, при котором заданная поверхность формирует диаграмму излучения с требуемыми характеристиками. Недостатком известного способа синтеза антенн [1] является то, что он не обеспечивает синтез антенны, сохраняющей постоянное значение среднего коэффициента направленного действия (КНД) при изменении параметров сигнально-помеховой обстановки (СПО).
Известен способ синтеза адаптивной антенной решетки (ΑΑΡ) [2, с. 12-17, 77-90], выбранный в качестве прототипа, включающий, при цифровой реализации ΑΑΡ [3, стр. 57], задание исходных данных по количеству антенных элементов (АЭ) N их характеристикам X, положению в пространстве, количеству и характеристикам аналого-цифровых преобразователей (АЦП), типу и технической реализации блока цифровой диаграммообразующей схемы (ДОС) и блока цифрового адаптивного процессора (АП), образованного блоком цифрового сигнального процессора (СП) и блоком цифрового устройства управления (УУ), вычисляющего значение вектора весовых коэффициентов (ВВК) антенны
Figure 00000001
, где
Figure 00000002
- значение весового коэффициента n -го АЭ, обеспечивающее постоянное значение ее среднего коэффициента направленного действия (КНД) в направлении контролируемых источников излучения (ИИ) при изменении параметров сигнально-помеховой обстановки (СПО). При этом, согласно способу-прототипу [2, с. 12-17, 77-90] ΑΑΡ обеспечивает формирование диаграммы излучения в соответствии с формулой [2, ф. (1.3)]
Figure 00000003
где
Figure 00000004
- вектор входного сигнала ΑΑΡ, элементы которого yn являются сигналом регистрируемым (принимаемым) n-м АЭ; u=sin(θ) - обобщенная угловая координата; θ - угол, отсчитываемый от нормали к антенне; "+" - знак эрмитова сопряжения [4, с. 402], в которой значение вектора I находят аналитически на основании априорной информации об угловых направлениях (ориентациях) максимумов диаграммы направленности (ДН) в соответствии с формулой [2, ф. (3.56)]
Figure 00000005
где
Figure 00000006
- вектор амплитудно-фазового распределения (АФР) на АЭ; "*" - знак комплексного сопряжения [4, с. 31]; I0 - значение ВВК, обеспечивающее максимум показателя эффективности ΑΑΡ в качестве которого рассматривается значение среднего КНД
Figure 00000007
где
Figure 00000008
,
Figure 00000009
- положительно определенные эрмитовы матрицы [4, с. 402];
Figure 00000010
;
Figure 00000011
- взвешенная сумма значений ДН n-го АЭ в Μ направлениях (по числу Μ ИИ);
Figure 00000012
- весовой коэффициент, являющийся действительным числом; fnm) - значение ДН n -го АЭ в направлении θm; N - число АЭ ΑΑΡ; I+AI, I+BI - эрмитовы формы [4, с. 402].
В формуле (2) фаза тока возбуждения n-го АЭ рассчитывается в соответствии с формулой [2, ф. (2.11)]
Figure 00000013
где
Figure 00000014
- фаза тока возбуждения на n-м АЭ при формировании главного лепестка ΑΑΡ в направлении θm; d - шаг антенной решетки (АР); λ - длина волны излучения; j - мнимая единица [4, с. 31], которое соответствует детерминированной модели волнового фронта сигналов ИИ [5, 26] - т.е. способ-прототип ориентирован на построение ΑΑΡ, которые осуществляют прием сигналов с линейными волновыми фронтами, описываемые детерминированными функциями.
В случае, когда волновой фронт сигналов ИИ на АЭ (апертуре АР) описывается случайной функцией [6, с. 290] (т.е. наблюдаются амплитудно-фазовые флуктуации (АФФ) сигналов ИИ на АЭ), а ВВК формируются в соответствии с формулой (2) (т.е. при расчете фазы токов АЭ используется детерминированная модель волнового фронта сигналов ИИ), возникают потери в КНД антенны, величина которых Δ определяется согласно формуле [6, с. 300]
Figure 00000015
где Δ - величина относительного снижения КНД антенны; α, ρ - дисперсия и радиус пространственной корреляции фазовых флуктуаций (ФФ) волнового фронта сигналов ИИ;
Figure 00000016
- относительный радиус пространственной корреляции ФФ волнового фронта сигнала ИИ на элементах АР; I(c,u,u1) - параметрическая функция, значения которой табулированы [6, с. 329].
Таким образом, недостатком наиболее близкого способа-прототипа является относительно узкая область его возможного практического применения, что обусловливается тем, что наличие АФФ сигналов ИИ, величина которых характеризуется дисперсией α и радиусом пространственной корреляции ρ флуктуаций фазы, которые наблюдаются, как правило, в АР с относительными пространственными размерами Lx (Lx=(N-1)d/λ) существенно превышающими единицу приводит к снижению КНД на величину, определяемую формулой (5) и, как следствие, снижение уровня сигнала, принимаемого потребителем в создаваемом канале связи, что приводит к снижению отношения сигнал/шум и, следовательно, к снижению помехозащищенности канала связи.
Задачей, на решение которой направлено изобретение, является расширение области его практического применения и создание способа синтеза многолучевой самофокусирующейся адаптивной антенной решетки (МЛ СФААР), обеспечивающей примерно постоянный уровень среднего КНД (уровень сигнала) в каналах связи, организованных потребителем.
Техническим результатом изобретения является повышение эффективности приема сигналов МЛ СФААР, синтезированной согласно заявляемому способу, при различной величине АФФ сигналов ИИ на ее АЭ.
Показателем эффективности приема сигналов МЛ СФААР является вероятность правильного обнаружения сигнала в блоке приемного устройства, вычисляемая согласно формуле [7, стр. 122]
Figure 00000017
где D - вероятность правильного обнаружения сигнала; h0 - порог обнаружения; q - отношение сигнал/ шум в полосе частот блока приемного устройства; I0(⋅) - модифицированная функция Бесселя нулевого порядка;
Поставленная задача решается, а требуемый технический результат достигается тем, что в известном способе-прототипе синтеза МЛ СФААР, включающем задание исходных данных по количеству АЭ N их характеристикам X, положению в пространстве, количеству и характеристикам АЦП, типу и технической реализации блока цифровой ДОС и блока цифрового АП, образованного блоком цифрового СП и блоком цифрового УУ, вычисляющего значение ВВК антенны
Figure 00000018
где
Figure 00000019
- значение весового коэффициента n-го АЭ, обеспечивающее постоянное значение ее среднего КНД в направлении контролируемых ИИ при изменении параметров СПО, согласно изобретению синтез блока цифрового СП выполняется как синтез цифрового устройства, раздельно вычисляющего значения АФР сигналов ИИ на апертуре МЛ СФААР при произвольной форме их фазового фронта для этого задается функция правдоподобия реализации сигнала, принятого МЛ СФААР, согласно формуле
Figure 00000020
где
Figure 00000021
- вектор реализации сигнала, принятого МЛ СФААР; yn - сигнал, принятый n-м АЭ; R - корреляционная матрица (КМ) сигнала, принятого МЛ СФААР; det(⋅) - операция вычисления детерминанта матрицы; Λm- вектор АФР сигнала m-го ИИ на апертуре МЛ СФААР, далее для функции правдоподобия заданной формулой (7) вводится параметрическая модель КМ сигнала, принятого МЛ СФААР согласно формуле
Figure 00000022
где
Figure 00000023
- матрица размерности M×N, составленная из векторов
Figure 00000024
,
Figure 00000025
соответствующих фазовому распределению (ФР) сигнала m-го ИИ на АЭ;
Figure 00000026
- диагональная матрица размерности М×М элементы главной диагонали которой соответствуют значениям средней мощности сигналов ИИ - Pm,
Figure 00000027
;
Figure 00000028
;
Figure 00000029
- мощность внутреннего шума приемных устройств МЛ СФААР; I - единичная матрица размерности Ν×Ν; Μ - число ИИ; «+» - знак эрмитова сопряжения в которой матрицы Ζi,
Figure 00000030
являются параметрами модели (2), далее задается уравнение, определяющее на интервале адаптации МЛ СФААР динамику изменения параметров модели (8) согласно формуле
Figure 00000031
где
Figure 00000032
;
Figure 00000033
- вектор-столбец, m-й компонент которого тождественно равен единица, а остальные нулю;
Figure 00000034
- вектор дискретного белого гауссова шума (БГШ) с нулевым математическим ожиданием и КМ
Figure 00000035
;
Figure 00000036
- матричный коэффициент; k - k-й отсчет времени и далее, с использованием критерия минимума среднеквадратической ошибки, выполняется синтез уравнений функционирования блока цифрового СП, которые соответствуют системе уравнений, определяемой формулами
Figure 00000037
Figure 00000038
Figure 00000039
Figure 00000040
где
Figure 00000041
,
Figure 00000042
- текущая и экстраполированная оценки процесса
Figure 00000043
;
Figure 00000044
матричный коэффициент усиления;
Figure 00000045
- матрицы дисперсии ошибок фильтрации процесса
Figure 00000046
;
Figure 00000047
- матрица крутизн блока цифрового СП для вычисления значений процесса
Figure 00000048
;
Figure 00000049
- оценка мощности шума наблюдения, причем значение сигналов
Figure 00000050
,
Figure 00000051
в формуле (10) для k-го момента времени вычисляется согласно формулам
Figure 00000052
Figure 00000053
Figure 00000054
где
Figure 00000055
- оценка КМ входного сигнала МЛ СФААР по его принятой реализации; Sp(⋅) - оператор вычисления следа матрицы,, далее, используя значения параметров КМ
Figure 00000056
,
Figure 00000057
,
Figure 00000058
вычисляемые блоком цифрового СП согласно формулам (10)-(13), строится уравнение функционирования блока цифрового УУ согласно формуле
Figure 00000059
где
Figure 00000060
- эрмитова матрица с элементами,
Figure 00000061
, где θ - угол, отсчитываемый от нормали к МЛ СФААР, при этом синтезируемая МЛ СФААР состоит из блоков АЭ параллельно соединенных через блоки АЦП с блоком цифровой ДОС и блоком цифрового АП, включающего блок цифрового СП, вычисляющего АФР сигналов ИИ согласно формулам (10)-(13), значения которых передаются в блок цифрового УУ, вычисляющего ВВК МЛ СФААР согласно формуле (17), значение которого передается в блок цифровой ДОС для выполнения взвешенного суммирования сигналов, принятых блоками АЭ, выход блока цифровой ДОС является выходом МЛ СФААР.
Способ синтеза МЛ СФААР включает задание исходных данных по количеству АЭ N их характеристикам, положению в пространстве, количеству и характеристикам АЦП, типу и технической реализации блока цифровой ДОС и блока цифрового АП, образованного блоком цифрового СП и блоком цифрового УУ, вычисляющего значение ВВК МЛ СФААР, обеспечивающее максимальный КНД антенны при этом новым является то, что синтез блока цифрового СП выполняется как синтез цифрового устройства, раздельно вычисляющего значения АФР сигналов ИИ на апертуре МЛ СФААР при произвольной форме их фазового фронта, для этого задается модель входного сигнала МЛ СФААР, представляющая собой аддитивную смесь сигналов ИИ и пространственно-некоррелированного фонового (ПНФ) излучения, являющаяся нормально распределенным случайным процессом, далее, для функции правдоподобия реализации сигнала, принятого МЛ СФААР вводится параметрическая модель его КМ с параметрами, являющимися векторами фазового распределения сигналов ИИ на апертуре МЛ СФААР, их мощности, а также мощности ПНФ излучения (мощности внутренних шумов приемных каналов МЛ СФАААР), далее задаются уравнения, определяющие на интервале адаптации МЛ СФААР динамику изменения параметров модели КМ и далее, с использованием критерия минимума среднеквадратической ошибки, выполняется синтез уравнений функционирования блока цифрового СП, при этом цифровой блок УУ вычисляет значение ВВК МЛ СФААР, обеспечивающее максимальное значения КНД МЛ СФААР для текущей реализации принятого сигнала, а синтезируемая МЛ СФААР состоит из блоков АЭ параллельно соединенных через блоки АЦП с блоком цифровой ДОС и блоком цифрового АП, включающего блок цифрового СП, вычисляющего АФР сигналов ИИ, значения которых передаются в блок цифрового УУ, вычисляющего ВВК МЛ СФААР, значение которого передается в блок цифровой ДОС для выполнения взвешенного суммирования сигналов, принятых блоками АЭ, выход блока цифровой ДОС является выходом МЛ СФААР.
Заявляемый способ синтеза МЛ СФААР поясняется чертежами, представленными на фиг. 1, фиг. 2, фиг. 3, и результатами, представленными на фиг. 4, фиг. 5.
На фиг. 1 представлена электрическая структурная схема МЛ СФААР, синтезированная в соответствии с заявляемым способом.
На фиг. 2 представлена электрическая структурная схема АП синтезированной МЛ СФААР.
На фиг. 3 представлена электрическая структурная схема ДОС синтезированной МЛ СФААР.
На фиг. 4 представлен результат расчета ДН по мощности линейной МЛ СФААР с изотропными АЭ, синтезированной по заявленному способу.
На фиг. 5 представлены результаты расчета величины вероятности правильного обнаружения сигнала как функции дисперсии фазовых флуктуаций сигналов ИИ, принимаемых МЛ СФААР при различных значениях радиуса пространственной корреляции.
Цифрами на фиг. 1, фиг. 2, фиг. 3 обозначены:
1 - блок антенного элемента (АЭ);
2 - блок аналого-цифрового преобразования (АЦП);
3 - блок цифровой диаграммообразующей схемы (ДОС);
4 - блок цифрового адаптивного процессора (АП);
5 - блок цифрового сигнального процессора (СП);
6 - блок цифрового устройства управления (УУ);
7 - блок комплексного взвешивания сигналов (КВС);
8 - блок N-входового сумматора.
Синтез МЛ СФААР по заявленному способу состоит в том, что по имеющимся требованиям к КНД МЛ СФААР G, уровню бокового излучения Umin рассчитывается число N АЭ, шаг d между соседними АЭ и амплитудное распределение МЛ СФААР на ее АЭ - Ιn,
Figure 00000062
, где In - амплитуда тока n-го АЭ, согласно формуле:
Figure 00000063
где m - параметр, определяющий ширину главного луча ДН МЛ СФААР; xn - положение n-го АЭ относительно опорного, которому соответствует ДН F(I,X,u) формируемая цифровой ДОС МЛ СФААР согласно формуле:
Figure 00000064
(19)
где fn(X,u) - функция, определяющая форму ДН n-го АЭ; X - вектор заданных характеристик АЭ.
Далее выполняется синтез блока цифрового АП, когда его структура задана - полагается, что блок цифрового АП состоит из блока цифрового СП последовательно соединенного с блоком цифрового УУ, вычисляющего ВВК МЛ СФААР, обеспечивающего максимум КНД антенны для текущей реализации сигнала принятого МЛ СФААР. Новым в заявляемом способе является то, что синтез блока цифрового СП выполняется как синтез цифрового устройства, раздельно вычисляющего значения АФР сигналов каждого из ИИ на апертуре МЛ СФААР при произвольной форме их фазового фронта.
1. Синтез блока цифрового СП выполняется с использованием методов теории нелинейной фильтрации для неявно заданного уравнения наблюдения [8, с. 473-475], когда ИИ находятся в произвольной зоне дифракции относительно МЛ СФААР, их сигналы взаимно-некоррелированны и являются нормально распределенными случайными процессами. В процессе выполнения синтеза определяются уравнения обработки принятых реализаций входного сигнала в блоке цифрового СП, позволяющие раздельно вычислить значения АФР сигналов каждого из ИИ, при которых логарифм функции правдоподобия принятой реализации сигнала максимален. Для этого
а) задается модель входного сигнала МЛ СФААР, представляющая собой аддитивную смесь сигналов ИИ и пространственно-некоррелированного фонового (ПНФ) излучения
Figure 00000065
где
Figure 00000066
- вектор входного сигнала МЛ СФААР; уn - сигнал, принятый n-м АЭ;
Figure 00000067
- сигнал m -го ИИ, принятый n-м АЭ;
Figure 00000068
ηn - сигнал ПНФ излучения принятый n-м АЭ;
б) для модели (3) вводится функция правдоподобия принятой реализации входного сигнала МЛ СФААР
Figure 00000069
Figure 00000070
где
Figure 00000071
- вектор АФР сигнала m-го ИИ на апертуре МЛ СФААР; R - КМ сигнала, принятого МЛ СФААР; det(⋅) - операция вычисления детерминанта матрицы и записывается ее логарифм
Figure 00000072
где
Figure 00000073
- оценка КМ входного сигнала МЛ СФААР по его принятой реализации; Sp(⋅) - оператор вычисления следа матрицы; С - размерная константа;
в) для введенной функции правдоподобия (22) задается параметрическая модель КМ сигнала, принятого МЛ СФААР
Figure 00000074
где
Figure 00000075
- матрица размерности Μ×Ν, составленная из векторов
Figure 00000076
,
Figure 00000077
являющихся ФР сигналов, создаваемые каждым из ИИ на АЭ; Z2=diag(Pm) - диагональная матрица размерности Μ×Μ элементы главной диагонали которой соответствуют значениям средней мощности сигналов ИИ - Pm,
Figure 00000078
- мощность внутреннего шума приемных устройств МЛ СФААР; I - единичная матрица размерности Ν×Ν; Μ - число ИИ; «+» - знак эрмитова сопряжения.
Матрицы
Figure 00000079
являются параметрами модели (23);
г) задаются разностные стохастические уравнения, определяющие динамику изменения измеряемых параметров модели (23) на интервале адаптации МЛ СФААР
Figure 00000080
где
Figure 00000081
; Cm - вектор-столбец, m-й компонент которого тождественно равен единица, а остальные нулю;
Figure 00000082
- вектор дискретного БГШ с нулевым математическим ожиданием и КМ
Figure 00000083
;
Figure 00000084
- матричный коэффициент, определяющий динамику изменения вектора
Figure 00000085
;
д) далее, для текущей реализации входного сигнала МЛ СФААР Υ, математическая модель которого задана формулой (20), а логарифм функции правдоподобия - формулой (22), для структуры исполнительной части блока цифрового СП соответствующей разностным уравнениям, определяемым формулой (24), с использованием критерия минимума среднеквадратической ошибки выполняется синтез уравнений измерения параметров модели (23) - уравнений функционирования блока цифрового СП
Figure 00000086
Figure 00000087
Figure 00000088
Figure 00000089
где
Figure 00000090
,
Figure 00000091
- текущая и экстраполированная оценки процесса
Figure 00000092
;
Figure 00000093
- матричный коэффициент усиления;
Figure 00000094
- матрицы дисперсии ошибок фильтрации процесса
Figure 00000095
;
Figure 00000096
- матрица крутизн блока цифрового СП для вычисления значений процесса
Figure 00000097
;
Figure 00000098
- оценка мощности шума наблюдения, причем значение сигналов
Figure 00000099
,
Figure 00000100
в формуле (25) для k-го момента времени вычисляется согласно формулам
Figure 00000101
Figure 00000102
Figure 00000103
где
Figure 00000104
- оценка КМ входного сигнала МЛ СФААР по его принятой реализации; Sp(⋅) - оператор вычисления следа матрицы.
2. Синтез блока цифрового УУ выполняется как синтез устройства, вычисляющего значение ВВК МЛ СФААР, обеспечивающее максимальное значения КНД МЛ СФААР для текущей реализации принятого сигнала
Figure 00000105
где G - показатель эффективности МЛ СФААР, являющийся величиной КНД для текущей реализации принятого сигнала, а
Figure 00000106
- значение m-го компонента параметра модели (23) вычисленные блоком цифрового СП согласно формулам (25)-(28), при котором сигнал
Figure 00000107
,
Figure 00000108
минимален. Для этого:
а) задается показатель эффективности МЛ СФААР в виде отношения эрмитовых форм [9, стр. 148]:
Figure 00000109
где
Figure 00000110
- эрмитовая матрица размерности N×N, элементы bmn которой определяются выражением
Figure 00000111
; L - линейный размер МЛ СФААР, определяющий пучок эрмитовых форм R-GB , который является регулярным, так как эрмитовая форма I+BI положительно определена, что обусловлено ее физическим смыслом;
б) находится решение оптимизационной задачи (32), когда показатель эффективности МЛ СФААР определяется согласно формуле (33)
Figure 00000112
Решение (34) является уравнением функционирования блока цифрового УУ, вычисляющего значение ВВК МЛ СФААР, при котором значение КНД МЛ СФААР для текущей реализации принятого сигнала максимально.
МЛ СФААР, синтезированная по заявляемому способу, представлена на фиг. 1. Она содержит N блоков 1 АЭ, N блоков 2 АЦП, блок 3 цифровой ДОС, блок 4 цифрового АП. При этом выходы N блоков 1 АЭ, через N блоков 2 АЦП, параллельно соединены с соответствующими входами первой группы входов бока 3 цифровой ДОС и соответствующими входами группы входов блока 4 цифрового АП. Группа выходов блока 4 цифрового АП соединена со второй группой входов блока 3 цифровой ДОС. Выход блока 3 цифровой ДОС является выходом МЛ СФААР.
Блок 4 цифрового АЛ представлен на фиг. 2. Он содержит блок 5 цифрового СП последовательно соединенного с блоком 6 цифрового УУ, вычисляющий ВВК МЛ СФААР. Группа входов блока 5 цифрового СП является группой входов блока 4 цифрового АП. Группа выходов блока 6 цифрового УУ является группой выходов блока 4 цифрового АП.
Блок 3 цифровой ДОС представлен на фиг. 3. Он содержит N блоков 7 комплексного взвешивания сигналов (КВС) и блок 8 N-входового сумматора. Первые входы блоков 7 КВС образуют первую группу входов блока 3 цифровой ДОС. Вторые входы блоков 7 КВС образуют вторую группу входов блока 3 цифровой ДОС. Выход каждого из N блоков 7 КВС соединен с соответствующим входом блока 8 N-входового сумматора. Выход блока 8 N-входового сумматора является выходом блока 3 цифровой ДОС.
Блок 1 антенного элемента (АЭ) МЛ СФААР предназначен для приема (регистрации) сигналов ИИ, может быть выполнен, например, в виде печатной антенны [10, с. 268].
Блок 2 аналого-цифрового преобразования (АЦП) предназначен для преобразование принятого сигнала ИИ в цифровую форму, может быть выполнен, например, на базе субмодуля ADM214×l0M [11].
Блок 3 цифровой диаграммообразующей схемы предназначен для формирования диаграммы направленности МЛ СФААР в соответствии с формулой
Figure 00000113
,
где x0 - цифровой комплексный сигнал на выходе блока ДОС;
Figure 00000114
,
Figure 00000115
- пространственные отсчеты цифрового комплексного сигнала, поступающие на первую группу входов блока ДОС;
Figure 00000116
,
Figure 00000117
- пространственные отсчеты цифрового комплексного сигнала, поступающие на вторую группу входов блока ДОС, может быть реализован в цифровом процессоре обработки сигналов, например, микросхеме TMS320C6x [12, с. 34].
Блок 4 цифрового АП предназначен для обработки сигналов, принимаемых МЛ СФААР, может быть реализован в цифровом процессоре обработки сигналов, например, микросхеме TMS320C6x [12, с. 34].
Блок 5 цифрового СП предназначен для вычисления компонент
Figure 00000118
,
Figure 00000119
параметров Zi,
Figure 00000120
модели КМ принимаемого сигнала на интервале адаптации МЛ СФААР, может быть реализована на базе цифрового процессора обработки сигналов, например, микросхеме TMS320C6x [12, с. 34].
Блок 6 цифрового УУ предназначен для вычисления ВВК МЛ СФААР, может быть реализован в цифровом процессоре обработки сигналов, например, микросхеме TMS320C6x [12, с. 34].
Блок 7 комплексного взвешивания сигналов осуществляет умножение цифровых комплексных сигналов, поступающих на его соответствующие входы в соответствии с правилом
Figure 00000121
,
где x0 - цифровой комплексный сигнал на выходе блока КВС; х1 - сигнал на первом входе блока КВС; х2 - сигнал на втором входе блока КВС; "* " - знак комплексного сопряжения, может быть реализован в цифровом процессоре обработки сигналов, например, микросхеме TMS320C6x [12, с. 34].
Блок 8 N-входовый сумматор, осуществляет суммирования цифровых комплексных сигналов, поступающих на его входы в соответствии с правилом
Figure 00000122
,
где x0 - цифровой комплексный сигнал на выходе блока N-входового сумматора; xn,
Figure 00000123
- пространственные отсчеты поступающего цифрового комплексного сигнала, может быть реализован в цифровом процессоре обработки сигналов, например, микросхеме TMS320C6x [12, с. 34].
Функционирование МЛ СФААР, синтезированной по заявленному способу, поясняется чертежами, представленными на фиг. 1, фиг. 2, фиг. З.
Сигналы Μ ИИ принимаются каждым из N блоков 1 антенных элементов МЛ СФААР, оцифровываются в соответствующих блоках 2 АЦП и передаются на группу входов блока 5 цифрового СП, образующие группу входов блока 4 цифрового АП. В блоке 5 цифрового СП раздельно вычисляются значения компонент
Figure 00000124
,
Figure 00000125
параметров Zi,
Figure 00000126
модели (23). Вычисленные значения
Figure 00000127
,
Figure 00000128
,
Figure 00000129
передаются в блок 6 цифрового УУ который, в соответствии с формулой (34), вычисляет значение ВВК МЛ СФААР
Figure 00000130
. Вычисленное значение ВВК МЛ СФААР I0 передается на вторую группу входов блока 3 цифровой ДОС. В блоке 3 цифровой ДОС значения
Figure 00000131
,
Figure 00000132
подаются на второй вход соответствующих блоков 7 КВС. Одновременно с этим на первый вход каждого из N блоков 7 КВС поступают оцифрованные в соответствующих блоках 2 АЦП значения входного сигнала, принятого соответствующими блоками 1 АЭ. Взвешенные ВВК в N блоках 7 КВС сигналы, принятые N блоками 1 АЭ и оцифрованные в N блоках 2 АЦП, поступают на соответствующие входы блока 8 N-входового сумматора. В результате на выходе блока 8 N-входового сумматора формируется диаграмма направленности F(θ) МЛ СФААР, имеющая Μ главных лепестков (лучей) с относительным уровнем
Figure 00000133
,
Figure 00000134
.
На фиг. 4 представлены результаты расчета диаграммы излучения МЛ СФААР синтезируемой согласно заявляемому способу. Расчет выполнялся при ρ=0,33λ/3, α=0,27 рад2, когда ВВК СФААР вычислялся в соответствии с формулой (34). Линией 1 показан результат расчета однолучевой ДН, когда ИИ располагался под углом θ3=40° относительно нормали к АР. Линией 2 показан результат расчета двухлучевой ДН, когда ИИ располагались под углами θ1=-30°, θ2=0°.
На фиг. 5 представлены результаты расчета значения вероятности правильного обнаружения сигнала D как функции дисперсии ФФ сигналов ИИ, принимаемых МЛ СФААР
Figure 00000135
при различных значениях радиуса пространственной корреляции ρ. Линией 1 представлены значения D для МЛ СФААР, синтезированной согласно заявляемому способу, линиями 2, 3 - для ΑΑΡ синтезированной согласно способа-прототипа. Результаты, представленные линиями 1, 2 получены при ρ=0,33λ, линией 3 - при ρ=0,25λ. Из представленных результатов следует, что применение заявленного способа позволяет синтезировать МЛ СФААР, осуществляющую прием сигналов ИИ в каналах связи, организованных потребителем, с примерно одинаковым значением показателя «вероятность правильного обнаружения» D при различных значениях дисперсии ФФ α по раскрыву МЛ СФААР. Это свидетельствует о том, что КНД G синтезированной МЛ СФААР в отличии от ΑΑΡ, синтезированной согласно способа-прототипа, сохраняет примерно одинаковый уровень при различных значениях параметров α, ρ. Так при значениях α=0,2 рад2, ρ=0,33λ МЛ СФААР синтезированная согласно заявляемому способу обеспечивает прирост эффективности по показателю «вероятность правильного обнаружения» на ~9,2% по сравнению с антенной синтезированной согласно способу-прототипу.
Таким образом, выполнение синтеза СП как синтез цифрового устройства, раздельно вычисляющего значения АФР сигналов ИИ на апертуре МЛ СФААР при произвольной форме их фазового фронта, используя для этого параметрическую модель КМ принимаемого сигнала, позволяет синтезировать МЛ СФААР, осуществляющую прием сигналов ИИ с примерно одинаковым значением показателя эффективности D при наличии АФФ в принимаемом сигнала на ее апертуре - т.е. достичь технического результата. В свою очередь синтез МЛ СФААР сохраняющей примерно одинаковый уровень КНД в каналах связи организованных потребителями при различных значениях α, ρ позволяет расширить область практического применения заявленного способа синтеза МЛ СФААР, т.е. решить поставленную задачу.
Литература
1. Каценеленбаум Б.З., Коршунова Е.Н., Пангонис Л.И., Сивов А.Н. А.с. 810027 СССР, М.Кл.3 Η01Q 11/00. Способ синтеза антенны по заданной диаграмме излучения /(СССР). №2741832/18-09; Заявл. 23.03.79; Опубл. 07.02.82. Бюл. №5.
2. Монзинго Р.А. Адаптивные антенные решетки. Введение в теорию /Р.А. Монзинго, Т.У. Миллер. - М.: Радио и связь, 1986. - 448 с.
3. Рытинский М.В. Адаптация и сверхразрешение в антенных решетках /М.В. Рытинский - М.: Радио и связь, 2003. - 200 с.
4. Корн Г. Справочник по математике для научных работников и инженеров /Г. Корн, Т. Корн. Пер. с англ. под ред. И.Г. Арамановича. - М.: Наука, 1973.- 831 с.
5. Кремер И.Я Пространственно-временная обработка сигналов /И.Я Кремер, А.И Кремер, В.М. Петров и др., под ред. И.Я. Кремера. - М.: Радио и связь, 1984. - 224 с.
6. Шифрин Я.С. Вопросы статистической теории антенн /Я.С.Шифрин. - М.: Сов. радио, 1970. - 384 с.
7. Радзиевский В.Г., Сирота А.А. Информационное обеспечение радиоэлектронных систем в условиях конфликта. - М.: ИПРЖР, 2001.
8. Тихонов В.И. Статистический анализ и синтез радиотехнических устройств и систем /В.И. Тихонов, В.Н. Харисов. - М.: Радио и связь, 1991. -608 с.
9. Зелкин Е.Г. Методы синтеза антенн /Е.Г. Зелкин, В.Г. Соколов. - М.: Сов. радио, 1980. - 296 с.
10. Устройства СВЧ и антенны. Проектирование фазированных антенных решеток /под ред. Д.И. Воскресенского. М.: Радиотехника. - 2003. - 631 с.
11. www.insys.ru, info(@),insys.ru, ЗАО "Инструментальные системы".
12. Остапенко А.Г. Цифровые процессоры обработки сигналов: Справочник. /А.Г. Остапенко, СИ. и др., - М.: Радио и связь, 264 с. - 1994.

Claims (17)

  1. Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки (МЛ СФААР), включающий задание исходных данных по количеству антенных элементов (АЭ) N, их характеристикам X, положению в пространстве, количеству и характеристикам аналого-цифровых преобразователей (АЦП), типу и технической реализации блока цифровой диаграммообразующей схемы (ДОС) и блока цифрового адаптивного процессора (АП), образованного блоком цифрового сигнального процессора (СП) и блоком цифрового устройства управления (УУ), вычисляющего значение вектора весовых коэффициентов (ВВК) МЛ СФААР
    Figure 00000136
    , где
    Figure 00000137
    - значение весового коэффициента n-го АЭ, обеспечивающее постоянное значение ее среднего коэффициента направленного действия (КНД) в направлении контролируемых ИИ при изменении параметров сигнально-помеховой обстановки (СПО),отличающийся тем, что синтез блока цифрового СП выполняется как синтез цифрового устройства, раздельно вычисляющего значения амплитудно-фазовых распределений (АФР) сигналов источников излучений (ИИ) на апертуре МЛ СФААР при произвольной форме их фазового фронта, для этого задается функция правдоподобия реализации сигнала, принятого МЛ СФААР, согласно формуле
    Figure 00000138
  2. где
    Figure 00000139
    - вектор реализации сигнала, принятого МЛ СФААР; уn - сигнал, принятый n-м АЭ; R - корреляционная матрица (КМ) сигнала, принятого МЛ СФААР; det(⋅) - операция вычисления детерминанта матрицы; Λm - вектор АФР сигнала m-го ИИ на апертуре МЛ СФААР, далее для функции правдоподобия, заданной формулой (1), вводится параметрическая модель КМ сигнала, принятого МЛ СФААР согласно формуле
  3. Figure 00000140
  4. где
    Figure 00000141
    - матрица размерности M×N, составленная из векторов
    Figure 00000142
    ,
    Figure 00000143
    , соответствующих фазовому распределению (ФР) сигнала m-го ИИ на АЭ; Z2=diag(Pm) - диагональная матрица размерности М×М, элементы главной диагонали которой соответствуют значениям средней мощности сигналов ИИ - Рm,
    Figure 00000143
    ;
    Figure 00000144
    ;
    Figure 00000145
    - мощность внутреннего шума приемных устройств МЛ СФААР; I - единичная матрица размерности N×N; М - число ИИ; «+» - знак эрмитова сопряжения, в которой матрицы Zi,
    Figure 00000146
    , являются параметрами модели (2), далее задается уравнение, определяющее на интервале адаптации МЛ СФААР динамику изменения параметров модели (2) согласно формуле
  5. Figure 00000147
  6. где
    Figure 00000148
    ;
    Figure 00000149
    - вектор-столбец, m-й компонент которого тождественно равен единице, а остальные нулю;
    Figure 00000150
    - вектор дискретного белого гауссова шума (БГШ) с нулевым математическим ожиданием и КМ
    Figure 00000151
    ;
    Figure 00000152
    - матричный коэффициент; k-k-й отсчет времени, далее, с использованием критерия минимума среднеквадратической ошибки, выполняется синтез уравнений функционирования блока цифрового СП, которые соответствуют системе уравнений, определяемой формулами
  7. Figure 00000153
  8. Figure 00000154
  9. Figure 00000155
  10. Figure 00000156
  11. где
    Figure 00000157
    ,.
    Figure 00000158
    - текущая и экстраполированная оценки процесса
    Figure 00000159
    ;
    Figure 00000160
    - матричный коэффициент усиления;
    Figure 00000161
    - матрицы дисперсии ошибок фильтрации процесса
    Figure 00000162
    ;
    Figure 00000163
    - матрица крутизн блока цифрового СП для вычисления значений процесса
    Figure 00000162
    ;
    Figure 00000164
    - оценка мощности шума наблюдения, причем значение сигналов
    Figure 00000165
    ,
    Figure 00000166
    , в формуле (4) для k-го момента времени вычисляется согласно формулам
  12. Figure 00000167
  13. Figure 00000168
  14. Figure 00000169
  15. где
    Figure 00000170
    - оценка КМ входного сигнала МЛ СФААР по его принятой реализации; Sp(⋅) - оператор вычисления следа матрицы, далее, используя значения параметров КМ
    Figure 00000162
    ,
    Figure 00000171
    ,
    Figure 00000172
    , вычисляемые блоком цифрового СП согласно формулам (4)-(7), строится уравнение функционирования блока цифрового УУ согласно формуле
  16. Figure 00000173
  17. где
    Figure 00000174
    - эрмитовая матрица с элементами
    Figure 00000175
    , где θ - угол, отсчитываемый от нормали к МЛ СФААР, при этом синтезируемая МЛ СФААР состоит из блоков АЭ, параллельно соединенных через блоки АЦП с блоком цифровой ДОС и блоком цифрового АП, включающего блок цифрового СП, вычисляющего АФР сигналов ИИ согласно формулам (4)-(7), значения которых передаются в блок цифрового УУ, вычисляющего ВВК МЛ СФААР согласно формуле (11), значение которого передается в блок цифровой ДОС для выполнения взвешенного суммирования сигналов, принятых блоками АЭ, выход блока цифровой ДОС является выходом МЛ СФААР.
RU2017133341A 2017-09-26 2017-09-26 Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала RU2659608C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017133341A RU2659608C1 (ru) 2017-09-26 2017-09-26 Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017133341A RU2659608C1 (ru) 2017-09-26 2017-09-26 Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала

Publications (1)

Publication Number Publication Date
RU2659608C1 true RU2659608C1 (ru) 2018-07-03

Family

ID=62815845

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017133341A RU2659608C1 (ru) 2017-09-26 2017-09-26 Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала

Country Status (1)

Country Link
RU (1) RU2659608C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744030C1 (ru) * 2020-09-02 2021-03-02 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Комбинированная адаптивная антенная решетка
RU2747377C1 (ru) * 2020-10-15 2021-05-04 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ компенсации помеховых сигналов в комбинированной адаптированной антенной решетке

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072525C1 (ru) * 1993-09-29 1997-01-27 Нижегородский государственный технический университет Способ формирования диаграммы направленности
RU2232485C2 (ru) * 2001-11-27 2004-07-10 Корпорация "Самсунг Электроникс" Способ формирования диаграммы направленности антенны и устройство для его реализации
RU2237379C2 (ru) * 2002-02-08 2004-09-27 Самсунг Электроникс Способ формирования диаграммы направленности адаптивной антенной решетки базовой станции и устройство для его реализации (варианты)
RU2495447C2 (ru) * 2011-11-15 2013-10-10 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ формирования диаграммы направленности

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2072525C1 (ru) * 1993-09-29 1997-01-27 Нижегородский государственный технический университет Способ формирования диаграммы направленности
RU2232485C2 (ru) * 2001-11-27 2004-07-10 Корпорация "Самсунг Электроникс" Способ формирования диаграммы направленности антенны и устройство для его реализации
RU2237379C2 (ru) * 2002-02-08 2004-09-27 Самсунг Электроникс Способ формирования диаграммы направленности адаптивной антенной решетки базовой станции и устройство для его реализации (варианты)
RU2495447C2 (ru) * 2011-11-15 2013-10-10 Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") Способ формирования диаграммы направленности

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2744030C1 (ru) * 2020-09-02 2021-03-02 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Комбинированная адаптивная антенная решетка
RU2747377C1 (ru) * 2020-10-15 2021-05-04 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ компенсации помеховых сигналов в комбинированной адаптированной антенной решетке

Similar Documents

Publication Publication Date Title
JP4722132B2 (ja) 到来波数推定方法、到来波数推定装置及び無線装置
US10637520B2 (en) Devices and methods using the hermetic transform
Reine et al. Multidimensional high-resolution parameter estimation with applications to channel sounding
JP4339801B2 (ja) 固有値分解を利用しない信号到来方向推定手法および受信ビーム形成装置
Bucris et al. Bayesian focusing for coherent wideband beamforming
KR20110087279A (ko) 오티에이 시험
Zhang et al. High resolution 3-D angle of arrival determination for indoor UWB multipath propagation
Shirvani-Moghaddam et al. A novel ULA-based geometry for improving AOA estimation
RU2659608C1 (ru) Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели корреляционной матрицы принимаемого сигнала
JP4545150B2 (ja) 電波到来方向の適応推定追尾方法および装置
US9444558B1 (en) Synthetic robust adaptive beamforming
Reza et al. Robust concentric circular antenna array with variable loading technique in the presence of look direction disparity
Jiang et al. 3D channel model extensions and characteristics study for future wireless systems
Hashimoto et al. Adaptive sidelobe cancellation technique for atmospheric radars containing arrays with nonuniform gain
Nikolic et al. Estimation of direction of arrival using multipath on array platforms
JP4072149B2 (ja) 分散開口アンテナ装置
RU2577827C1 (ru) Многолучевая самофокусирующаяся антенная решетка
RU2614030C1 (ru) Способ формирования многолучевой диаграммы направленности самофокусирующейся адаптивной антенной решетки
RU158917U1 (ru) Многолучевая самофокусирующаяся антенна
Noordin et al. Single-port beamforming algorithm for 3-faceted phased array antenna
Kirschner et al. MIMO radar setups by nesting braced minimum redundancy arrays
RU2650096C1 (ru) Способ формирования диаграммы направленности многолучевой адаптивной антенной решетки с использованием параметрической модели спектра пространственных частот входного сигнала
Ioannides et al. Mutual coupling in adaptive circular arrays
RU2650095C1 (ru) Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели сигналов источников излучения
RU2659613C1 (ru) Способ синтеза многолучевой самофокусирующейся адаптивной антенной решетки с использованием параметрической модели спектра пространственных частот сигналов источников излучения

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190927