RU2658941C2 - Suspended acoustical ceiling - Google Patents

Suspended acoustical ceiling Download PDF

Info

Publication number
RU2658941C2
RU2658941C2 RU2015134990A RU2015134990A RU2658941C2 RU 2658941 C2 RU2658941 C2 RU 2658941C2 RU 2015134990 A RU2015134990 A RU 2015134990A RU 2015134990 A RU2015134990 A RU 2015134990A RU 2658941 C2 RU2658941 C2 RU 2658941C2
Authority
RU
Russia
Prior art keywords
sound
frame
perforated
absorbing
perforation
Prior art date
Application number
RU2015134990A
Other languages
Russian (ru)
Other versions
RU2015134990A3 (en
RU2015134990A (en
Inventor
Анна Михайловна Стареева
Original Assignee
Анна Михайловна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анна Михайловна Стареева filed Critical Анна Михайловна Стареева
Priority to RU2015134990A priority Critical patent/RU2658941C2/en
Publication of RU2015134990A publication Critical patent/RU2015134990A/en
Publication of RU2015134990A3 publication Critical patent/RU2015134990A3/ru
Application granted granted Critical
Publication of RU2658941C2 publication Critical patent/RU2658941C2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to the industrial acoustics, particularly, to the broadband noise suppression, and can be used in all branches of the national economy in noise suppression of production equipment by sound absorption method. Acoustic suspended ceiling consists of rigid frame suspended to the production building ceiling with located inside the frame sound-absorbing structure made of sound-absorbing material wrapped in the acoustically transparent material. To the frame perforated sheet is attached. Frame is made in the form of rectangular parallelepiped with the sides dimensions in the plan view a×b, which ratio lies in the optimal range of values a:b=1:1…2:1, as well as the optimal sizes ratios c:d=0.1…0.5. Frame elements are attached to each other by means of brackets rigidly connected to rod, which are connected to suspensions. Perforated sheet has the following perforation parameters: perforation diameter is – 3…7 mm, perforation percentage is 10 %…15 %. In the frame lighting fixtures are installed. Sound-absorbing structure is made of at least one profiled porous sheet of sound-absorbing material bounded from above and from below by the perforated sheets, and in the cross-section the porous sheet profile can be triangular, rectangular, trapezoidal, sinusoidal. At that, the sound-absorbing structure is made in the form of rigid and perforated walls, between which two layers are arranged: adjoining the rigid wall sound-reflecting layer, and adjoining the perforated wall sound-absorbing layer. Sound-reflecting material layer is made of complex profile, consisting of uniformly distributed hollow tetrahedrons allowing to reflect the incident in all directions sound waves. By the shape, holes in perforated wall can be made in form of circular, triangular, square, rectangular or rhomboid profile holes, at that, in case of non-circular holes, as the conditional diameter the inscribed in the polygon circle maximum diameter should be considered. As the sound-absorbing material, basalt-based “Rockwool” type mineral wool is used, or "URSA" type mineral wool, or basalt wool of P-75 type, or glass wool with glass felt lining, or foamed polymer, for example, polyethylene or polypropylene, at that, the fibrous sound absorbers surface is treated with special air permeable porous paints, for example, “Acutex T”, or coated with air-permeable fabrics or nonwoven materials, for example, “Lutrasil”.
EFFECT: increase in the sound attenuation efficiency by increase in the sound absorption surface and the frequency range extension.
1 cl, 4 dwg

Description

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.The invention relates to industrial acoustics, in particular to broadband sound attenuation, and can be used in all sectors of the economy for sound attenuation of production equipment by sound absorption.

Наиболее близким техническим решением по технической сущности и достигаемому результату является потолок акустический подвесной, состоящий из жесткого каркаса, подвешиваемого к потолку производственного здания с расположенной внутри каркаса звукопоглощающей конструкцией из звукопоглощающего материала, обернутого акустически прозрачным материалом, причем к каркасу прикреплен перфорированный лист, при этом элементы каркаса скреплены между собой посредством скоб, жестко связанных со штангой, к которой присоединены подвесы, (Заявка №2005105373, кл. Е04В 1/84, 2006 г. - прототип).The closest technical solution in terms of technical nature and the achieved result is an acoustic suspended ceiling, consisting of a rigid frame suspended from the ceiling of a production building with a sound-absorbing structure made of sound-absorbing material inside the frame, wrapped in an acoustically transparent material, with a perforated sheet attached to the frame, while the elements the frame is fastened to each other by means of brackets rigidly connected to the bar to which the suspensions are attached (Application 2005105373, cl E04V 1/84, 2006 -. A prototype).

Недостатком известного технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения.A disadvantage of the known technical solution adopted as a prototype is the relatively low noise suppression efficiency.

Технически достижимый результат изобретения - повышение эффективности шумоглушения за счет увеличения поверхности звукопоглощения и расширения частотного диапазона.The technically achievable result of the invention is to increase the efficiency of sound attenuation by increasing the sound absorption surface and expanding the frequency range.

Это достигается тем, что в потолке акустическом подвесном, состоящим из жесткого каркаса, подвешиваемого к потолку производственного здания с расположенной внутри каркаса звукопоглощающей конструкцией из звукопоглощающего материала, обернутого акустически прозрачным материалом, причем к каркасу прикреплен перфорированный лист, а каркас выполнен по форме в виде прямоугольного параллелепипеда с размерами сторон в плане a×b, отношение которых лежит в оптимальном интервале величин a:b=1:1…2:1, а также оптимальные соотношения размеров c:d=0,1…0,5; где d - расстояние от точки подвеса каркаса до любой из его сторон; с - толщина слоя звукопоглощающего материала, при этом элементы каркаса скреплены между собой посредством скоб, жестко связанных со штангой, к которой присоединены подвесы, а перфорированный лист имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, причем в каркасе установлены светильники, а звукопоглощающая конструкция выполнена, по крайней мере, из одного профилированного пористого листа из звукопоглощающего материала, ограниченного сверху и снизу перфорированными листами, а профиль пористого листа в сечении может быть треугольным, прямоугольным, трапециидальным, синусоидальным.This is achieved by the fact that in the acoustic ceiling suspended, consisting of a rigid frame, suspended from the ceiling of a production building with a sound-absorbing structure made of sound-absorbing material inside the frame, wrapped in an acoustically transparent material, with a perforated sheet attached to the frame, and the frame made in the form of a rectangular parallelepiped with side dimensions in the a × b plan, the ratio of which lies in the optimal range of values a: b = 1: 1 ... 2: 1, as well as the optimal aspect ratios c: d = 0.1 ... 0 ,5; where d is the distance from the suspension point of the frame to any of its sides; c is the thickness of the layer of sound-absorbing material, while the frame elements are fastened together by brackets rigidly connected to the bar, to which the suspensions are attached, and the perforated sheet has the following perforation parameters: perforation diameter - 3 ... 7 mm, perforation percentage 10% ... 15% moreover, fixtures are installed in the frame, and the sound-absorbing structure is made of at least one profiled porous sheet of sound-absorbing material, bounded above and below by perforated sheets, and the profile of the porous hundred in the section can be triangular, rectangular, trapezoidal, sinusoidal.

На фиг. 1 представлен общий вид предполагаемого изобретения, на фиг. 2, фиг. 3, фиг. 4 - схемы звукопоглощающей конструкции.In FIG. 1 presents a General view of the alleged invention, FIG. 2, FIG. 3, FIG. 4 is a diagram of a sound-absorbing structure.

Потолок акустический подвесной состоит из жесткого каркаса 1, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане a×b, отношение которых лежит в оптимальном интервале величин a:b=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 4, закрепленных на штанге 2, жестко связанной посредством скоб 3 с каркасом 1. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов (на чертеже не показаны). К каркасу прикреплен перфорированный лист 7, на котором через слой акустического прозрачного материала 6 расположен слой звукопоглощающего материала 5, при этом в каркасе установлены светильники 9. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: d - от точки подвеса каркаса до любой из его сторон и с - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: c:d=0,1…0,5. Перфорированный лист 7 имеет следующие параметры перфорации: диаметр отверстий 8 - 3…7 мм, процент перфорации 10%…15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля (на чертеже показаны круглые отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The acoustic suspended ceiling consists of a rigid frame 1 made in the form of a rectangular parallelepiped with side dimensions in the a × b plan, the ratio of which lies in the optimal range of values a: b = 1: 1 ... 2: 1, suspended from the ceiling of the industrial building with using hangers 4, mounted on a rod 2, rigidly connected by brackets 3 to the frame 1. The frame is fixed to the ceiling using dowels (not shown). A perforated sheet 7 is attached to the frame, on which a layer of sound-absorbing material 5 is located through the layer of transparent transparent material 6, and fixtures 9 are installed in the frame. When installing an acoustic ceiling, the optimum size ratios must be observed: d - from the point of suspension of the frame to any of its sides and c is the thickness of the layer of sound-absorbing material, and the ratio of these sizes should be in the optimal range of values: c: d = 0.1 ... 0.5. The perforated sheet 7 has the following perforation parameters: the diameter of the holes is 8 - 3 ... 7 mm, the percentage of perforation is 10% ... 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile (the drawing shows round holes). In the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter.

Звукопоглощающая конструкция выполнена, по крайней мере, из одного профилированного пористого листа 11 из звукопоглощающего материала, ограниченного сверху и снизу перфорированными листами соответственно 10 и 7, а профиль пористого листа в сечении может быть треугольным, прямоугольным, трапециидальным, синусоидальным.The sound-absorbing structure is made of at least one profiled porous sheet 11 of sound-absorbing material bounded above and below by perforated sheets 10 and 7, respectively, and the profile of the porous sheet in cross section may be triangular, rectangular, trapezoidal, sinusoidal.

Пористый лист 11 может быть выполнен на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, или из мягкого вспененного пористого шумопоглощающего материала, например вспененного пенополиуретана или пенополиэтилена, или из жесткого пористого шумопоглощающего материала, например пеноалюминия.The porous sheet 11 can be made on the basis of aluminum-containing alloys, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, tensile strength bending within 10 ... 20 MPa, or from a soft foamed porous sound-absorbing material, for example, foamed polyurethane foam or polyethylene foam, or from a rigid porous sound-absorbing material, such as foam aluminum.

Потолок акустический подвесной работает следующим образом.Acoustic suspended ceiling works as follows.

Подвешивание подвесного акустического потолка осуществляют на подвесках 4, которые крепятся к потолку с помощью дюбель-винтов, а другим концом закреплены на каркасе 1 через штангу 2 и скобы 3.Suspension of a suspended acoustic ceiling is carried out on pendants 4, which are attached to the ceiling using dowels, and the other end is fixed to the frame 1 through the rod 2 and staples 3.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Sound waves propagating in the production room interact with cavities filled with sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases, and, as a result, the sound absorption coefficient increases.

Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки характеристик на требуемый частотный диапазон шумоподавления за счет изменения длины подвеса 4 и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.An advantage of the invention is its versatility of application for various production facilities having a wide variety of noise characteristics. In this case, it should be noted the relative ease of tuning the characteristics to the required frequency range of noise reduction due to a change in the length of the suspension 4 and its economically feasible effectiveness (meaning reducing noise to sanitary standards). In addition, the implementation of the sound absorber of non-combustible materials makes the design fireproof.

Возможен вариант (фиг. 4), когда звукопоглощающая конструкция потолка выполнена в виде жесткой 12 и перфорированной 15 стенок, между которыми расположены два слоя: звукоотражающий слой 13, прилегающий к жесткой стенке 12, и звукопоглощающий слой 14, прилегающий к перфорированной стенке 15. При этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10% ÷ 15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности. В качестве звукопоглощающего материала слоя 14 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, «Acutex Т») или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».A variant is possible (Fig. 4) when the sound-absorbing structure of the ceiling is made in the form of a rigid 12 and perforated 15 walls, between which two layers are located: a sound-reflecting layer 13 adjacent to the rigid wall 12, and a sound-absorbing layer 14 adjacent to the perforated wall 15. When this layer of sound-reflecting material is made of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, and the perforated wall has the following perforation parameters tion: the diameter of the holes is 3 ÷ 7 mm, the perforation percentage is 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the conditional diameter should be consider the maximum diameter of the circle inscribed in the polygon. As the sound-absorbing material of layer 14, rockwool type mineral wool or URSA type mineral wool or P-75 type basalt wool or glass wool lined with glass wool or foamed polymer, such as polyethylene or polypropylene can be used. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В качестве звукопоглощающего материала может быть использован пористый шумопоглощающий материала, например пеноалюминий или металлокерамика или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например, типа Acutex Т или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As a sound-absorbing material, a porous sound-absorbing material can be used, for example, foam aluminum or cermets or a rock shell with a porosity degree in the optimal range: 30–45%, or metal foam, or a material in the form of pressed crumbs from solid vibration-damping materials, for example, an elastomer , polyurethane, or plastic compound such as "Agate", "Anti-Vibrate", "Shvim", moreover, the size of the fractions of the crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and porous can also be used mineral piece materials, such as pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or coated with breathable fabrics or non-woven materials, for example Lutrasil.

Перфорированная стенка 15 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).The perforated wall 15 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material deposited on their surface on one or two sides, while the ratio between the thicknesses of the material and the vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Перфорированная стенка 15 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».The perforated wall 15 can be made of solid, decorative vibration damping materials, for example, agate, antivibrate, and shvim plastic compounds, the inner surface of the perforated surface facing the sound-absorbing structure, lined with an acoustically transparent material, for example, fiberglass type EZ- 100 or with a “see-through” polymer, or with non-woven materials, for example, “lutrasil”.

Перфорированная стенка 15 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.The perforated wall 15 can be made of stainless steel or a galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating such as Pural 50 μm thick or Polyester 25 μm thick, or an aluminum sheet 1.0 mm thick and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

В качестве материала звукоотражающего слоя 13 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 Мпа, например пеноалюминия.As the material of the sound-reflecting layer 13, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foam aluminum.

В качестве материала звукоотражающего слоя 13 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м2.As the material of the sound-reflecting layer 13, sound-insulating boards based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 2 can be used.

Звукопоглощающий элемент работает следующим образом.Sound-absorbing element operates as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 15 попадает на слой 14 из мягкого звукопоглощающего материала, где происходит ее поглощение, а затем на слой 13 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, снова направляя их на звукопоглощающий материал для вторичного поглощения и рассеяния звуковой энергии. В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 15 enters the layer 14 of soft sound-absorbing material, where it is absorbed, and then on the layer 13 of the sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, again directing them to sound-absorbing material for secondary absorption and dispersion of sound energy. In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Claims (2)

1. Потолок акустический подвесной, состоящий из жесткого каркаса, подвешиваемого к потолку производственного здания с расположенной внутри каркаса звукопоглощающей конструкцией из звукопоглощающего материала, обернутого акустически прозрачным материалом, причем к каркасу прикреплен перфорированный лист, а каркас выполнен по форме в виде прямоугольного параллелепипеда с размерами сторон в плане a×b, отношение которых лежит в оптимальном интервале величин а:b=1:1…2:1, а также оптимальные соотношения размеров c:d=0,1…0,5; где d - расстояние от точки подвеса каркаса до любой из его сторон; с - толщина слоя звукопоглощающего материала, при этом элементы каркаса скреплены между собой посредством скоб, жестко связанных со штангой, к которой присоединены подвесы, а перфорированный лист имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, причем в каркасе установлены светильники, звукопоглощающая конструкция выполнена, по крайней мере, из одного профилированного пористого листа из звукопоглощающего материала, ограниченного сверху и снизу перфорированными листами, а профиль пористого листа в сечении может быть треугольным, прямоугольным, трапецеидальным, синусоидальным, отличающийся тем, что звукопоглощающая конструкция выполнена в виде жесткой и перфорированной стенок, между которыми расположены два слоя: звукоотражающий слой, прилегающий к жесткой стенке, и звукопоглощающий слой, прилегающий к перфорированной стенке, при этом слой звукоотражающего материала выполнен сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например «Acutex Т», или покрывается воздухопроницаемыми тканями или неткаными материалами, например «Лутрасилом».1. Acoustic suspended ceiling, consisting of a rigid frame suspended from the ceiling of an industrial building with a sound-absorbing structure inside the frame made of sound-absorbing material wrapped in an acoustically transparent material, with a perforated sheet attached to the frame and the frame made in the form of a rectangular parallelepiped with side dimensions in terms of a × b, the ratio of which lies in the optimal range of values a: b = 1: 1 ... 2: 1, as well as the optimal size ratios c: d = 0.1 ... 0.5; where d is the distance from the suspension point of the frame to any of its sides; c is the thickness of the layer of sound-absorbing material, while the frame elements are fastened together by brackets rigidly connected to the bar, to which the suspensions are attached, and the perforated sheet has the following perforation parameters: perforation diameter - 3 ... 7 mm, perforation percentage 10% ... 15% moreover, fixtures are installed in the frame, the sound-absorbing structure is made of at least one profiled porous sheet of sound-absorbing material, bounded above and below by perforated sheets, and the profile of the porous foxes This section may be triangular, rectangular, trapezoidal, sinusoidal, characterized in that the sound-absorbing structure is made in the form of a rigid and perforated wall, between which there are two layers: a sound-reflecting layer adjacent to the rigid wall, and a sound-absorbing layer adjacent to the perforated wall, the layer of sound-reflecting material is made of a complex profile, consisting of uniformly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, the perforated wall has the following perforation parameters: the diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as a conditional diameter, the maximum diameter of the circle inscribed in the polygon should be considered, and rockwool type mineral wool or URSA type mineral wool is used as sound-absorbing material, or basalt cotton wool of type P-75, or glass wool coated with glass wool, or foamed polymer, such as polyethylene or polypropylene, while the surface of the fibrous absorbers is treated with special porous air-permeable paints, such as Acutex T, or coated with breathable fabrics or non-woven materials, for example Lutrasil. 2. Потолок акустический подвесной по п. 1, отличающийся тем, что перфорированная стенка звукопоглощающей конструкции выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5), или из нержавеющей стали, или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм, или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм, или из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим».2. Acoustic suspended ceiling according to claim 1, characterized in that the perforated wall of the sound-absorbing structure is made of structural materials with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen- D ", while the ratio between the thicknesses of the material and the vibration damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5), or stainless steel, or a galvanized sheet 0.7 mm thick with a polymer protective and decorative coating Pural type with a thickness of 50 microns, or Polyester with a thickness of 25 microns, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns, or from solid, decorative vibration damping materials, such as plastic compound like Agate, Anti-Vibrate, Shvim. "
RU2015134990A 2015-08-19 2015-08-19 Suspended acoustical ceiling RU2658941C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015134990A RU2658941C2 (en) 2015-08-19 2015-08-19 Suspended acoustical ceiling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015134990A RU2658941C2 (en) 2015-08-19 2015-08-19 Suspended acoustical ceiling

Publications (3)

Publication Number Publication Date
RU2015134990A RU2015134990A (en) 2017-02-28
RU2015134990A3 RU2015134990A3 (en) 2018-03-02
RU2658941C2 true RU2658941C2 (en) 2018-06-26

Family

ID=58454028

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015134990A RU2658941C2 (en) 2015-08-19 2015-08-19 Suspended acoustical ceiling

Country Status (1)

Country Link
RU (1) RU2658941C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549966A (en) * 2020-06-01 2020-08-18 台州市易家装饰有限公司 Suspended ceiling construction process based on gypsum board
RU2807734C1 (en) * 2023-07-06 2023-11-21 Общество С Ограниченной Ответственностью "Роквул" (Ооо "Роквул") Cassette modular suspended ceiling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113362795A (en) * 2021-05-10 2021-09-07 西安交通大学 Porous sound absorbing structure of petal-shaped channel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU10196U1 (en) * 1998-11-26 1999-06-16 Общество с ограниченной ответственностью "Аркада" PREFABRICATED DESIGN OF THE False ceiling and partition wall for the “Dry” building system, ceiling and guide profiles, rack profiles (options), suspensions (options), extenders and extenders
RU2009110548A (en) * 2009-03-25 2010-09-27 Олег Савельевич Кочетов (RU) SOUND-ABSORBING DESIGN
RU2011110292A (en) * 2011-03-18 2012-09-27 Олег Савельевич Кочетов (RU) ACOUSTIC COMFORT ROOM WITH NOISE PROTECTIVE EQUIPMENT
WO2014187788A1 (en) * 2013-05-23 2014-11-27 Koninklijke Philips N.V. Light-emitting acoustic panel with duct
RU2538858C1 (en) * 2013-08-21 2015-01-10 Олег Савельевич Кочетов Kochetov's sound-absorbing barrier
RU2543827C2 (en) * 2013-07-22 2015-03-10 Олег Савельевич Кочетов Shop acoustic finishing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU10196U1 (en) * 1998-11-26 1999-06-16 Общество с ограниченной ответственностью "Аркада" PREFABRICATED DESIGN OF THE False ceiling and partition wall for the “Dry” building system, ceiling and guide profiles, rack profiles (options), suspensions (options), extenders and extenders
RU2009110548A (en) * 2009-03-25 2010-09-27 Олег Савельевич Кочетов (RU) SOUND-ABSORBING DESIGN
RU2011110292A (en) * 2011-03-18 2012-09-27 Олег Савельевич Кочетов (RU) ACOUSTIC COMFORT ROOM WITH NOISE PROTECTIVE EQUIPMENT
WO2014187788A1 (en) * 2013-05-23 2014-11-27 Koninklijke Philips N.V. Light-emitting acoustic panel with duct
RU2543827C2 (en) * 2013-07-22 2015-03-10 Олег Савельевич Кочетов Shop acoustic finishing
RU2538858C1 (en) * 2013-08-21 2015-01-10 Олег Савельевич Кочетов Kochetov's sound-absorbing barrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549966A (en) * 2020-06-01 2020-08-18 台州市易家装饰有限公司 Suspended ceiling construction process based on gypsum board
RU2807734C1 (en) * 2023-07-06 2023-11-21 Общество С Ограниченной Ответственностью "Роквул" (Ооо "Роквул") Cassette modular suspended ceiling

Also Published As

Publication number Publication date
RU2015134990A3 (en) 2018-03-02
RU2015134990A (en) 2017-02-28

Similar Documents

Publication Publication Date Title
RU2583463C1 (en) Sound-absorbing coating
RU2592871C1 (en) Kochetov sound absorber for lining manufacturing facilities
RU2528356C1 (en) Kochetov's sound-absorbing structure
RU2561394C1 (en) Kochetov(s sound-absorbing element
RU2561389C1 (en) Sound-absorbing structure
RU2583434C1 (en) Kochetov sound absorber of circular type
RU2639213C2 (en) Multilayer acoustic panel
RU2582137C2 (en) Sound absorbing element
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2649681C2 (en) Kochetov sound-absorbing lining
RU2669813C2 (en) Low-noise ship cabin
RU2603857C1 (en) Ring-type kochetov sound absorbing element
RU2658941C2 (en) Suspended acoustical ceiling
RU2583442C2 (en) Sound absorbing structure
RU2603858C1 (en) Helical-type kochetov sound absorbing element
RU2656420C2 (en) Sound absorbing element with sound-reflecting layer
RU2579021C1 (en) Acoustic panel
RU2648723C2 (en) Single-piece volumetric sound absorber
RU2576264C1 (en) Kochetov(s noise absorber with sound reflecting layer
RU2627517C1 (en) Sound-absorbing structure
RU2599214C1 (en) Plate-type noise suppressor with unified plates
RU2587515C1 (en) Kochetov element for compressor stations silencer
RU2530434C1 (en) Kochetov's acoustic panel
RU2649677C2 (en) Workshop acoustic structure
RU2558817C1 (en) Kochetov's piece noise absorber

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant