RU2658660C1 - Устройство для определения ошибочного функционирования датчика положения ротора в устройстве управления электродвигателем - Google Patents

Устройство для определения ошибочного функционирования датчика положения ротора в устройстве управления электродвигателем Download PDF

Info

Publication number
RU2658660C1
RU2658660C1 RU2017134421A RU2017134421A RU2658660C1 RU 2658660 C1 RU2658660 C1 RU 2658660C1 RU 2017134421 A RU2017134421 A RU 2017134421A RU 2017134421 A RU2017134421 A RU 2017134421A RU 2658660 C1 RU2658660 C1 RU 2658660C1
Authority
RU
Russia
Prior art keywords
current
position sensor
rotor position
unit
vibration component
Prior art date
Application number
RU2017134421A
Other languages
English (en)
Inventor
Нобутака КЕДУКА
Сёго КУРОДЗУМИ
Original Assignee
Мейденша Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мейденша Корпорейшн filed Critical Мейденша Корпорейшн
Application granted granted Critical
Publication of RU2658660C1 publication Critical patent/RU2658660C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в оборудовании преобразования энергии для управления электродвигателем с использованием информации о положении и скорости электродвигателя, полученной с помощью кодового датчика угла поворота. Техническим результатом является повышение надежности определения информации об ошибочности функционирования датчика положения ротора из-за механической вибрации. Устройство для определения ошибочного функционирования датчика положения ротора в устройстве для управления электродвигателем содержит систему управления скоростью (блок (3) вычисления скорости, блок (4) управления скоростью) для управления скоростью в соответствии с информацией, обнаруженной датчиком (2) положения ротора, и систему управления током (блок (8) управления током) для управления током в зависимости от выходного сигнала блока (6) преобразования dq, преобразующего обнаруженный трехфазный ток двигателя 1 в значения тока по осям d-q с использованием в качестве опорных данных информации, обнаруженной датчиком положения ротора, блок (11) обнаружения гармонической составляющей для извлечения компонента Id_h вибрации тока по оси d из тока Id по оси d, полученного блоком (6) преобразования dq; и блок (12) оценки ошибочности информации кодового датчика для определения, вызвано ли наличие компонента вибрации тока по оси d, извлеченного блоком (11) обнаружения гармонической составляющей, механическим фактором, и для оценки того, что информация, обнаруженная датчиком положения ротора, является ошибочной, если компонент вибрации наблюдается в течение периода времени, равного или большего заранее заданного отрезка времени, в том случае, если компонент вибрации вызван механическим фактором. 3 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение относится к устройству для оценки ошибочного функционирования датчика положения ротора в оборудовании преобразования энергии для управления электродвигателем с использованием информации о положении и скорости электродвигателя, полученной с помощью датчика или детектора положения, такого как кодовый датчик угла поворота.
УРОВЕНЬ ТЕХНИКИ
[0002] В качестве примера устройства для управления электродвигателем с использованием информации, обнаруженной датчиком положения ротора (датчиком положения/скорости), прикрепленным к электродвигателю, на фиг. 4 показано устройство векторного управления электродвигателем с датчиком положения/скорости.
[0003] На фиг. 4, двигатель 1 представляет собой трехфазный двигатель, и датчик 2 положения ротора для обнаружения положения ротора (угла вращения) прикреплен к двигателю 1. Блок 3 вычисления скорости вычисляет частоту вращения двигателя 1 на основе сигнала датчика, вырабатываемого датчиком 2 положения/скорости. Блок 4 управления скоростью выполняет операции для управления частотой вращения, вычисленной блоком 3 вычисления скорости, в соответствии с командой управления скоростью, передаваемой блоком 5 формирования команды управления скоростью, и выдает команду управления током.
[0004] Блок 6 преобразования dq представляет собой блок для преобразования обнаруженного трехфазного тока, полученного путем обнаружения трехфазного тока (u, v, w), протекающего через двигатель 1, с помощью трансформатора 7 тока (датчика тока), в ток по осям d-q путем преобразования трех фаз в две фазы, для преобразования координат вращения с использованием, в качестве опорных данных, информации о положении, то есть информации о фазе, ротора, полученной датчиком 2 положения ротора.
[0005] Блок 8 управления током выполняет операцию управления током по осям d-q, полученным путем преобразования, выполненного блоком 6 преобразования dq, с целью уравнивания тока по осям d-q значению из команды управления током, выданной блоком 4 управления скоростью, и посредством этого вывода команды управления напряжением по осям d-q.
[0006] Блок 9 трехфазного преобразования преобразует команду управления напряжением по осям d-q, выданную из блока 8 управления током, в команду управления трехфазным напряжением, включающую команды управления напряжением для соответствующих фаз, с использованием, в качестве опорных данных, информации о положении ротора или информации о фазе, полученной датчиком 2 положения ротора.
[0007] Преобразователь энергии (инвертор) 10 содержит полупроводниковые переключающие устройства, соединенные, например, в виде трехфазного моста и подающие трехфазную энергию переменного тока в двигатель 1 в соответствии с командой, выданной блоком 9 трехфазного преобразования. Управление преобразователем энергии 10 осуществляется посредством управляющих сигналов (отпирающих сигналов для полупроводниковых переключающих устройств), вырабатываемых с помощью ШИМ-модуляции команды управления напряжением блока 9 трехфазного преобразования, выполняемой в блоке ШИМ-модуляции, не показанном на чертеже.
[0008] Как указывалось выше, в случае векторного управления с использование датчика положения/скорости (датчика 2 положения ротора) управление скоростью и током выполняется с использованием информации о положении/скорости, полученной датчиком.
[0009] При векторном управлении, при котором выполняется преобразование трех фаз в две фазы и трансформация или преобразование координат вращения, трехфазная система координат UVW, фиксированная система координат αβ и система координат вращения dq определяются таким образом, как показано на фиг. 5. Оси U, V и W трехфазного тока преобразуются в оси αβ в результате преобразование трех фаз в две фазы и преобразуются в оси d-q путем преобразования координат вращения. Оси d-q представляют собой оси количественных значений постоянного тока.
[0010] При постоянной скорости каждое из количественных значений по осям d и q является постоянным. Если по команде управления скоростью задается новое значение скорости, количественные значения по осям d и q изменяются на новые значения по этим осям в соответствии с новым значением скорости, заданным командой управления скоростью. Во время перехода к новым значениям количественные значения по осям d и q находятся в переходном состоянии, и каждое количественное значение содержит компонент вибрации или колебания.
[0011] В блоке 6 преобразования dq можно произвольно определить оси координат d-q после преобразования uvw→dq. Однако обычно для упрощения управления вращающим моментом двигателя ось d устанавливается таким образом, чтобы она совпадала с магнитным потоком двигателя. Если координаты для управления определяются системой координат вращения, то преобразование координат выполняется с использованием, в качестве опорных данных, информации о положении ротора, полученной таким устройством как кодовый датчик угла поворота (датчик 2 положения ротора), то есть информации о фазе. Оси d-q вращаются синхронно с частотой вращения в случае синхронного двигателя и синхронно с частотой стороны первичной обмотки в случае асинхронного двигателя (IM, Induction Motor). Токи, получаемые с помощью преобразования координат в осях dq, представляют собой количественные значения постоянного тока.
[0012] В датчике 2 положения ротора применяется кодовый датчик угла поворота (датчик абсолютных значений), например, показанный на фиг. 6. Вращающийся диск 60, показанный на фиг. 6, предназначен для вращения с помощью вращающегося вала 61. Вращающийся диск 60 сформирован с множеством дисковых дорожек D1~Dn (на чертеже показаны только две дорожки).
[0013] Свет из источника 63 поступает через линзу или линзы 62, расположенные над вращающимся диском 60. Под вращающимся диском 60 расположены одно или более устройств приема светового потока или фотоприемников 65, принимающих световой сигнал через фиксированную щелевую панель с множеством фиксированных щелей.
[0014] Фотоприемники 65 принимают световой сигнал из источника 63 света через линзу 62, дисковые дорожки D1~Dn и фиксированную щелевую панель 64. На основе выходных сигналов фотоприемников 65 датчик положения ротора получает сигнал абсолютного положения с заранее заданной битовой структурой.
[0015] В патентном документе 1 предлагается устройство для диагностики ошибочного функционирования и снижения эффективности электрического оборудования, как технология, имеющая отношение к настоящему изобретению.
Документ(ы) существующего уровня техники
Патентный документ(ы)
[0016] Патентный документ 1: JP 2003-156547 А
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0017] В системе или устройстве, осуществляющем управление скоростью и током с использованием информации (информации о положении и скорости) датчика 2 положения ротора, как показано на фиг. 4, управление скоростью и током не может выполняться корректно, если информация датчика 2 положения ротора ошибочна. Таким образом, в случае внезапного изменения скорости или нагрузки в системе может происходить сбой из-за чрезмерных значений тока или скорости, что может привести к повреждению системы.
[0018] Кроме того, если информация о положении/скорости датчика 2 положения включает колебательную составляющую, выходной ток содержит компонент или компоненты высших гармоник, вследствие чего повышаются потери двигателя. В случае синхронного двигателя с постоянными магнитами (Permanent Magnet motor, РМ-двигатель) повышенный уровень потерь приводит к нагреву и может вызвать размагничивание вследствие увеличения температуры магнита ротора.
[0019] В управляющем устройстве, показанном на фиг. 4, применяющем в качестве датчика 2 положения ротора кодовый датчик угла поворота, показанный на фиг. 6, например, выходной сигнал кодового датчика угла поворота может колебаться, если этот датчик установлен или смонтирован ненадлежащим образом, или если двигатель 1 не функционирует должным образом.
[0020] Как показано на фиг. 6, вращающийся диск 60, прикрепленный к вращающемуся валу 61, является движущейся частью, в то время как другие составные части закреплены. Таким образом, если механическая вибрация передается в кодовый датчик угла поворота, положения фиксированного источника 63 света, линз 62, фиксированной щелевой панели 64 и фотоприемников 65 смещаются относительно корректного положения, и сдвиг или аберрация положения этих фиксированных компонентов вызывает искажение или отклонение фазы на выходе кодового датчика угла поворота. Следовательно, информация о фазе, используемая для преобразования координат, подвержена колебаниям, также как значения тока по осям d-q. Произведенные таким образом компонент(ы) колебания или вибрации становятся гармоническими компонентами и повышают уровень потерь двигателя.
[0021] В случае синхронного двигателя с постоянными магнитами (РМ-двигателя) при повышении уровня потерь увеличивается температура магнита ротора, что вызывает размагничивание. В случае асинхронного двигателя (IM) также существует возможность короткого замыкания из-за разрушения изолирующего материала и выгорания некоторых материалов. Помимо этого, ухудшается эффективность управления, и это ухудшение может привести к сбоям вследствие чрезмерных значений тока или скорости, в особенности в случае резкого изменения скорости или нагрузки, что может вызвать повреждение устройства. В настоящее время устраняющая эти проблемы функция определения ошибочного функционирования путем наблюдения за информацией кодового датчика, вне зависимости от типа кодового датчика угла поворота, не реализована.
[0022] Настоящее изобретение предложено для решения описанных выше проблем. Предмет настоящего изобретения заключается в предложении устройства для оценки ошибочного функционирования датчика положения ротора в устройстве для управления электродвигателем, способного надежно определить, что информация, предоставляемая датчиком положения ротора, ошибочна из-за механической вибрации, вызванной, например, ненадлежащим креплением к электродвигателю.
[0023] Для решения указанной выше проблемы, согласно первому аспекту изобретения, устройство для оценки ошибочного функционирования датчика положения ротора в устройстве для управления электродвигателем в соответствии с информацией, обнаруженной и полученной датчиком положения ротора, прикрепленным к электродвигателю, содержит:
блок извлечения компонента вибрации или колебания, сконфигурированный для извлечения компонента вибрации или колебания тока по оси d из значения тока по оси d, полученного путем преобразования в оси d-q обнаруженного трехфазного тока электродвигателя; и
блок оценки ошибочности информации датчика положения ротора, сконфигурированный для определения, является ли компонент вибрации тока по оси d, извлеченный блоком извлечения компонента вибрации, вибрацией, вызванной механическим фактором, и для оценки того, что информация, обнаруженная датчиком положения ротора, является ошибочной, если компонент вибрации, вызванный механическим фактором, наблюдается в течение периода времени, равного или большего заранее заданного отрезка времени, в том случае, если компонент вибрации вызван механическим фактором.
[0024] В сконструированном таким образом устройстве оценка ошибочности функционирования основывается на компоненте вибрации тока по оси d, полученного путем преобразования обнаруженного тока двигателя в значения тока по осям d и q. Таким образом, можно надежно определить, что информация датчика положения ротора ошибочна вследствие механической вибрации, вызванной, например, ненадлежащим креплением к электродвигателю.
[0025] В устройстве для оценки ошибочного функционирования датчика положения ротора для устройства для управления электродвигателем блок оценки ошибочности информации датчика положения ротора, согласно второму аспекту изобретения, содержит:
блок вычисления действующего значения для вычисления действующего значения компонента вибрации тока по оси d;
первый блок сравнения для сравнения действующего значения компонента вибрации с первым значением оценки, которое устанавливается равным заранее заданному значению тока, соответствующему шуму, отличному от вибрации, вызванной механическим фактором;
счетчик для подсчета времени, в течение которого результат сравнения, полученный первым блоком сравнения, указывает на то, что действующее значение больше первого значения оценки; и
второй блок сравнения для сравнения времени подсчета счетчика или времени, подсчитанного счетчиком, со вторым значением оценки, установленным равным заранее заданному допустимому времени появления компонента ас (alternating current, переменный ток), при этом устройство выполнено с возможностью оценки того, что информация, обнаруженная датчиком положения ротора, ошибочна, если подсчитанное счетчиком время превышает второе значение оценки.
[0026] С помощью первого блока сравнения в описанной выше структуре устройство оценки ошибочного функционирования датчика положения ротора может исключать ошибочную оценку, вызванную шумом, отличным от механической вибрации.
[0027] С помощью второй блока сравнения в описанной выше структуре устройство оценки ошибочного функционирования датчика может исключать ошибочную оценку, вызванную компонентом переменного тока, в допустимый период времени появления компонента ас, такого как высокочастотный компонент, появляющийся при переходном изменении скорости в электродвигателе.
[0028] В устройстве оценки ошибочного функционирования датчика положения ротора в устройстве для управления электродвигателем устройство для управления электродвигателем, согласно третьему аспекту, содержит систему управления скоростью для управления скоростью в соответствии с информацией, обнаруженной датчиком положения ротора, и систему управления током для управления током в соответствии с выходной информацией блока преобразования координат для преобразования обнаруженного трехфазного тока электродвигателя в значения по осям d-q с использованием, в качестве опорных данных, информации, обнаруженной датчиком положения ротора.
[0029] С помощью описанной выше структуры устройство для оценки ошибочного функционирования датчика положения ротора может предотвращать сбои, связанные с чрезмерной скоростью и током и вызванные функционированием систем управления током и скоростью с использованием ошибочной информации датчика положения ротора.
[0030] В устройстве для оценки ошибочного функционирования датчика положения ротора, согласно четвертому аспекту изобретения, блок извлечения компонента вибрации содержит фильтр верхних частот.
[0031] В устройстве для оценки ошибочного функционирования датчика положения ротора, согласно пятому аспекту изобретения, блок извлечения компонента вибрации содержит полосовой фильтр, пропускающий только полосу частот, соответствующую механической вибрации.
(1) Поскольку оценка ошибочного функционирования основана на значении тока по оси d, полученного путем преобразования обнаруженного тока двигателя в значения тока по осям d и q, согласно первому-пятому аспектам изобретения, можно надежно определить, что информация датчика положения ротора ошибочна вследствие механической вибрации, вызванной, например, ненадлежащим креплением к электродвигателю.
(2) Возможно исключить ошибочную оценку, вызванную шумом, отличным от механической вибрации, а также вызванную компонентом переменного тока, генерируемым в течение допустимого периода появления компонента переменного тока, и повысить точность оценки, согласно второму аспекту изобретения.
(3) Возможно предотвратить сбои, связанные с чрезмерными значениями скорости и тока, вызванные управлением скоростью и током с использованием ошибочной информации датчика положения ротора, согласно третьему аспекту изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0032]
На фиг. 1 показана блок-схема конструкции системы в соответствии с примером осуществления настоящего изобретения.
На фиг. 2 показана подробная блок-схема основной части системы в соответствии с первым практическим примером осуществления настоящего изобретения.
На фиг. 3 показана подробная блок-схема основной части системы в соответствии со вторым практическим примером осуществления настоящего изобретения.
На фиг. 4 показана блок-схема одного из примеров устройства управления электродвигателем, к которому применимо настоящее изобретение.
На фиг. 5 показано графическое представление определения осей координат при векторном управлении.
На фиг. 6 показана конструкция датчика абсолютных значений, к которому применимо настоящее изобретение.
ВАРИАНТ(Ы) ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
[0033] В последующем описании со ссылкой на чертежи объясняются вариант(ы) осуществления настоящего изобретения. Однако настоящее изобретение не ограничено этим конкретным вариант(ом) осуществления настоящего изобретения. На фиг. 1 показана конструкция системы в соответствии с примером осуществления настоящего изобретения. На фиг. 1 и фиг. 4 одинаковые компоненты обозначаются одинаковыми числовыми ссылками.
[0034] Ниже описываются отличия конструкции, показанной на фиг. 1, от фиг. 4. Блок 11 обнаружения гармонической составляющей (блок извлечения компонента вибрации или колебания) сконфигурирован для извлечения компонента вибрации или колебания (компонента ас) тока по оси d, то есть гармонической составляющей(-их) из компонента по оси d из значений тока по осям d и q системы координат d-q путем преобразования, выполняемого блоком 6 преобразования dq. Блок 12 оценки ошибочности информации кодера (блок оценки ошибочного функционирования датчика положения ротора) сконфигурирован для определения, является ли компонент вибрации тока по оси d, извлеченный блоком 11 обнаружения гармонической составляющей, вибрацией или колебанием, вызванным механическим фактором, и для оценки, является ли информация, обнаруженная датчиком 12 положения ротора, ошибочной, если компонент вибрации, вызванный механическим фактором, наблюдается в течение периода времени, равного или большего заранее заданного отрезка времени. В остальном конструкции, показанные на фиг. 1 и фиг. 4, совпадают.
[0035] В датчике 2 положения ротора применяется кодовый датчик угла поворота, например, показанный на фиг. 6. В последующем описании кодовый датчик положения ротора в некоторых случаях называется просто кодовым датчиком.
[0036] Информация о токе, полученная путем преобразования трех фаз в две фазы, преобразования координат вращения в блока 6 преобразования dq на основе обнаруженного тока, полученного путем обнаружения тока, протекающего через двигатель 1, с помощью трансформатора тока (датчика тока), состоит из двух компонентов: значение тока, обнаруженное по оси d (Id), и значение тока, обнаруженное по оси q. В этом варианте осуществления система или устройство выполнены с возможностью ответной реакции на запрос истинности информации кодового датчика путем проверки обнаруженного тока по оси d, как показано на фиг. 1.
[0037] Обнаруженный ток по оси d (Id), значение которого определяется после преобразования координат вращения блоком 6 преобразования dq, представляет собой количественное значение, и колебания обнаруженный ток по оси d (Id) обычно не колеблется. Таким образом, блок 11 обнаружения гармонической составляющей извлекает компонент вибрации или колебания (Id_h) тока по оси d, и блок 12 оценки ошибочности информации кодового датчика определяет, вызвано ли наличие компонента вибрации механическим фактором. Таким образом, система проверяет достоверность информации кодового датчика и оценивает информацию как ошибочную в случае принятия решения о недостоверности.
[0038] Принцип работы блока 11 обнаружения гармонической составляющей и блока 12 оценки ошибочности информации кодового датчика подробно описывается в последующих практических примерах 1 и 2.
(Практический пример 1)
На фиг. 2 подробно показаны конкретные структуры блока 11 обнаружения гармонической составляющей и блока 12 оценки ошибочности информации кодового датчика, показанных на фиг. 1. Блок 11 обнаружения гармонической составляющей содержит фильтр верхних частот (HPF, High-Pass Filter) для извлечения компонента Id_h вибрации тока по оси d путем выполнения операции пропускания высокочастотной составляющей тока Id, обнаруженного по оси d.
[0039] Блок 21 вычисления действующего значения (среднеквадратичного значения, Root Mean Square; RMS) принимает выходной сигнал из блока 11а обнаружения гармонической составляющей. Выходной сигнал из блока 11а обнаружения гармонической составляющей представляет собой компонент Id_h вибрации, имеющий форму компонента ас. Блок 21 вычисления действующего значения вычисляет действующее значение компонента Id_h вибрации и, таким образом, определяет действующее значение или среднеквадратичное значение или извлекает компонент действующего значения.
[0040] Первый блок 22 сравнения сравнивает компонент действующего значения, выводимый из блока 21 вычисления действующего значения, с первым значением оценки (значением 1 оценки) для предотвращения ошибочной оценки вследствие шума и вырабатывает "1", если действующее значение больше первого значения оценки. Первый блок 22 сравнения вырабатывает "0", если первое значение оценки превышает действующее значение.
[0041] Первое значение оценки устанавливается, например, равным значению амплитуды приблизительно 5% от номинального тока. Другими словами, в целом, в токе по оси d не генерируются гармонические составляющие, отличные от составляющих, вызванных компонентами вибрации или колебания датчика скорости (кодового датчика; датчика 2 положения ротора) и датчика тока (трансформатора 7 тока).
[0042] Соответственно, первое значение оценки устанавливается примерно равным 5% от номинального тока для предотвращения ошибочного обнаружения и ошибочной оценки вследствие шума, отличного от компонента вибрации, вызванного механическим фактором. Благодаря такой установке значения можно повысить точность оценки.
[0043] Суммирующий счетчик 23 (счетчик) принимает выходной сигнал первого блока 22 сравнения и вычисляет (подсчитывает) время или период, в течение которого первым блоком 22 сравнения выводится сигнал "1" (генерируется гармоническое колебание).
[0044] Второй блок 24 сравнения сравнивает подсчитанное значение времени, выводимое суммирующим счетчиком 23, со вторым значением оценки (значением 2 оценки) для предотвращения ошибочной оценки вследствие компонента ас, производимого в течение допустимого времени, и генерирует "1", если подсчитанное время превышает второе значение оценки (продолжительность генерации гармонической составляющей превышает допустимое время), для того чтобы оценить ошибочность информации кодового датчика. Второй блок 24 сравнения генерирует "0", если второе значение оценки превышает подсчитанное время.
[0045] Второе значение оценки устанавливается в минутах. Хотя высокочастотный компонент тока вырабатывается, например, во время генерации переходного изменения скорости двигателя 1, электрическая временная постоянная двигателя составляет минуты и не длится долее. Таким образом, с помощью установки второго значения оценки в минутах можно определить, что компонент вибрации представляет собой вибрацию, вызванную ошибкой механической установки кодового датчика (датчика 2 положения ротора), и устранить ошибочную оценку из-за переходного изменения скорости электродвигателя. Благодаря этому можно повысить точность оценки.
[0046] Если оценивается, что информация кодового датчика ошибочна, система может выполнить защитную операцию, например, остановить двигатель 1.
[0047] Первый практический пример позволяет предотвратить сбои, связанные с чрезмерными значениями скорости или тока и вызванные в результате управления скоростью и током с использованием ошибочной информации, выводимой датчиком 2 положения ротора.
(Практический пример 2)
Компонент Id_h вибрации тока по оси d на выходе блока 11 обнаружения гармонической составляющей не является по форме компонентом ас, как шумы, однако его частота (частоты) находятся в диапазоне, близком к компоненту выходной частоты двигателя. Другими словами, вибрация или колебания, вызванные механическим фактором, не имеют форму высокочастотного компонента, как шумы.
[0048] Соответственно, во втором практическом примере применяется блок 11 b обнаружения гармонической составляющей, содержащий полосовой фильтр (BPF, Band-Pass Filter), показанный на фиг. 3, а не блок 11а обнаружения гармонической составляющей, описанный в первом практическом примере (см. фиг. 2). Полосовой фильтр характеризуется полосой пропускания, позволяющей извлекать компонент вибрации тока по оси d в низкочастотной области, и частотами среза в диапазоне шумов в высокочастотной области. Блок 12 оценки ошибочности информации кодового датчика, показанный на фиг. 3, сформирован таким же образом, что и аналогичный блок, показанный на фиг. 2.
[0049] Структура, показанная на фиг. 3, работает таким же образом, что и структура, показанная на фиг. 2. Устройство извлекает компонент (Id_h) вибрации тока по оси d из тока по оси d, полученного путем преобразования из трехфазного обнаруженного тока двигателя 1 в значения по осям d-q, определяет, вызван ли компонент вибрации механическим фактором, и оценивает, что информация, обнаруженная кодовым датчиком (датчиком 2 положения ротора), ошибочна, если продолжительность компонента вибрации, вызванной механическим фактором, превышает допустимое время.
[0050] Как объяснялось выше, в соответствии с практическими примерами реализации настоящего изобретения система может контролировать ошибочность установки или крепления кодового датчика и корректно управлять двигателем согласно оценке ошибочного функционирования.
[0051] Если кодовый датчик установлен некорректно, то потери двигателя возрастают. В случае синхронного двигателя с постоянными магнитами (РМ-двигателя) при повышении уровня потерь может произойти размагничивание вследствие увеличения температуры магнита ротора. В случае асинхронного двигателя (IM) повышение уровня потерь может привести к короткому замыканию из-за разрушения изолирующего материала и к выгоранию некоторых материалов.
Однако следование практическим примерам реализации настоящего изобретения позволяет защитить двигатель от этих неисправностей.
[0052] Настоящее изобретение применимо к различным устройствам управления двигателем, а не только к устройству, показанному на фиг. 1. В устройствах управления двигателем других конструкций в рамках настоящего изобретения могут выполняться те же операции и достигаться те же цели, что описаны выше.

Claims (11)

1. Устройство для оценки ошибочного функционирования датчика положения ротора в устройстве для управления электродвигателем в соответствии с информацией, обнаруженной датчиком положения ротора, прикрепленным к электродвигателю, при этом устройство для оценки ошибочного функционирования датчика положения ротора содержит:
блок извлечения компонента вибрации, сконфигурированный для извлечения компонента вибрации тока по оси d из значения тока по оси d, полученного путем преобразования обнаруженного трехфазного тока электродвигателя в оси d-q; и
блок оценки ошибочности информации датчика положения ротора, сконфигурированный для определения, является ли компонент вибрации тока по оси d, извлеченный блоком извлечения компонента вибрации, вибрацией, вызванной механическим фактором, и для оценки того, что информация, обнаруженная датчиком положения ротора, является ошибочной, если компонент вибрации наблюдается в течение периода времени, равного или большего заранее заданного отрезка времени, в том случае, если компонент вибрации вызван механическим фактором,
при этом блок оценки ошибочности информации датчика положения ротора содержит:
блок вычисления действующего значения для вычисления действующего значения компонента вибрации тока по оси d;
первый блок сравнения для сравнения действующего значения компонента вибрации с первым значением оценки, которое установлено равным значению тока, соответствующему шуму, отличному от вибрации, вызванной механическим фактором;
счетчик для подсчета времени, в течение которого результат сравнения, полученный первым блоком сравнения, указывает на то, что действующее значение больше первого значения оценки; и
второй блок сравнения для сравнения времени, подсчитанного счетчиком, со вторым значением оценки, установленным равным допустимому времени появления компонента переменного тока, и для оценки того, что информация, обнаруженная датчиком положения ротора, ошибочна, если подсчитанное счетчиком время превышает второе значение оценки.
2. Устройство по п. 1, отличающееся тем, что устройство для управления электродвигателем содержит систему для управления скоростью в соответствии с информацией, обнаруженной датчиком положения ротора, и систему для управления током в соответствии с выходной информацией блока преобразования координат для преобразования обнаруженного трехфазного тока электродвигателя в значения по осям d-q с использованием в качестве опорных данных информации, обнаруженной датчиком положения ротора.
3. Устройство по п. 1 или 2, отличающееся тем, что блок извлечения компонента вибрации содержит фильтр верхних частот.
4. Устройство по п. 1 или 2, отличающееся тем, что блок извлечения компонента вибрации содержит полосовой фильтр, пропускающий только полосу частот, соответствующую механической вибрации.
RU2017134421A 2015-04-02 2016-03-29 Устройство для определения ошибочного функционирования датчика положения ротора в устройстве управления электродвигателем RU2658660C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-075713 2015-04-02
JP2015075713A JP6052323B2 (ja) 2015-04-02 2015-04-02 電動機制御装置の回転子位置検出器異常判定装置
PCT/JP2016/060002 WO2016158892A1 (ja) 2015-04-02 2016-03-29 電動機制御装置の回転子位置検出器異常判定装置

Publications (1)

Publication Number Publication Date
RU2658660C1 true RU2658660C1 (ru) 2018-06-22

Family

ID=57006834

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017134421A RU2658660C1 (ru) 2015-04-02 2016-03-29 Устройство для определения ошибочного функционирования датчика положения ротора в устройстве управления электродвигателем

Country Status (4)

Country Link
JP (1) JP6052323B2 (ru)
CN (1) CN108139229B (ru)
RU (1) RU2658660C1 (ru)
WO (1) WO2016158892A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293930B (zh) * 2018-12-07 2023-07-11 施耐德电气工业公司 用于控制电机的方法和装置
JP2020153965A (ja) * 2019-03-15 2020-09-24 オムロン株式会社 異常診断装置および異常診断方法
US11988546B2 (en) 2019-04-12 2024-05-21 Satake Corporation Sieving device
US11353345B2 (en) 2019-07-22 2022-06-07 Boston Dynamics, Inc. Magnetic encoder calibration
DE112021006951T5 (de) * 2021-06-25 2023-12-28 Hitachi Industrial Equipment Systems Co., Ltd. Verschleißdiagnosevorrichtung, Verschleißdiagnoseverfahren und Elektromotorsteuervorrichtung.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396229B1 (en) * 2000-03-06 2002-05-28 Hitachi, Ltd. Method of estimating a rotor position of synchronous motor, method of controlling synchronous motor with no position sensor and a controller of synchronous motor
DE10355423A1 (de) * 2003-11-27 2005-07-14 Siemens Ag Verfahren zur Erkennung eines fehlerhaften Rotorlagewinkelsignals sowie Einrichtungen zur Durchführung des Verfahrens
EP1583217A1 (en) * 2002-12-12 2005-10-05 NSK Ltd. Motor drive-controlling device and electric power-steering device
US20060043917A1 (en) * 2004-08-27 2006-03-02 Mitsubishi Denki Kabushiki Kaisha Electromotive power steering system
JP2008278575A (ja) * 2007-04-26 2008-11-13 Sanyo Electric Co Ltd モータ制御装置
RU2397600C1 (ru) * 2006-07-24 2010-08-20 Кабусики Кайся Тосиба Система привода двигателя с переменным магнитным потоком
RU2012129165A (ru) * 2009-12-11 2014-01-20 Испано Сюиза Устройство управления синхронной машиной с постоянными магнитами

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3671369B2 (ja) * 2001-11-26 2005-07-13 エイテック株式会社 電気機器の異常及び劣化診断装置
JP2005057817A (ja) * 2003-08-01 2005-03-03 Aisin Aw Co Ltd 電動駆動制御装置、電動駆動制御方法及びそのプログラム
JP2006129636A (ja) * 2004-10-29 2006-05-18 Daihatsu Motor Co Ltd モータ回転検出の異常検出方法及び異常検出装置
JP4789720B2 (ja) * 2006-07-07 2011-10-12 三洋電機株式会社 モータ制御装置
JP5933844B2 (ja) * 2013-08-26 2016-06-15 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396229B1 (en) * 2000-03-06 2002-05-28 Hitachi, Ltd. Method of estimating a rotor position of synchronous motor, method of controlling synchronous motor with no position sensor and a controller of synchronous motor
EP1583217A1 (en) * 2002-12-12 2005-10-05 NSK Ltd. Motor drive-controlling device and electric power-steering device
DE10355423A1 (de) * 2003-11-27 2005-07-14 Siemens Ag Verfahren zur Erkennung eines fehlerhaften Rotorlagewinkelsignals sowie Einrichtungen zur Durchführung des Verfahrens
US20060043917A1 (en) * 2004-08-27 2006-03-02 Mitsubishi Denki Kabushiki Kaisha Electromotive power steering system
RU2397600C1 (ru) * 2006-07-24 2010-08-20 Кабусики Кайся Тосиба Система привода двигателя с переменным магнитным потоком
JP2008278575A (ja) * 2007-04-26 2008-11-13 Sanyo Electric Co Ltd モータ制御装置
RU2012129165A (ru) * 2009-12-11 2014-01-20 Испано Сюиза Устройство управления синхронной машиной с постоянными магнитами

Also Published As

Publication number Publication date
JP2016197015A (ja) 2016-11-24
WO2016158892A1 (ja) 2016-10-06
CN108139229B (zh) 2019-06-25
JP6052323B2 (ja) 2016-12-27
CN108139229A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
RU2658660C1 (ru) Устройство для определения ошибочного функционирования датчика положения ротора в устройстве управления электродвигателем
Hang et al. Detection and discrimination of open-phase fault in permanent magnet synchronous motor drive system
US8471507B2 (en) Electric power conversion system and electric power conversion device
EP3224679B1 (en) Detecting faults in field oriented controlled permanent magnet synchronous machines
KR101169797B1 (ko) 3상 유도전동기의 고정자 권선 고장 진단시스템
Kim et al. Online fault-detecting scheme of an inverter-fed permanent magnet synchronous motor under stator winding shorted turn and inverter switch open
US10396702B2 (en) Motor drive control device
Zhang et al. Industrial inverter current sensing with three shunt resistors: Limitations and solutions
JP2015215275A (ja) 劣化診断システム
US10224829B2 (en) Drive train comprising a doubly fed electric machine and a band stop filter connected between an inverter and the rotor of the machine
EP3811481A1 (en) Method for determination of a location of a short circuit fault in a generator arrangement, generator arrangement, wind turbine, computer program and electronically readable medium
US20220120822A1 (en) Short-circuit detection device and short-circuit detection method
Dianov et al. Phase loss detection using current signals: A review
Dianov et al. Phase loss detection using voltage signals and motor models: A review
US9671249B2 (en) System and method for incremental encoder loss detection
Ben Mahdhi et al. Experimental investigation of an o pen‐switch fault diagnosis approach in the IGBT‐based power converter connected to permanent magnet synchronous generator‐DC system
CN105262383A (zh) 航空开关磁阻起动/发电机的转子转速/位置检测方法
US11073561B2 (en) Insulation deterioration detection device for electric motor
JP5988750B2 (ja) 発電システム
CN111226389B (zh) 监测多绕组组定子
KR101736531B1 (ko) 고압인버터 재기동 장치
Ma et al. Current sensor fault localization and identification of PMSM drives using difference operator
JP2015201905A (ja) インバータ制御装置
JP2019047617A (ja) 電力変換装置の単独運転誤検出防止装置および単独運転誤検出防止方法
CN110676813B (zh) 供电单元及确定供电单元上罗氏电流测量直流分量的方法