RU2656126C1 - Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов - Google Patents

Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов Download PDF

Info

Publication number
RU2656126C1
RU2656126C1 RU2017119459A RU2017119459A RU2656126C1 RU 2656126 C1 RU2656126 C1 RU 2656126C1 RU 2017119459 A RU2017119459 A RU 2017119459A RU 2017119459 A RU2017119459 A RU 2017119459A RU 2656126 C1 RU2656126 C1 RU 2656126C1
Authority
RU
Russia
Prior art keywords
diode
nickel
diode assembly
diodes
gold
Prior art date
Application number
RU2017119459A
Other languages
English (en)
Inventor
Владимир Анатольевич Харитонов
Любовь Владимировна Анурова
Андрей Андреевич Басовский
Андрей Александрович Жуков
Павел Игоревич Дидык
Original Assignee
Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") filed Critical Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы")
Priority to RU2017119459A priority Critical patent/RU2656126C1/ru
Application granted granted Critical
Publication of RU2656126C1 publication Critical patent/RU2656126C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению включает формирование структуры планарного диода, проведение термических операций, металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки, разделение подложки на кристаллы, присоединение электропроводящих шин, формирование защитного покрытия на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах, при этом защитное покрытие на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах формируют на основе никель-золота последовательно в несколько этапов: удаление органических загрязнений жидкостными методами, нанесение химического никеля, промывка никелированного диода в сборе, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме. Изобретение позволит повысить качество бескорпусных диодов и обеспечит возможность изготавливать бескорпусные диоды, сформированные в едином технологическом цикле на одной подложке, с идентичными характеристиками. 1 з.п. ф-лы, 2 ил.

Description

Область техники
Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов.
Уровень техники
Для обеспечения надежной работы солнечных батарей космических аппаратов применяется диодная защита, которая обеспечивается блокирующими и шунтирующими (байпасными) диодами. Солнечная батарея состоит из отдельных генераторов, включающих цепочки фотопреобразователей, внутри генераторов встречно-параллельно с фотопреобразователями устанавливают шунтирующие диоды.
Из уровня техники известен способ изготовления бескорпусного диода для солнечных батарей космических аппаратов, включающий создание на рабочей стороне в эпитаксиальном слое кремниевой монокристаллической подложки диэлектрической изоляции, формирование p-n-перехода загонкой с последующей разгонкой, формирование металлизации рабочей стороны кремниевой монокристаллической подложки, утонение кремниевой монокристаллической подложки с обратной нерабочей стороны, металлизацию нерабочей стороны и присоединение электропроводящих шин, утонение кремниевой монокристаллической подложки с обратной нерабочей стороны проводят после формирования на рабочей стороне кремниевой монокристаллической подложки облученного УФ-лучом фоточувствительного слоя последовательно абразивной обработкой и плазмохимическим травлением нерабочей стороны, после чего фоточувствительный слой удаляют в проявителе, при этом плазмохимическое травление проводят на глубину не менее 10 мкм при температуре не более 120°С, а толщину фоточувствительного слоя выбирают в зависимости от толщины металлизации на рабочей стороне [см. патент РФ 2411607].
К недостаткам известного способа изготовления относится низкое качество процесса изготовления из-за высокой вероятности отслаивания (потери адгезии) металлизации при формировании металлизации, а также низкое качество в связи с окислением металлизации готовых диодов после сборки и, как следствие, невозможность дальнейшей установки бескорпусных диодов в солнечные батареи из-за окисленных контактов.
Наиболее близким по технической сущности и достигаемому эффекту техническим решением (прототипом) является способ изготовления бескорпусного диода для солнечных батарей космических аппаратов, включающий формирование структуры планарного диода на кремниевой монокристаллической подложке, формирование металлизации рабочей стороны кремниевой монокристаллической подложки, покрытие полученной структуры полностью фоточувствительным слоем, сушка и облучение УФ-лучом, утонение нерабочей стороны кремниевой монокристаллической подложки жидкостным травлением, удаление облученного фоторезиста в проявителе, формирование металлизации нерабочей стороны кремниевой монокристаллической подложки, отжиг полученной структуры, разделение кремниевой монокристаллической подложки на кристаллы, присоединение электропроводящих шин к металлизации рабочей и нерабочей сторонам кристалла, при этом формирование металлизации рабочей стороны кремниевой монокристаллической подложки осуществляют в два этапа: формируют омический контакт из алюминия к p+ области, а затем осуществляют металлизацию магнетронным напылением алюминия, никеля и серебра, а металлизацию нерабочей стороны кремниевой монокристаллической подложки выполняют последовательным магнетронным напылением вентильного металла, никеля и серебра; омический контакт к p+ области формируют магнетронным напылением алюминия при температуре кремниевой монокристаллической подложки 110÷130°С с последующей фотолитографией и вжиганием алюминия; металлизацию магнетронным напылением алюминия, никеля и серебра проводят при температуре кремниевой монокристаллической подложки 170÷190°С с предварительной ионной бомбардировкой; металлизацию нерабочей стороны кремниевой монокристаллической подложки проводят при температуре кремниевой монокристаллической подложки 110÷130°С [см. патент РФ 2479888].
К недостаткам известного способа изготовления относится низкое качество диодов в связи с окислением серебряных поверхностей, что приводит к невозможности дальнейшей установки бескорпусного диода в состав солнечных батарей и/или выходу из строя уже установленных диодов в составе солнечных батарей.
Раскрытие изобретения
Техническим результатом заявленного изобретения является повышение качества бескорпусных диодов для солнечных батарей космических аппаратов.
Предложенный способ изготовления бескорпусного диода для солнечных батарей космических аппаратов включает формирование структуры планарного диода, проведение всех термических операций, металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки, разделение подложки на кристаллы, присоединение электропроводящих шин и последующее формирование на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах защитного покрытия на основе никель-золота последовательно в несколько этапов: удаление органических загрязнений жидкостными методами, нанесение химического никеля, промывка никелированного диода в сборе, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±1°С в течение не менее 30 минут.
Краткое описание чертежей
Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом фиг.1 и 2.
На фиг. 1 представлена блок-схема технологии изготовления бескорпусных диодов для солнечных батарей космических аппаратов, содержащая следующие блоки:
1 – подготовка бескорпусных диодов для солнечных батарей космических аппаратов, включающая:
формирование структуры планарного диода,
проведение всех термических операций,
формирование металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки,
разделение подложки на кристаллы,
присоединение электропроводящих шин;
2 – удаление органических загрязнений жидкостными методами;
3 – нанесение химического никеля;
4 – промывка никелированного диода в сборе;
5 – нанесение иммерсионного золота;
6 – промывка позолоченного диода в сборе;
7 – сушка в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±1°С не менее 30 минут;
8 – выходной контроль диодов;
На фиг. 2 представлены фотографии бескорпусных диодов с различными типами покрытий до и после выдержки в течение не менее 96 часов при температуре 125±5°С.
На фиг. 2а представлена фотография диода с серебряным покрытием до выдержки при температуре 125±5°С.
На фиг. 2б представлена фотография диода с серебряным покрытием после выдержки при температуре 125±5°С в течение 96 часов.
На фиг. 2в представлена фотография диода с покрытием на основе иммерсионного никель-золота до выдержки при температуре 125±5°С.
На фиг. 2г представлена фотография диода с покрытием на основе иммерсионного никель-золота после выдержки при температуре 125±5°С в течение не менее 96 часов.
Исходя из анализа результатов выдержки при температуре 125±5°С в течение не менее 96 часов выявлено, что покрытие на основе серебра темнеет и образуется окисел серебра, что подтверждается анализом состава поверхности на РЭМ. Покрытие на основе иммерсионного никель-золота после выдержки при температуре 125±5°С в течение не менее 96 часов визуально не изменилось, а анализ поверхности на РЭМ показал отсутствие изменения состава поверхности.
Осуществление и пример реализации изобретения
Заявленный способ был использован при реализации групповой технологии изготовления бескорпусных диодов для солнечных батарей космических аппаратов и состоит из следующей последовательности технологических операций (см. фиг. 1):
подготовка бескорпусных диодов для солнечных батарей космических аппаратов, включающая формирование структуры планарного диода, проведение всех термических операций, металлизацию лицевой и тыльной сторон кремниевой монокристаллической подложки, разделяют подложки на кристаллы, присоединяют электропроводящие шины,
формирование защитного покрытия на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах, выполняемое последовательно в несколько этапов, включающих: удаление органических загрязнений жидкостными методами, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±1°С в течение не менее 30 минут.
При этом удаление органических загрязнений жидкостными методами заключается в обработке в растворе очистителя при температуре раствора от 40 до 45°С; промывке диода в проточной деионизованной воде при температуре воды от 15 до 25°С в течение 2 минут; обработке диода в растворе травителя при температуре раствора от 20 до 25°С в течение 90 с; промывке диода в проточной деионизованной воде при температуре воды от 15 до 25°С в течение не менее 2 минут.
Нанесение химического никеля, толщиной 0,5±0,05 мкм на бескорпусной диод осуществляют в растворе химического никелирования при рН = 4,6-5,2 при температуре раствора от 85 до 90°С в течение 1,5-2 минуты.
Промывка никелированного диода в сборе заключается в обработке диода в проточной воде при температуре воды от 15 до 25°С в течение не менее 1 минуты; промывке диода в дистиллированной воде при температуре воды от 15 до 25°С в течение не менее 1 минуты.
Нанесение иммерсионного золота, толщиной 0,1±0,05 мкм заключается в обработке диода в растворе иммерсионного золочения при pH=5,5-6,5 при температуре раствора от 80 до 90°С в течение 10-15 минут.
Промывка позолоченного диода в сборе заключается в обработке диода в проточной деионизованной воде при температуре воды от 15 до 25°С в течение не менее 1 минуты; промывке диода в дистиллированной воде при температуре воды от 55 до 65°С в течение 2-3 минут; сушки диода при температуре 70±5°С в течение 15-20 минут.
Сушка в вакууме позолоченного диода в сборе заключается в прогреве в вакууме при остаточном давлении 3⋅10-3÷10-4 Па при температуре 120±1°С в течение не менее 30 минут и дальнейшем охлаждении в вакууме до комнатной температуры.
Остаточное давление 3⋅10-3 ÷10-4 Па, при котором проводят сушку в вакууме, определяли исходя из закона Пашена [F. Paschen, Annalender Physik und Chemie (Wiedemanns Annalen) 37, Ser. 3, 69 (1889)] и необходимости удаления адсорбированной влаги. Так как сушка в вакууме осуществляется за счёт прогрева галогенными лампами в вакуумной камере, то на рабочие характеристики прогрева действуют ограничения, связанные с возможным образованием пробоя между потенциалом ламп и корпусом за счёт уменьшения длины свободного пробега частиц и ионизации атомов при откачке. Зависимость пробивного напряжения газа при различном вакууме в однородном электрическом поле, при котором происходит зажигание тлеющего разряда, описывает закон Пашена. Исходя из зависимости для воздуха низкого давления по закону Пашена и ограничения минимального остаточного давления в камере установки, обеспечиваемого установкой сушки в вакууме, определён диапазон 3⋅10-3÷10-4 Па, при котором проводят сушку в вакууме.
Температура сушки в вакууме 120±1°С в течение не менее 30 минут определялась исходя из необходимости удаления влаги (в условиях вакуума температура кипения жидкости снижается).
Сформированное защитное покрытие на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах на основе никель-золота обладает существенно более высокой коррозионной стойкостью по сравнению с известными аналогами на основе серебра (фиг.2).
Предложенный способ изготовления бескорпусного диода для солнечных батарей космических аппаратов позволяет повысить качество бескорпусных диодов и получать бескорпусные диоды, сформированные в едином технологическом цикле на одной подложке с идентичными характеристиками.

Claims (2)

1. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов, включающий формирование структуры планарного диода, проведение термических операций, металлизации лицевой и тыльной сторон кремниевой монокристаллической подложки, разделение подложки на кристаллы, присоединение электропроводящих шин, формирование защитного покрытия на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах, отличающийся тем, что защитное покрытие на металлизированных поверхностях бескорпусного диода в сборе и на электропроводящих шинах формируют на основе никель-золота последовательно в несколько этапов: удаление органических загрязнений жидкостными методами, нанесение химического никеля, промывка никелированного диода в сборе, нанесение иммерсионного золота, промывка позолоченного диода в сборе, сушка в вакууме.
2. Способ по п. 1, отличающийся тем, что выполняют сушку в вакууме при 3⋅10-3 ÷10-4 Па при температуре 120±5°С в течение не менее 30 минут.
RU2017119459A 2017-06-05 2017-06-05 Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов RU2656126C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017119459A RU2656126C1 (ru) 2017-06-05 2017-06-05 Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017119459A RU2656126C1 (ru) 2017-06-05 2017-06-05 Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Publications (1)

Publication Number Publication Date
RU2656126C1 true RU2656126C1 (ru) 2018-05-31

Family

ID=62560281

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017119459A RU2656126C1 (ru) 2017-06-05 2017-06-05 Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Country Status (1)

Country Link
RU (1) RU2656126C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020144724A1 (en) * 1998-08-20 2002-10-10 Kilmer Louis C. Solar cell having a front-mounted bypass diode
SU1436793A1 (ru) * 1985-12-02 2004-08-10 Всесоюзный научно-исследовательский, проектно-конструкторский и технологический институт источников тока Солнечная батарея с шунтирующими диодами
RU2411607C1 (ru) * 2009-11-26 2011-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов
DE202011001341U1 (de) * 2011-01-11 2012-04-12 Conergy Ag Photovoltaikmoudul mit einlaminierter Bypassdiode
RU2479888C1 (ru) * 2011-11-29 2013-04-20 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов
JP2016119445A (ja) * 2014-12-19 2016-06-30 ペーン・ジェームズ・ユー 太陽電池セル、太陽電池モジュール及びバイパスダイオードの組み立て方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1436793A1 (ru) * 1985-12-02 2004-08-10 Всесоюзный научно-исследовательский, проектно-конструкторский и технологический институт источников тока Солнечная батарея с шунтирующими диодами
US20020144724A1 (en) * 1998-08-20 2002-10-10 Kilmer Louis C. Solar cell having a front-mounted bypass diode
RU2411607C1 (ru) * 2009-11-26 2011-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов
DE202011001341U1 (de) * 2011-01-11 2012-04-12 Conergy Ag Photovoltaikmoudul mit einlaminierter Bypassdiode
RU2479888C1 (ru) * 2011-11-29 2013-04-20 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ изготовления шунтирующего диода для солнечных батарей космических аппаратов
JP2016119445A (ja) * 2014-12-19 2016-06-30 ペーン・ジェームズ・ユー 太陽電池セル、太陽電池モジュール及びバイパスダイオードの組み立て方法

Similar Documents

Publication Publication Date Title
US4361950A (en) Method of making solar cell with wrap-around electrode
JP6176867B2 (ja) 太陽電池向けの縁なしパルスめっき及び金属洗浄方法
US4320154A (en) Method of forming solar cells by grid contact isolation
JP2009515369A (ja) 光電池接触部及び配線の形成
US7989346B2 (en) Surface treatment of silicon
JP2011238903A (ja) 太陽電池格子構造およびその製造方法
TW201041152A (en) Silicon solar cell
EP0007667B1 (en) Infra-red detector elements and their manufacture
US4638553A (en) Method of manufacture of semiconductor device
JPS6217396B2 (ru)
US11139407B2 (en) Metal dendrite-free solar cell
KR19980064244A (ko) 광기전력 소자 제조 방법
RU2656126C1 (ru) Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов
EP0007668A1 (en) The manufacture of a group of infra-red detector elements, and a group so manufactured
CN105552122A (zh) 一种带有深阱终端环结构的平面可控硅芯片及其制造方法
US4878099A (en) Metallizing system for semiconductor wafers
CN104716206A (zh) 一种提高电池镀减反射膜后不良品返工转换效率的方法
US6159663A (en) Method of creating a solderable metal layer on glass or ceramic
JP7264673B2 (ja) バックコンタクト型太陽電池セルの製造方法
JP4186584B2 (ja) 太陽電池生産方法
JP2009290013A (ja) 太陽電池の製造方法および太陽電池
AU574761B2 (en) Method of fabricating solar cells
CN214313126U (zh) 一种等离子体处理装置
WO2014123535A1 (en) Methods for metallizing an aluminum paste
JP2753379B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner