RU2654060C1 - Способ получения антитурбулентной присадки к нефти и нефтепродуктам - Google Patents

Способ получения антитурбулентной присадки к нефти и нефтепродуктам Download PDF

Info

Publication number
RU2654060C1
RU2654060C1 RU2017133031A RU2017133031A RU2654060C1 RU 2654060 C1 RU2654060 C1 RU 2654060C1 RU 2017133031 A RU2017133031 A RU 2017133031A RU 2017133031 A RU2017133031 A RU 2017133031A RU 2654060 C1 RU2654060 C1 RU 2654060C1
Authority
RU
Russia
Prior art keywords
polymer
alpha
solution
petroleum
mixture
Prior art date
Application number
RU2017133031A
Other languages
English (en)
Inventor
Руслан Гаджиевич Джамалудинов
Людмила Евгеньевна Котовская
Original Assignee
Руслан Гаджиевич Джамалудинов
Людмила Евгеньевна Котовская
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Руслан Гаджиевич Джамалудинов, Людмила Евгеньевна Котовская filed Critical Руслан Гаджиевич Джамалудинов
Priority to RU2017133031A priority Critical patent/RU2654060C1/ru
Application granted granted Critical
Publication of RU2654060C1 publication Critical patent/RU2654060C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к технологии синтеза высокомолекулярных соединений, конкретно к способу получения антитурбулентной присадки к нефти и нефтепродуктам для снижения гидродинамического сопротивления при их транспортировке путем полимеризации гексена или смеси альфа-олефинов в массе или в среде органического растворителя с использованием катализаторов Циглера-Натта при перемешивании с интенсивностью, обеспечивающей для исходной полимеризационной шихты соблюдение центробежного критерия Рейнольдса в диапазоне 400÷2700, температуре 0÷30°С, с получением полимера с характеристической вязкостью не менее 1,7 м3/кг с последующим выделением полимера из раствора и изготовлением дисперсии в среде органического вещества, не растворяющего поли-альфа-олефин. Полученный раствор полимера поли-альфа-олефина подают через душевое устройство в аппарат-дегазатор с мешалкой, содержащий раствор осадителя, выбранный из группы аминоспиртов. При этом одновременно осуществляют выделение полимера в виде мелкодисперсной крошки и отгонку при температуре 50-65°С с последующим введением в дисперсию бутанола к аминоспиртам в массовом соотношении 70-80:30-20 при общем количестве смеси спиртов к полигексену или смеси альфа-олефинов 70-75 мас.%. Заявлена также антитурбулентная присадка к нефти и нефтепродуктам для снижения гидродинамического сопротивления, полученная данным способом. Технический результат - создание способа производства антитурбулетной присадки к нефти и нефтепродуктам, снижающей гидродинамическое сопротивление при их транспортировке. 2 н. и. 2 з.п. ф-лы, 6 пр., 1 табл.

Description

Изобретение относится к технологии синтеза высокомолекулярных соединений, конкретно к способу получения сверхвысокомолекулярных поли-альфа-олефинов, которые являются веществами, эффективно снижающими гидродинамическое сопротивление движению нефти и нефтепродуктов по трубопроводам. Добавление поли-альфа-олефинов в небольших количествах к органическим жидкостям (5÷15) ppm при транспортировке по трубопроводам снижает гидродинамическое сопротивление, например, нефти на (25÷40) %.
Из уровня техники известен способ осаждения полимера из раствора добавлением осадителя [US 5733953, опубл. 31.03.1998 C08F 6/12]. Маловязкую высоконцентрированную суспензию полимера, синтезированного (со)полимеризацией высших альфа-олефинов под действием катализатора Циглера-Натта в среде растворителя, получают медленным добавлением жидкости, нерастворяющей полимер (например, изопропиловый спирт), к раствору полимера в растворителе (например, керосине). При достаточном добавлении нерастворителя полимер осаждается из раствора в виде мелких частиц. Жидкость с осадка отделяют, осадок еще раз промывают нерастворителем.
Но невысокое качество полимерного компонента, а также необходимость регенерации большого объема растворителя, и большая потеря мономера при регенерации является существенным недостатком данного способа.
Известен способ получения антитурбулентной присадки с рециклом мономеров на основе высших альфа-олефинов [RU 2505551, опубл. 27.01.2014 C08F 10/00]. Этот многостадийный процесс включает полимеризацию с использованием микросферического катализатора и диэтилалюминий хлорида до конверсии моноера в полимер (5-15) %, осаждением полученного полимера моно-, ди- или полигликолей, целлозольвов или их смеси.
После осаждения полимера проводят его отделение от жидкой фазы и мономер отделяют перегонкой с последующей осушкой.
При всей сложности технологии процесса не предусматривается диспергирование полимера и получение устойчивой однородной дисперсии.
Известен способ [RU 2481357, опубл. 10.05.2013 C08F 10/14] получения противотурбулентной присадки суспензионного типа, снижающей гидродинамическое сопротивление углеводородных жидкостей, включающий получение тонкоизмельченного полимера, растворимого в углеводородных жидкостях, имеющего высокомолекулярную массу, синтезированного (со)полимеризацией высших альфа-олефинов под действием катализатора Циглера-Натта, и в качестве (со)полимера высших альфа-олефинов используется продукт блочной полимеризации, а для получения тонкодисперсной суспензии полимера используется термическое переосаждение в жидкости, являющейся нерастворителем для полимера при комнатной температуре и способной его растворять при повышенной температуре.
При всей простоте способа при таком термическом переосаждении образуется комкующаяся, легко слипающаяся крошка и технологически непригодная для применения.
Известен способ [RU 2463320, опубл. 10.10.2012 C08J 3/205] получения антитурбулентной суспензионной присадки для нефти и нефтепродуктов, включающий (со)полимеризацию высших альфа-олефинов С614 на катализаторах Циглера-Натта, измельчение полученного ультравысокомолекулярного поли-альфа-олефина при криогенной температуре, смешение его с разделяющим агентом и суспензионной средой, при котором измельчение полимера проводят на установке электроимпульсного типа, суспензия в качестве разделяющего агента содержит стеарат кальция и в качестве суспензионной среды использована смесь изопропилового спирта и полиэтиленгликоля при соотношении компонентов, мас. %:
поли-альфа-олефин - 25,0-45,0;
стеарат кальция - 2,5-4,5;
полиэтиленгликоль - 2,5-6,0;
изопропиловый спирт - остальное.
Этот способ весьма затратный и очень сложен по технологическому оформлению процесса.
Известен также способ получения высокомолекулярного полигексена, обладающего свойствами агента снижения гидродинамического сопротивления, путем полимеризации гексена-1 в присутствии каталитической системы, включающей четыреххлористый титан на магнийсодержащем носителе, электродонорное соединение и сокатализатор, состоящий из триалкилалюминия и электродонорного соединения, полимеризацию проводят при температуре (0÷50)°С [RU 2230074, опубл. 10.06.2004 C08F 4/64].
Данный способ позволяет получать высокомолекулярный полигексен с характеристической вязкостью (1,2÷1,71) м3/кг.
Полимеризацию гексена-1 проводят в среде углеводородного растворителя (гептан). Выделение полимера из раствора осуществляют высаживанием изопропиловым спиртом.
Однако в условиях промышленного производства поли-альфа-олефинов, применяемых для изготовления антитурбулентных присадок, происходит гидродинамическое воздействие перемешивающих устройств при полимеризации поли-альфа-олефинов, а также при выделении полимера из раствора для получения антитурбулентной присадки в товарном виде, в качестве дисперсии в органическом веществе, не растворяющем поли-альфа-олефин, сопровождается термическим или термо-механическим воздействием. В результате этих воздействий происходит деструкция сверхвысокомолекулярного полимера, молекулярная масса полимера и его характеристическая вязкость снижаются.
Выделение полимера из раствора может быть осуществлено следующими методами:
1). Безводная дегазация.
2). Водная дегазация.
Затем из полимера необходимо изготовить саму антитурбулентную присадку - дисперсию поли-альфа-олефина в органическом веществе, не растворяющем полимер. Дисперсию готовят по двум вариантам: методом механического или криогенного дробления с последующим распределением полимера в дисперсионной среде. При этом молекулярная масса полимера снижается в 1,5-2,0 раза.
Наиболее близким по техническому решению является способ получения антитурбулентной присадки для снижения гидродинамического сопротивления при транспортировке углеводородных веществ путем каталитической полимеризации альфа-олефинов в массе или в растворителе при перемешивании реакционной среды со скоростью, обеспечивающей для исходной шихты соблюдение центробежного критерия Рейнольдса в диапазоне (400÷2700) при температуре (0÷30)°С, с получением полимера с характеристической вязкостью не менее 1,7 м3/кг. При проведении полимеризации в массе конверсия мономеров в полимер составляет (5÷15) %, а при проведении полимеризации в органическом растворителе составляет (85÷99) % с последующим выделением полимера из раствора и получением дисперсии поли-альфа-олефина [RU 2576004, опубл. 27.02.2016 C08F 10/00].
Данный способ позволяет проводить полимеризацию с управляемым поддержанием необходимой температуры, то есть обеспечивая эффективный отвод выделяющегося при полимеризации тепла, при этом в реакционной массе полимеризата реализуется такой гидродинамический режим, при котором не происходит деструкции макромолекул полимера. Благодаря этому имеется возможность получения полимеров альфа-олефинов со сверхвысокой молекулярной массой (Mw≥10⋅106 угл. ед.; характеристическая вязкость ≥1,7 м3/кг). Такие поли-альфа-олефины являются эффективными антитурбулентными присадками к органическим жидкостям. Однако этот способ имеет существенные недостатки. Если в процессе полимеризации за счет оптимального подбора гидродинамического режима удается получить сверхвысокую молекулярную массу полимера, то на стадиях дегазации водной или безводной, криогенном или механическом дроблением полимера молекулярная масса полимера падает в 1,5-2,0 раза.
Технической задачей заявленного изобретения является разработка промышленно доступного, высокопроизводительного способа производства антитурбулентной присадки к нефти и нефтепродуктам, снижающей гидродинамическое сопротивление при их транспортировке.
Техническим результатом заявленного изобретения является создание способа производства антитурбулетной присадки к нефти и нефтепродуктам снижающей гидродинамическое сопротивление при их транспортировке.
Предлагаемый технический результат достигается тем, что способ получения антитурбулентной присадки к нефти и нефтепродуктам для снижения гидродинамического сопротивления при их транспортировке путем полимеризации гексена или смеси альфа-олефинов в массе или в среде органического растворителя с использованием катализаторов Циглера-Натта при перемешивании с интенсивностью, обеспечивающей для исходной полимеризационной шихты соблюдение центробежного критерия Рейнольдса в диапазоне 400÷2700, температуре 0÷30°С, с получением полимера с характеристической вязкостью не менее 1,7 м3/кг с последующим выделением полимера из раствора и изготовлением дисперсии в среде органического вещества, не растворяющего поли-альфа-олефин. Полученный раствор полимера поли-альфа-олефина подают через душевое устройство в аппарат-дегазатор с мешалкой, содержащий раствор осадителя, выбранный из группы аминоспиртов. При этом одновременно осуществляют выделение полимера в виде мелкодисперсной крошки и отгонку полимера при температуре 50-65°С с последующим введением в дисперсию бутанола к аминоспиртам в массовом соотношении 70-80 : 30-20 при общем количестве смеси спиртов к полигексену или смеси альфа-олефинов 70-75%.
В качестве раствора осадителя, может быть выбран компонент из группы аминоспиртов диэтаноламина или триэтаноламина.
Отгонка раствора альфа-олефина предпочтительно происходит при температуре 50-65°С и вакууме 0,6-0,8 атм.
Заявлена также антитурбулентная присадка к нефти и нефтепродуктам для снижения гидродинамического сопротивления, полученная согласно заявленному способу.
Полученный раствор поли-альфа-олефина подается через душевое устройство в аппарат-дегазатор непосредственно в осадитель, в качестве которого используются аминоспирты (например, диэтаноламин или триэтаноламин). При этом образуется мелкая однородная крошка с одновременной отгонкой полимера (альфа-олефина или смеси альфа-олефина) с растворителем. В этом случае аминоспирты являются не только осадителем поли-альфа-олефина, но и катионным ПАВ, стабилизирующем крошку. Отгонка растворителя происходит в мягких условиях при температуре 50-65°С и небольшом вакууме (0,6-0,8 атм), что исключает термическую деструкцию как в случае водной, так и в случае безводной дегазации, при которой температура составляет 110-140°С.
Механическое воздействие при получении дисперсии минимальное, так как крошка гомогенизируется в смеси аминоспирта и бутанола и не слипается.
Снижение молекулярной массы поли-альфа-олефина в этом случае составляет не более 20% или вообще отсутствует.
В качестве поли альфа-олефинов могут быть использованы соединения, выбранные из группы: гексен-1, октен-1, децен-1, додецен-1 или их смеси.
Изобретение иллюстрируется примерами конкретного исполнения.
Пример 1. 2,2 м3 гексена-1, очищенного от примесей, подают в продутый азотом полимеризатор, объемом 3,0 м3, снабженный рамной мешалкой с регулируемым числом оборотов, рубашкой рассольного охлаждения, приборами для контроля давления и температуры. Включают охлаждение и при температуре 0°С подают раствор триизобутилалюминия в нефрасе (концентрация 4%). Перемешивают шихту со скоростью мешалки 48 об/мин. Вводят суспензию титано-магниевого катализатора и перемешивают с той же скоростью еще 10 минут. Затем устанавливают скорость вращения мешалки 10 об/мин (это соответствует R=400). Момент введения катализатора отмечают как начало полимеризации. Полимеризацию ведут до содержания сухого вещества 5,7%, 210 минут при температуре 0÷10°С. По достижении заданной конверсии мономера в полимер полимеризат передавливают в сборник, подавая в поток антиоксидант агидол-2, который одновременно является стоппером, останавливающим полимеризацию.
Затем раствор полимера подается в аппарат-дегазатор, снабженный мешалкой с вариатором скорости, через душевое устройство непосредственно в раствор диэтаноламина, разогретого до температуры 50°С и вакууме 0,8 атм. Отгонка гексена осуществляется в течение (4-5) часов.
В полученную дисперсию крошки полигексена добавляли раствор бутанола в соотношении к диэтаноламину 70:30% масс для выравнивания плотности дисперсионной среды.
В полученном полимере определяли характеристическую вязкость, молекулярную массу и эффективность.
Пример 2. Синтез антитурбулентной присадки осуществляли как в примере 1, только в качестве полимера использовали смесь октен-1 и децен-1 в качестве аминоспирта используется триэтаноламин и соотношение бутанол:триэтаноламин составляет 80:20% масс.
Пример 3. Синтез антитурбулентной присадки осуществляли как в примере 1, только в качестве осадителя использовали диэтаноламин, отгонку гексена вели при температуре 65°С и вакууме 0,6 атм в течение трех часов.
Примеры 4-5. Синтез антитурбулентной присадки осуществляли как в примере 1, только в полученную дисперсию полимера добавляли антиагломероатор - стеарат кальция, а во втором случае - стеариламид в количестве (1-5) % для дополнительной антиагломерации крошки полимера.
Пример 6. (по прототипу)
Получение полигексена на стадии полимеризации осуществляли по примеру 1.
Полученный застопперированный раствор полигексена в гексене центробежным насосом подавали на 2-ступенчатую колонну дегазации, в которой с помощью острого пара (температура (110-112)°С получали крошку полигексена и отгоняли гексен, затем крошку отделяли от воды и подавали в раствор смеси этилцеллозольва и бутанола.
Полученная при этом дисперсия имела неоднородный характер, и молекулярная масса полимера при этом снижалась в 1,5 раза, а после пропускания ее через гомогенизатор - дробилку - падала в 2 раза.
Условия получения полигексена и результаты анализа приведены в таблице 1.
Из данных, приведенных в таблице 1, следует, что по заявляемому способу молекулярная масса практически не изменяется, по прототипу - она уменьшается в 1,5 раза и эффективность АТП (антитурбулентный эффект полимера) в 1,5 раза выше, чем по прототипу.
Таким образом, заявляемый способ получения антитурбулентной присадки позволяет создать оригинальную технологию производства антитурбулентной присадки, обеспечивающую высокую эффективность при перекачке нефти и нефтепродуктов.
Figure 00000001
Примечание:
(1) - Катализатор производства фирмы ООО "Тинол": дозировка дана в граммах осадка в суспензии; содержание в суспензии: Ti - 2,8% мас., Mg -19% мас.; суспензия в нефрасе С-1.
(2) - Триизобутилалюминий (ТИБА) - 4% мас. раствор в нефрасе С-1; дозировка в литрах раствора.
(3) - Агидол-2 - бис-(2-окси-5-метил-3-трет-бутилфенил)метан, дозировка на полимер - 0,5% мас. Подают раствор с концентрацией 10%.
(4) - Rец - центробежный критерий Рейнольдса, рассчитанный для исходной углеводородной шихты (до начала полимеризации), расчет по формуле:
Figure 00000002
, где: ρ - плотность шихты, кг/м3, n - скорость вращения мешалки, об/сек, d - диаметр мешалки, м, μ - вязкость шихты.
(5) - Характеристическую вязкость определяли для раствора полимера в толуоле с использованием вискозиметра Бишофа.
(6) - АТР - эффективность: в числителе дозировка в ppm, в знаменателе - эффективность в %.

Claims (4)

1. Способ получения антитурбулентной присадки к нефти и нефтепродуктам для снижения гидродинамического сопротивления при их транспортировке путем полимеризации гексена или смеси альфа-олефинов в массе или в среде органического растворителя с использованием катализаторов Циглера-Натта при перемешивании с интенсивностью, обеспечивающей для исходной полимеризационной шихты соблюдение центробежного критерия Рейнольдса в диапазоне 400÷2700, температуре 0÷30°C, с получением полимера с характеристической вязкостью не менее 1,7 м3/кг с последующим выделением полимера из раствора и изготовлением дисперсии в среде органического вещества, не растворяющего поли-альфа-олефин, отличающийся тем, что полученный раствор полимера подают через душевое устройство в аппарат-дегазатор с мешалкой, содержащий раствор осадителя, выбранный из группы аминоспиртов, при этом одновременно осуществляют выделение полимера в виде мелкодисперсной крошки и отгонку полимера при температуре 50-65°C с последующим введением в дисперсию бутанола к аминоспиртам в массовом соотношении 70-80:30-20 при общем количестве смеси спиртов к полигексену или смеси альфа-олефинов 70-75 мас.%.
2. Способ по п. 1, отличающийся тем, что в качестве раствора осадителя выбирают компонент из группы аминоспиртов диэтаноламина или триэтаноламина.
3. Способ по п. 1, отличающийся тем, что отгонка раствора альфа-олефина происходит при температуре 50-65°C и вакууме 0,6-0,8 атм.
4. Антитурбулентная присадка к нефти и нефтепродуктам для снижения гидродинамического сопротивления, полученная способом по пп. 1-3.
RU2017133031A 2017-09-22 2017-09-22 Способ получения антитурбулентной присадки к нефти и нефтепродуктам RU2654060C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017133031A RU2654060C1 (ru) 2017-09-22 2017-09-22 Способ получения антитурбулентной присадки к нефти и нефтепродуктам

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017133031A RU2654060C1 (ru) 2017-09-22 2017-09-22 Способ получения антитурбулентной присадки к нефти и нефтепродуктам

Publications (1)

Publication Number Publication Date
RU2654060C1 true RU2654060C1 (ru) 2018-05-16

Family

ID=62153013

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017133031A RU2654060C1 (ru) 2017-09-22 2017-09-22 Способ получения антитурбулентной присадки к нефти и нефтепродуктам

Country Status (1)

Country Link
RU (1) RU2654060C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443720C1 (ru) * 2010-11-11 2012-02-27 Закрытое Акционерное Общество "Сибур Холдинг" Способ получения антитурбулентной присадки суспензионного типа
RU2463320C1 (ru) * 2011-07-27 2012-10-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
WO2013048289A2 (en) * 2011-09-30 2013-04-04 Oil Transporting Joint Stock Company "Transneft" A method for producing a suspension-type anti-turbulent additive decreasing hydrodynamic resistance of hydrocarbon liquids
RU2576004C2 (ru) * 2014-07-17 2016-02-27 Юрий Константинович Гусев Способ получения антитурбулентной присадки к органическим средам для снижения гидродинамического сопротивления при их транспортировке
RU2579588C1 (ru) * 2015-06-15 2016-04-10 Общество с ограниченной ответственностью "НефтеТрансХим" Противотурбулентная присадка и способ ее получения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443720C1 (ru) * 2010-11-11 2012-02-27 Закрытое Акционерное Общество "Сибур Холдинг" Способ получения антитурбулентной присадки суспензионного типа
RU2463320C1 (ru) * 2011-07-27 2012-10-10 Государственное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
WO2013048289A2 (en) * 2011-09-30 2013-04-04 Oil Transporting Joint Stock Company "Transneft" A method for producing a suspension-type anti-turbulent additive decreasing hydrodynamic resistance of hydrocarbon liquids
RU2576004C2 (ru) * 2014-07-17 2016-02-27 Юрий Константинович Гусев Способ получения антитурбулентной присадки к органическим средам для снижения гидродинамического сопротивления при их транспортировке
RU2579588C1 (ru) * 2015-06-15 2016-04-10 Общество с ограниченной ответственностью "НефтеТрансХим" Противотурбулентная присадка и способ ее получения

Similar Documents

Publication Publication Date Title
EP2822975B1 (en) Polyolefin adhesive compositions and methods of preparing the same
EP0057050B1 (en) Process for the preparation of polymers of alpha-olefins at high temperatures
RU2481357C1 (ru) Способ получения противотурбулентной присадки суспензионного типа, снижающей гидродинамическое сопротивление углеводородных жидкостей
RU2443720C1 (ru) Способ получения антитурбулентной присадки суспензионного типа
RU2463320C1 (ru) Способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов
RU2648079C1 (ru) Способ получения реагента для снижения гидродинамического сопротивления турбулентного потока жидких углеводородов в трубопроводах
EP0080052A1 (en) Improved catalyst composition for copolymerizing ethylene
KR20060018849A (ko) 기상 중합에서 중합체 미세물질의 제어 방법
CN106170499B (zh) 乙烯聚合的多阶段工艺
CN102453169B (zh) 一种用于烯烃聚合的催化剂组分及其制备方法
WO2016204654A1 (ru) Противотурбулентная присадка и способ ее получения
CN110894249A (zh) 一种丁烯-1的均相聚合方法及装置
RU2729072C2 (ru) Способ полимеризации олефина в присутствии состава с антистатическим действием
RU2654060C1 (ru) Способ получения антитурбулентной присадки к нефти и нефтепродуктам
CN102372799B (zh) 一种用于烯烃聚合的催化剂组分及其制备方法
RU2599245C1 (ru) Способ получения реагента для снижения гидродинамического сопротивления потока жидких углеводородов в трубопроводах
RU2590535C1 (ru) Способ получения противотурбулентной присадки на основе полиальфаолефинов (варианты)
RU2667897C1 (ru) Способ получения реагента для снижения гидродинамического сопротивления турбулентного потока жидких углеводородов в трубопроводах с рециклом сольвента
RU2576004C2 (ru) Способ получения антитурбулентной присадки к органическим средам для снижения гидродинамического сопротивления при их транспортировке
JP6910476B2 (ja) 非断熱型2相(液液)重合プロセス
Du et al. Synthesis and Solution Self‐Assembly of Polyisoprene‐block‐poly (ferrocenylmethylsilane): A Diblock Copolymer with an Atactic but Semicrystalline Core‐Forming Metalloblock
CN113831437B (zh) 生产粉末形式的超高分子量聚合物的方法
RU2675701C1 (ru) Способ получения антитурбулентной присадки к органическим средам, в том числе к нефти для снижения гидродинамического сопротивления при их перекачке по трубопроводам
CN107474194B (zh) 一种高分子聚合物材料的制造方法
RU2782028C1 (ru) Способ получения полимера сверхвысокой молекулярной массы в порошкообразной форме

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200923