RU2653515C1 - Способ гальванической металлизации молибденовых сплавов - Google Patents

Способ гальванической металлизации молибденовых сплавов Download PDF

Info

Publication number
RU2653515C1
RU2653515C1 RU2017122848A RU2017122848A RU2653515C1 RU 2653515 C1 RU2653515 C1 RU 2653515C1 RU 2017122848 A RU2017122848 A RU 2017122848A RU 2017122848 A RU2017122848 A RU 2017122848A RU 2653515 C1 RU2653515 C1 RU 2653515C1
Authority
RU
Russia
Prior art keywords
electrolyte
current density
copper
coating
sulfuric acid
Prior art date
Application number
RU2017122848A
Other languages
English (en)
Inventor
Александр Алексеевич Тихонов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Новгородский государственный университет имени Ярослава Мудрого"
Priority to RU2017122848A priority Critical patent/RU2653515C1/ru
Application granted granted Critical
Publication of RU2653515C1 publication Critical patent/RU2653515C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/38Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Изобретение относится к области гальванотехники, в частности к электролитическому нанесению покрытий из меди и сплава олово-висмут на молибденовые сплавы. Способ включает электрохимическое обезжиривание деталей, анодное травление, электроосаждение промежуточного слоя, повышающего адгезию гальванических покрытий, при этом в одном универсальном электролите, состоящем из меди сернокислой 2-3% и серной кислоты 45-65%, имеющем температуру электролита 70-80°C, выполняют анодное травление при анодной плотности тока 10-30 А/дм2 в течение 2-4 мин, затем, не вынимая деталей из электролита, меняют полярность, начинают перемешивать электролит и выполняют толчок тока с катодной плотностью тока 8-10 А/дм2 в течение 0,5-0,7 мин, затем устанавливают катодную плотность тока 0,5-2 А/дм2 и осуществляют электроосаждение промежуточного слоя в течение 4-6 мин, затем детали переносят в сернокислый электролит меднения, состоящий из меди сернокислой 200-250 г/л и серной кислоты 50-70 г/л, в котором наращивают медное покрытие при катодной плотности тока 1-3 А/дм2 до толщины 6-12 мкм, после этого детали промывают и на медное покрытие наносят покрытие олово-висмут толщиной 6-12 мкм при катодной плотности тока 0,5-2 А/дм2 из электролита, содержащего, г/л: олово сернокислое 40-80, серную кислоту 100-120, висмут сернокислый 0,5-1,5, препарат ОС-20 4-5. Технический результат: сокращение количества операций, повышение производительности, применение доступного оборудования, использование более экологически чистых веществ, снижение процента брака, повышение адгезии покрытий к сплавам молибдена и улучшение паяемости. 3 пр.

Description

Изобретение относится к области гальванотехники и, в частности, к электролитическому нанесению покрытий меди и сплава олово-висмут на молибден и его сплавы. Покрытия, прежде всего, наносились для улучшения паяемости деталей, используемых в электронной промышленности.
Известен способ гальванической металлизации молибдена и сплавов на его основе, включающий такие операции: катодное обезжиривание в 15% растворе едкого натрия при плотности тока 20-30 А/дм2, анодное травление в смеси фосфорной и серной кислот или в едком натрии при анодной плотности тока до 150 А/дм2, отжиг в среде водорода при температуре 1100-1400°С, никелирование. (Мельников П.С. Справочник по гальванопокрытиям в машиностроении. – М.: Машиностроение, 1979 г. - 296 с.). Известный способ, также как и предлагаемый способ гальванической металлизации молибденовых сплавов, включает операции: катодного обезжиривания, анодного травления и позволяет наносить гальванические покрытия на молибден и его сплавы. Однако известный способ более многооперационный, имеет более низкую производительность, требует специального дорогостоящего термического оборудования, при этом выше процент брака и покрытия хуже паяются.
Наиболее близким аналогом (прототипом) предлагаемого изобретения является известный способ, включающий следующие операции: анодное удаление окислов в 10% растворе плавиковой кислоты при плотности тока 5 А/дм2 в течение 5 минут, термическая обработка в вакууме при 700-900°С, электрохимическое обезжиривание в 10-20% растворе едкого натрия при плотности тока 5-8 А/дм2, активирование в соляной кислоте, хромирование в стандартном сернокислом электролите, травление в соляной кислоте, никелирование в кислом электролите с рН меньше 1, травление в соляной кислоте и никелирование в стандартном сернокислом электролите (см. Ажогин Ф.Ф., Беленький М.А. и др. Гальванотехника. – М.: Металлургия, 1986 - 736 с.) Прототип, также как и предлагаемый способ гальванической металлизации молибденовых сплавов включает операции: электрохимического обезжиривания, анодного травления, электроосаждение промежуточного слоя, повышающего адгезию гальванических покрытий к молибдену и его сплавам. Однако прототип включает значительно большее количество операций по сравнению с предлагаемым способом, имеет более низкую производительность, требует специального дорогостоящего термического оборудования, используются вещества 1-го класса опасности, при этом выше процент брака, хуже паяемость и ниже адгезия.
Задачей изобретения является сокращение технологических операций, повышение производительности процесса, применение более доступного и менее дорогостоящего оборудования, использование более экологически чистых веществ (материалов), уменьшение процента брака, повышение адгезии гальванических покрытий к сплавам молибдена и улучшение паяемости.
Для решения данной задачи предложен способ гальванической металлизации молибденовых сплавов. В предлагаемом способе гальваническое покрытие наносят на пластины молибдено-медных псевдосплавов марок МД25, МД40, МД50, МД55. Для очистки поверхности образцов проводят их обезжиривание в следующем растворе (г/л): едкий натр 10-20, натрий углекислый 40-50, тринатрийфосфат (кристаллогидрат) 40-50, метасиликат натрия 3-5, синтанол ДС-10 1-2. Температуру этого электролита необходимо поддерживать от 60 до 70°С. Время обезжиривания зависит от степени загрязнения и материала детали. Во всех случаях электролиз следует вести при плотностях тока 3-10 А/дм2, а соотношение площадей обрабатываемых деталей и вспомогательных электродов должно быть 1:1,5-2. В качестве вспомогательных электродов можно использовать пластины из никеля, никелированной стали или нержавеющей стали. Также хорошие результаты были получены при обезжиривании переменным током промышленной частоты напряжением 10-12 В и плотностью тока 5-10 А/дм2. Применение переменного тока позволяет повысить производительность оборудования, так как в этом случае не требуются вспомогательные электроды и в ванну для обезжиривания помещается больше деталей, кроме этого используется более дешевое оборудование. В связи с вышеизложенным в предлагаемом способе используют обезжиривание переменным током. После обезжиривания детали промывают в течение 0,5-1 минуты в горячей воде, имеющей температуру 60-80°С. Качество обезжиривания контролируют по смачиваемости обезжиренной поверхности водой. Следующая операция промывка в дистиллированной или деионизованной воде. Значительное внимание было уделено выбору состава и режимов травления молибдено-медных псевдосплавов, так как при металлизации этих сплавов известными способами прочность сцепления покрытий невысокая. Это связано с тем, что поверхность молибдена покрыта оксидной пленкой, которая плохо травится, а после удаления вновь очень быстро образуется. Так, например, в прототипе оксидная пленка удаляется анодным травлением в плавиковой кислоте, затем при обработке в соляной кислоте, однако, пока идет промывка в воде и перенос деталей в ванну хромирования оксидная пленка вновь частично восстанавливается и это снижает прочность сцепления покрытия с молибденом и его сплавами. В предлагаемом способе анодное травление оксидной пленки с поверхности молибденового сплава и последующее нанесение покрытия выполняется в одном электролите без извлечения деталей из электролита и практически отсутствует пауза между операциями анодного травления и нанесением покрытия. Кроме этого, после стравливания оксидной пленки с поверхности молибдена, идет выборочное травление сплава молибден-медь, при котором молибден травится с большей скоростью, и поверхность сплава обогащается медью, что также способствует повышению адгезии. В качестве такого универсального электролита предложено использовать электролит, состоящий из % (по массе): меди сернокислой 2-3% и серной кислоты 45-65%, остальное вода, температура электролита 70-80°С. В качестве электродов применяют медные пластины М0. Вначале в этом электролите выполняют анодное травление деталей при анодной плотности тока Да=10-30 А/дм2 в течение 2-4 мин, затем, не вынимая деталей из электролита, меняют полярность и осуществляют электроосаждение медного покрытия. Электроосаждение начинают с толчка тока с катодной плотностью тока 8-10 А/дм2 и временем выдержки 0,5-0,7 мин, затем устанавливают рабочую катодную плотность тока 0,5-2 А/дм2 и наносят покрытие в течение 4-6 мин. Затем детали переносят в сернокислый электролит меднения, состоящий из меди сернокислой пятиводной 200-250 г/л и серной кислоты 50-70 г/л, в котором наращивают медное покрытие при катодной плотности тока 1-3 А/дм2 до толщины 6-12 мкм. После этого детали промывают и на медное покрытие наносят покрытие олово-висмут толщиной 6-12 мкм при катодной плотности тока 0,5-2 А/дм2 из электролита, содержащего в (г/л): олово сернокислое 40-80, серную кислоту 100-120, висмут сернокислый 0,5-1,5, препарат ОС-20 (марки В) 4-5. В состав электролита меднения входит сернокислая медь - это основной источник ионов меди в электролите, серная кислота создает необходимый рН электролита, повышает качество покрытия и электропроводность электролита. Олово сернокислое в электролите лужения - это источник ионов олова, серная кислота повышает электропроводность и препятствует гидролизу олова и образованию 4-валентных ионов олова, высокая концентрация серной кислоты уменьшает выход по току. Выход по току также может снизиться при уменьшении концентрации сернокислого олова. Препарат ОС-20 улучшает качество покрытия, способствует получению мелкозернистых покрытий, о содержании препарата ОС-20 судят по внешнему виду покрытия, при низкой концентрации ОС-20 покрытия становятся неплотными, рыхлыми и пористыми. Легирование олова небольшим количеством висмута (0,3-2%) значительно улучшает паяемость, в частности покрытия, содержащие висмут, значительно дольше сохраняют способность к пайке. Способность покрытия к пайке проверялась, прежде всего, по смачиваемости (растеканию) покрытия припоем ПОС61 с помощью установки программируемого нагрева и сварки VSU200, а также с помощью печи СНОЛ-1,4.2,5.1,2/12,5-И1. Для этого навески припоя устанавливали на поверхность образцов и помещали в установку VSU200 или в печь СНОЛ-1,4.2,5.1,2/12,5-И1. При выполнении экспериментов с помощью установки VSU200 в качестве флюса использовались пары муравьиной кислоты, а в опытах, проводимых в печи СНОЛ-1,4.2,5.1,2/12,5-И1, использовали канифольно-спиртовой флюсом (30% канифоли и 70% спирта). Проверялась прочность сцепления покрытия с металлом основой (адгезия) покрытия с основой по ГОСТ 9.302 88 методом нанесения сетки царапин (метод рисок), крацовкой латунной щеткой, методом отрыва припаянной (припоем ПОС61) к покрытию проволоки.
Пример №1 получения конкретного двухслойного покрытия медь - сплав олово-висмут на молибденово-медном псевдосплаве МД 40 при использовании электролитов с минимальными значениями: концентрации компонентов, температуры, катодной плотности тока. Универсальный электролит для анодного травления и предварительного меднения содержал, % по массе: медь сернокислую 2, серную кислоту 45 и имел температуру электролита 70°С. Вначале в этом электролите выполняли анодное травление деталей при анодной плотности тока Да=10 А/дм2 в течение 4 мин, затем, не вынимая образцы (детали) из электролита, меняли полярность и осуществляли электроосаждение медного покрытия, при этом электролит перемешивали с помощью мешалки. Электроосаждение начинали с толчка тока с катодной плотностью тока 8 А/дм2 и временем выдержки 0,7 мин, затем устанавливали рабочую катодную плотность тока 0,5 А/дм2 и наносили покрытие в течение 6 мин. Затем переносили образцы в сернокислый электролит основного меднения, содержащий, г/л: медь сернокислую 200, серную кислоту 50, в котором наращивали медное покрытие при катодной плотности тока 1 А/дм2 до толщины 6 мкм. На медное покрытия наносили сплав олово-висмут толщиной 6,1 мкм, используя электролит(г/л): олово сернокислое 40, серная кислота 100, висмут сернокислый 0,5, препарат ОС-20 (марки В) 4, при катодной плотности тока 0,5 А/дм2. Полученное покрытие было матовым, ровным, без видимых дефектов. Покрытие выдержало испытания на проверку прочности сцепления (адгезию) крацовкой латунной щеткой, методом царапания, методом отрыва припаянной (припоем ПОС61) к покрытию проволоки. При испытании на отрыв разрушение происходит по припою, т.е. прочность сцепления выше прочности припоя. Покрытие имеет отличную паяемость припоем ПОС-61.
Пример №2 получения конкретного двухслойного покрытия медь - сплав олово-висмут на молибденово-медном псевдосплаве МД 40 при использовании электролитов с максимальными значениями: концентрации компонентов, температуры, катодной плотности тока. Универсальный электролит для анодного травления и предварительного меднения содержал, % по массе: медь сернокислую 3, серную кислоту 65 и имел температуру электролита 80°С. Вначале в этом электролите выполняли анодное травление деталей при анодной плотности тока Да=30 А/дм2 в течение 2 мин, затем не вынимая образцы (детали) из электролита меняли полярность и осуществляли электроосаждение медного покрытия, при этом электролит перемешивали с помощью мешалки. Электроосаждение начинали с толчка тока с катодной плотностью тока 10А/дм2 и временем выдержки 0,5 мин, затем устанавливали рабочую катодную плотность тока 2 А/дм2 и наносили покрытие в течение 4 мин. Затем переносили образцы в сернокислый электролит основного меднения, содержащий, г/л: медь сернокислую 250, серную кислоту 70, в котором наращивали медное покрытие при катодной плотности тока 3 А/дм2 до толщины 12,1 мкм. На медное покрытие наносили сплав олово-висмут толщиной 11,9 мкм, используя электролит(г/л): олово сернокислое 80, серная кислота 120, висмут сернокислый 1,5, препарат ОС-20 (марки В) 5, при катодной плотности тока 2 А/дм2. Полученное покрытие было матовым, ровным, без видимых дефектов. Покрытие выдержало испытания на проверку прочности сцепления (адгезию) крацовкой латунной щеткой, методом царапания, методом отрыва припаянной (припоем ПОС61) к покрытию проволоки. При испытании на отрыв разрушение происходит по припою, т.е. прочность сцепления выше прочности припоя. Покрытие имеет отличную паяемость припоем ПОС-61.
Пример №3 получения конкретного двухслойного покрытия медь - сплав олово-висмут на молибденово-медном псевдосплаве МД 40 при использовании электролитов со средними значениями: концентрации компонентов, температуры, катодной плотности тока.
Универсальный электролит для анодного травления и предварительного меднения содержал, % по массе: медь сернокислую 2,5, серную кислоту 55 и имел температуру электролита 75°С. Вначале в этом электролите выполняли анодное травление деталей при анодной плотности тока Да=20 А/дм2 в течение 3 мин, затем не вынимая образцы (детали) из электролита меняли полярность и осуществляли электроосаждение медного покрытия, при этом электролит перемешивали с помощью мешалки. Электроосаждение начинали с толчка тока с катодной плотностью тока 9 А/дм2 и временем выдержки 0,6 мин, затем устанавливали рабочую катодную плотность тока 1,25 А/дм2 и наносили покрытие в течение 5 мин. Затем переносили образцы в сернокислый электролит основного меднения, содержащий, г/л: медь сернокислую 225, серную кислоту 60, в котором наращивали медное покрытие при катодной плотности тока 2 А/дм2 до толщины 8,9 мкм. На медное покрытия наносили сплав олово-висмут толщиной 9 мкм, используя электролит (г/л): олово сернокислое 60, серная кислота 110, висмут сернокислый 1, препарат ОС-20 (марки В) 4,5, при катодной плотности тока 1,25 А/дм2. Полученное покрытие было матовым, ровным, без видимых дефектов. Покрытие выдержало испытания на проверку прочности сцепления (адгезию) крацовкой латунной щеткой, методом царапания, методом отрыва припаянной (припоем ПОС61) к покрытию проволоки. У двух покрытий из 20, полученных по способу, изложенному в прототипе с верхним слоем олово-висмут, разрушение происходило по металлу основе, т е прочность сцепления была ниже прочности припоя, у остальных 18 образцов разрушение происходило по припою, т.е. прочность сцепления была выше прочности припоя ПОС61. При испытании на отрыв 20 образцов, покрытых по предлагаемому способу, разрушение происходило по припою, т.е. прочность сцепления была выше прочности припоя. Покрытие имеет отличную паяемость припоем ПОС-61, при этом средняя растекаемость на 34% выше, чем у покрытия, полученного по способу, изложенному в прототипе с верхним слоем олово-висмут.
Предлагаемое изобретение позволяет получить следующий технический результат: сократить количество технологических операций, повысить производительность процесса, применить более доступное и менее дорогостоящее оборудование, использовать более экологически чистые вещества, уменьшить процент брака, повысить адгезию гальванических покрытий к медьсодержащим сплавам молибдена и улучшить паяемость.

Claims (1)

  1. Способ гальванической металлизации деталей из молибденовых сплавов, включающий электрохимическое обезжиривание, анодное травление, электроосаждение промежуточного слоя, повышающего адгезию гальванических покрытий, отличающийся тем, что в одном универсальном электролите, состоящем из меди сернокислой 2-3 мас.% и серной кислоты 45-65 мас.%, имеющем температуру электролита 70-80°C, выполняют анодное травление деталей при анодной плотности тока 10-30 А/дм2 в течение 2-4 мин, затем, не вынимая деталей из электролита, меняют полярность, начинают перемешивать электролит и выполняют толчок тока с катодной плотностью тока 8-10 А/дм2 в течение 0,5-0,7 мин, затем устанавливают рабочую катодную плотность тока 0,5-2 А/дм2 и осуществляют электроосаждение промежуточного слоя в течение 4-6 мин, затем детали переносят в сернокислый электролит меднения, состоящий из меди сернокислой 200-250 г/л и серной кислоты 50-70 г/л, в котором наращивают медное покрытие при катодной плотности тока 1-3 А/дм2 до толщины 6-12 мкм, после этого детали промывают и на медное покрытие наносят покрытие олово-висмут толщиной 6-12 мкм при катодной плотности тока 0,5-2 А/дм2 из электролита, содержащего, г/л: олово сернокислое 40-80, серную кислоту 100-120, висмут сернокислый 0,5-1,5, препарат ОС-20 марки В 4-5.
RU2017122848A 2017-06-28 2017-06-28 Способ гальванической металлизации молибденовых сплавов RU2653515C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017122848A RU2653515C1 (ru) 2017-06-28 2017-06-28 Способ гальванической металлизации молибденовых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017122848A RU2653515C1 (ru) 2017-06-28 2017-06-28 Способ гальванической металлизации молибденовых сплавов

Publications (1)

Publication Number Publication Date
RU2653515C1 true RU2653515C1 (ru) 2018-05-10

Family

ID=62105730

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017122848A RU2653515C1 (ru) 2017-06-28 2017-06-28 Способ гальванической металлизации молибденовых сплавов

Country Status (1)

Country Link
RU (1) RU2653515C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU211258A1 (ru) * Ю. С. Касаткин

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU211258A1 (ru) * Ю. С. Касаткин
SU231992A1 (ru) * Способ подготовки поверхности молибдена перед нанесением галбванических покрб1тий

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АЖОГИН Ф.Ф. и др. Гальванотехника. М., Металлургия, 1987, с. 424, табл. 10.6. *

Similar Documents

Publication Publication Date Title
CN101243211B (zh) 用于电镀的镁基材的预处理
JP2004523663A (ja) アルミニウム加工部材のメッキおよび前処理方法
US10889910B2 (en) Boron-containing low-carbon steel oxide film and preparation method thereof
CN102517617A (zh) 表面粗化铜板的装置、以及表面粗化铜板
US20090211914A1 (en) Trivalent Chromium Electroplating Solution and an Operational Method Thereof
KR100695999B1 (ko) 고주파펄스를 이용한 금속재의 아노다이징 공정
TW202231937A (zh) 金屬填充微細結構體和金屬填充微細結構體的製造方法
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
US2078868A (en) Electroplating process
CN110306220B (zh) 接插件电镀工艺
RU2653515C1 (ru) Способ гальванической металлизации молибденовых сплавов
US3616292A (en) Alumated stannous sulfate solutions their preparation and their use in plating on conductive surfaces particularly on aluminum
US2966448A (en) Methods of electroplating aluminum and alloys thereof
KR100777176B1 (ko) 마그네슘을 주성분으로 하는 금속체의 표면 처리 방법
RU2549037C2 (ru) Способ подготовки поверхности изделий из нержавеющей стали перед гальваническим меднением
FR2617195A1 (fr) Revetement electrogalvanise ameliore pour acier
US2078869A (en) Electroplating process
JP6029202B2 (ja) アルミニウムまたはアルミニウム合金材への純鉄の電気めっき方法
Accogli et al. In Situ-Raman spectroscopy and electrochemical characterization on electroless nickel immersion gold process
CN109267115A (zh) 一种铜质零部件镀镍方法
US2879210A (en) Process of electroplating on aluminum
RU2709913C1 (ru) Способ нанесения гальванических покрытий на сложнопрофильные детали
US3075894A (en) Method of electroplating on aluminum surfaces
RU2588702C2 (ru) Электролит анодирования и меднения алюминия и его сплавов
US20040231978A1 (en) Electrode attachment to anode assembly

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190629