RU2651630C2 - Инфракрасный оптический датчик, включающий в себя ячейку для измерения пропускания - Google Patents

Инфракрасный оптический датчик, включающий в себя ячейку для измерения пропускания Download PDF

Info

Publication number
RU2651630C2
RU2651630C2 RU2014102207A RU2014102207A RU2651630C2 RU 2651630 C2 RU2651630 C2 RU 2651630C2 RU 2014102207 A RU2014102207 A RU 2014102207A RU 2014102207 A RU2014102207 A RU 2014102207A RU 2651630 C2 RU2651630 C2 RU 2651630C2
Authority
RU
Russia
Prior art keywords
liquid
optical
optical component
sensor
housing
Prior art date
Application number
RU2014102207A
Other languages
English (en)
Other versions
RU2014102207A (ru
Inventor
Эрве РИШАР
Антуан ПЬЯНЮ
Original Assignee
Континенталь Отомотив Франс
Континенталь Аутомотиве Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Континенталь Отомотив Франс, Континенталь Аутомотиве Гмбх filed Critical Континенталь Отомотив Франс
Publication of RU2014102207A publication Critical patent/RU2014102207A/ru
Application granted granted Critical
Publication of RU2651630C2 publication Critical patent/RU2651630C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8557Special shaping of flow, e.g. using a by-pass line, jet flow, curtain flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0228Moulded parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Изобретение относится к области анализа материалов и касается оптического датчика для анализа жидкости. Датчик содержит расположенную в корпусе центральную секцию канала, по которому течет подлежащая анализу жидкость, и устройство спектрального анализа, содержащее источник инфракрасного излучения, испускающий сигнал, который принимается принимающим устройством после того, как проходит через анализируемую жидкость, несущую пластину, которая несет инфракрасный источник и принимающее устройство. Подлежащая анализу жидкость течет через замкнутый контур в центральной секции канала, образованного стенками в форме арки оптического компонента и выступом корпуса в оптическом компоненте. Между оптическим компонентом и корпусом зажата уплотнительная прокладка, препятствующая диффузию жидкости вовнутрь корпуса. Технический результат заключается в обеспечении возможности проведения непрерывного анализа жидкости без образования застойного кармана и скапливания осадков. 2 н. и 10 з.п. ф-лы, 3 ил.

Description

Изобретение относится к инфракрасному оптическому датчику, включающему в себя ячейку для измерения пропускания и предназначенному для анализа жидкостей в реальном масштабе времени, причем упомянутый датчик можно использовать, в частности, для непрерывного анализа жидкости, текущей в трубе.
В своем основном, но не исключительном приложении, изобретение относится к оперативному контролю качества и состава топлива в транспортных средствах с помощью бортовых датчиков в упомянутых транспортных средствах. Этот оперативный контроль стал существенным как мера, принимаемая в ответ на расширяющееся применение биодизельного топлива из различных источников, имеющего разные составы.
Если проводить этот оперативный контроль в реальном масштабе времени, он позволит системе управления регулировать - в интересах повышения эффективности сгорания - различные настроечные параметры двигателя, например качество впрыскиваемого топлива, синхронизацию зажигания, давление на входе, или настроечные параметры снижения токсичности отработавших газов.
Состав топлив можно оперативно контролировать на бензораздаточной колонке, где качество должно поддерживаться на постоянном уровне при условии широкого выбора топлив на основе нефти или биотоплив, содержащих различные процентные доли этанола. Простое средство установления этого состава предусматривает использование датчиков, установленных в топливном баке или между топливным баком и двигателем, чтобы позволить электронной системе управления транспортного средства регулировать настроечные параметры двигателя. В настоящее время релевантной для оптического анализа характеристик топлив и смазок, включая октановое число, а также окисления и разбавления, признается инфракрасная область спектра.
Для анализа текучих сред есть датчики многих типов. Однако лишь некоторые датчики предназначены для работы в реальном масштабе времени, что является существенным предварительным условием для управления эффективностью сгорания в двигателе. В патентном документе 6842234 описан датчик этого типа, содержащий оптическое волокно с двумя прядями, один конец которого вставлен в качестве зонда в жидкость, подлежащую анализу, в другой конец которого соединен с устройством обработки сигналов.
Устройство обработки сигналов генерирует оптический сигнал инфракрасного излучения в первой пряди упомянутого волокна, которая заканчивается в жидкости напротив отражателя. Этот отражатель отражает оптический сигнал ко второй пряди волокна. Соответственно на другом конце волокна устройство обработки анализирует оптический сигнал, который прошел через зонд, погруженный в жидкость, подлежащую анализу. Температура и состав жидкости, подлежащей анализу, будет изменять обратный оптический сигнал, идущий в устройство обработки.
Чтобы гарантировать, что оптический сигнал полностью отражается внутри прядей оптического волокна, должны выполняться два условия: показатель преломления волоконно-оптического стекла должен быть выше, чем показатель преломления жидкости, через которую проходит волокно, а радиус кривизны оптического волокна должен быть достаточно большим. Соответственно датчик этого типа является громоздким по конструкции и дорогим.
Примеры менее громоздких и менее дорогих датчиков описаны в патентном документе US 7339657. В этом документе описаны датчики, основанные на принципе спектроскопии отражения инфракрасного излучения. В соответствии с этим принципом светоизлучающие диоды (СИДы) испускают инфракрасный луч на внутренней поверхности оптической структуры типа многогранного кристалла, внешние грани которой находятся в контакте с жидкостью, подлежащей анализу, и внутренний объем которой представляет собой канал луча света.
Эта многогранная структура гарантирует, что в ее внутреннем объеме произойдут, по меньшей мере, два отражения луча света. Траектория исходящего луча света из СИДа и траектория возврата этого луча в точку анализа посредством него проходят параллельно, но в противоположных направлениях. Эта траектория исходящего луча и обратного луча позволяет устанавливать инфракрасный источник и аналитическое устройство на единственной схемной плате. Отражения инфракрасного луча от внутренних стенок оптической структуры при анализе обратного луча обеспечивает возможность сделать вывод о различных физических или химических параметрах анализируемой жидкости на другой стороне оптической структуры. Структура этих датчиков, включающая в себя СИДы, единственную схемную плату и ограниченный объем, согласуется с относительно низкими производственными затратами и монтажом упомянутых датчиков на борту транспортного средства.
Вместе с тем, эта оптическая структура создает выступ внутри объема жидкости, подлежащей анализу. В результате этого выступа циркулирующая жидкость образует застойный карман перед оптической структурой (в направлении течения), так что в упомянутом застойном кармане будут скапливаться осадки (сажа, загрязняющие вещества и т. д.). Более того, используемые кристаллы являются и дорогими, и хрупкими.
Изобретение предназначено для преодоления этих недостатков за счет применения спектроскопии пропускания инфракрасного излучения и использования устройства для непрерывного анализа всего объема топлива, проходящего по не перегороженному каналу, вследствие чего допускается анализ топлива, текущего в упомянутом канале, без образования застойного кармана в жидкости, не приводящий к застою осадков.
Более конкретно задача данного изобретения состоит в том, чтобы разработать оптический датчик для анализа жидкости, причем этот датчик содержит в корпусе центральную секцию канала, по которому течет жидкость, и устройство спектрального анализа, использующее пучок света в некоторой полосе длин волн. Пучок в этом устройстве испускается источником инфракрасного излучения и принимается принимающим устройством после того, как проходит через жидкость, подлежащую анализу, и через оптический компонент. Несущая пластина, расположенная на основании, несет инфракрасный источник и принимающее устройство. В этом датчике жидкость, подлежащая анализу, течет по замкнутому контуру в центральной секции канала, огороженного стенками оптического компонента, которые образуют арку, и корпусом, который образует выступ в упомянутой арке. Между оптическим компонентом и корпусом зажата уплотнительная прокладка, чтобы предотвратить всякую диффузию жидкости вовнутрь корпуса.
Конфигурация канала в виде замкнутого контура для циркуляции жидкости внутри оптического компонента допускает анализ жидкости посредством спектроскопии пропускания без создания какого бы то ни было препятствия на пути жидкости и соответственно без образования застойного кармана жидкости и возникающего в результате скопления осадков, как в случае датчиков, в которых применяется спектроскопия отражения.
В соответствии с нижеследующими конкретными преимущественными признаками:
- оптический компонент включает в себя, по меньшей мере, одну совокупность, состоящую из первой и второй отражающих стенок, которые наклонены относительно оптического пучка, тем самым образуя оптический путь исходящего пучка и обратного пучка на несущей пластине между источником инфракрасного излучения и принимающим устройством;
- первая отражающая стенка и вторая отражающая стенка имеют конфигурации плоских или асферических вогнутых поверхностей;
- пучок света расходится в направлении первой отражающей стенки, которая имеет конфигурацию вогнутой стенки, так что пучок, по существу, проходит через жидкость, подлежащую анализу, которая течет в замкнутом контуре, образованном центральной секцией канала, и фокусируется на второй отражающей стенке перед достижением принимающего устройства;
- по меньшей мере, одна из отражающих стенок состоит из отражателя, который прикреплен к оптическому компоненту;
- в процессе работы, оптический компонент образует сдвоенную арку, вследствие чего первая арка образуется в плоскости распространения пучка света, а вторая арка образуется в плоскости, которая перпендикулярна упомянутой плоскости распространения;
- арки и выступ корпуса образуют замкнутый контур в центральной секции канала в сердцевине оптического компонента, вмещающий жидкость, подлежащую анализу;
- упомянутая полоса длин волн лежит в спектре ближней инфракрасной области;
- источником инфракрасного излучения является светоизлучающий диод (или «СИД»);
- предусмотрены средства крепления, предназначенные для надежного крепления несущей пластины к корпусу, допуская регулируемое сжатие прокладки.
Изобретение также относится к способу анализа жидкости, в котором используют вышеупомянутый датчик. Этот способ включает в себя следующие этапы:
- первый этап, на котором осуществляют циркуляцию жидкости, подлежащей анализу, в замкнутом контуре вышеописанного датчика;
- второй этап, на котором включают источник инфракрасного излучения датчика для испускания расходящегося пучка;
- третий этап, на котором ориентируют пучок света в оптическом компоненте по направлению к первой отражающей стенке, которая делает упомянутый пучок сходящимся, а затем направляют через замкнутый контур, после чего упомянутый пучок подвергают второму отражению на второй отражающей стенке и, в конце концов, направляют к принимающему устройству на несущей пластине.
В соответствии с вариантом этого способа осуществляют дисперсию пучка света так, что полный пучок не достигает принимающего устройства; в этом случае конфигурация основания обеспечивает, по меньшей мере, частичный прием упомянутого диспергированного пучка. Этот прием посредством основания дополняет прием посредством принимающего устройства, тем самым увеличивая оптическую эффективность измерения.
Дополнительные сведения, характеристики и преимущества данного изобретения станут очевидными из нижеследующего описания, которое не носит ограничительный характер и приводится со ссылками на прилагаемые чертежи, при этом соответственно:
- на фиг. 1 показано поперечное сечение согласно примеру инфракрасного оптического датчика в соответствии с изобретением в плоскости циркуляции текучей среды, подлежащей анализу;
- на фиг. 2 показано поперечное сечение X’X на виде в плане согласно фиг. 1 датчика инфракрасного излучения в соответствии с изобретением в плоскости распространения лучей света, которая перпендикулярна плоскости циркуляции текучей среды; и
- на фиг. 3 показано поперечное сечение примера инфракрасного оптического датчика в соответствии с изобретением в плоскости винтов между оптическим компонентом и сжимающим корпусом.
Обращаясь к сечению, показанному на фиг. 1, отмечаем, что здесь пример варианта осуществления оптического датчика 100 инфракрасного излучения представлен в поперечном сечении в плоскости циркуляции текучей среды 3, подлежащей анализу. Эта текучая среда 3, в иллюстрируемом примере - топливо, течет к датчику 100 в канале, состоящем из внешнего канала 2, соединенного крепежными деталями 20 с центральной секцией канала 2’, сформированного внутри датчика 100. Упомянутый датчик 100 снабжен корпусом 1 из пластмассы, в котором заключены все специализированные компоненты для анализа топлива 3, подробно описываемые ниже. Оптический анализ упомянутого топлива 3 будет осуществляться на базе пучка инфракрасного излучения, который проходит через эту центральную секцию канала 2’. Эта центральная секция канала 2’ снабжена замкнутым контуром 4, состоящим из сводчатого профиля 5, арки 50 на его верхнем участке, выполненной в стеклянном оптическом компоненте 9, и нижней поверхности 6 выступа 60 корпуса 1 в упомянутом оптическом компоненте 9. Ножки 51 арки 50 оканчиваются на уровнях 7 и 7’ с каждой стороны выступа 60.
На фиг. 1 также показана несущая пластина 13 аппаратуры (см. фиг. 2), опертая на основание 16 и прикрепленная к оптическому компоненту 9 посредством винтов (на фиг. 1 видны только головки 150 упомянутых винтов). Уплотнительное кольцо 10 круглого поперечного сечения крепит ножки 51 оптического компонента к скругленному уголку 19 корпуса 1, чтобы предотвратить всякую утечку топлива в корпус 1 из центральной секции канала 2’.
Для плотного крепления несущей пластины 13 корпуса 1 предусмотрены дополнительные винты (только головки 170 которых видны на фиг. 1), что обеспечивает сжатие уплотнительного кольца 10 круглого поперечного сечения и гарантирует герметичность центральной секции канала 2’.
Пучок света пересекает центральную секцию канала 2’, по существу, по всей высоте Н возвышения упомянутой центральной секции канала 2’, т.е. между вершинами сводчатого профиля 5 и выступа 60. Это позволяет провести спектроскопию пропускания, описываемую ниже.
На фиг. 2 показано поперечное сечение датчика 100 инфракрасного излучения в плоскости распространения пучка 30 света в соответствии с изобретением, перпендикулярное поперечному сечению, показанному на фиг. 1, в плоскости X’X. Замкнутый контур 4 стеклянного оптического компонента 9 снабжен аркой 52, перпендикулярной арке 50, показанной на фиг. 1, вследствие чего эти арки имеют одинаковый сводчатый профиль 5. Центральная секция канала 2’ представлена на уровне замкнутого контура 4, ограниченном высотой Н возвышения арки. Тогда очертания центральной секции канала 2’ образуются стеклянным оптическим компонентом 9 датчика 100 на всех его поверхностях, за исключением нижней поверхности, которая образована поверхностью 6 выступа 60 пластмассового корпуса 1. На фиг. 2 также показаны очертания внешнего канала 2, которые совпадают с очертаниями центральной секции канала 2’, снаружи оптического компонента 9.
Уплотнительное кольцо 10 круглого поперечного сечения вжато в уголок 19 корпуса 1, тем самым крепя ножки 51 оптического компонента 9.
Это поперечное сечение иллюстрирует путь пучка 30 света, пересекающего топливо, подлежащее анализу. Он пересекает упомянутое топливо, по существу, по всей высоте H между вершинами сводчатого профиля 5 и поверхности 6. Упомянутый пучок 30 света испускается источником 22 инфракрасного излучения, прикрепленным к несущей пластине 13 и оснащенным СИДом для испускания инфракрасного излучения, длина волны которого в рассматриваемом примере находится в диапазоне от 1500 до 2000 нм.
Пучок 30 света затем пересекает оптический компонент 9 по всей его ширине, описывая траекторию, которая генерирует в среднем два отражения под прямым углом от полностью наклоненных поверхностей 91 и 92 оптического компонента 9, тем самым поворачивая пучок 30 к принимающему устройству 28, прикрепленному к несущей пластине 13. Отражения генерируются первым отражателем 24, прикрепленным к поверхности 91 оптического компонента 9, и вторым отражателем 26, прикрепленным к поверхности 92 оптического компонента 9.
Первый отражатель 24 представляет собой асферический вогнутый отражатель, а второй отражатель представляет собой плоский отражатель 26. Расходящийся пучок 30 света испускается по направлению к первому отражателю 24, что позволяет пучку 30 пересекать центральную секцию канала 2’, по существу, по всей высоте H возвышения замкнутого контура 4 в центральной секции канала 2’ перед схождением ко второму отражателю 26, а затем направляться к принимающему устройству 28.
На фиг. 3 показано поперечное сечение примера оптического датчика 100 инфракрасного излучения в соответствии с изобретением в плоскости винтов 17 для крепления оптического компонента 9 к корпусу 1 за счет крепления основания 16 несущей пластины 13 к корпусу 1. Винты 17 сжимают уплотнительное кольцо 10 круглого поперечного сечения (фиг. 1 или 2), которое образует уплотнение между оптическим компонентом 9 и корпусом 1, тем самым гарантируя герметичность последнего. Остальные винты, у которых видны только головки 150, лежат в другой плоскости поперечного сечения. Эти винты крепят несущую пластину 13 к оптическому компоненту 9. Кроме того, пунктирные линии на фиг. 3 представляют центральную секцию канала 2’, образующую замкнутый контур 4 в плоскости, которая параллельна плоскости чертежа, вместе с принимающим устройством 28 датчика 100.
Изобретение не ограничивается примерами описанного и представленного варианта осуществления. Помимо топлив многие жидкости пригодны для непрерывного анализа посредством пропускания с использованием оптического датчика этого типа при условии, что жидкость, о которой идет речь, имеет коэффициент пропускания, отличающийся от нуля.
Датчик этого типа можно устанавливать в магистрали подачи топлива двигателя, на выходе топливного бака или в любой схеме, в которой требуется оперативный контроль качества текучей среды.
Пучок света также можно распространять в плоскости, перпендикулярной или параллельной плоскости циркуляции текучей среды, подлежащей анализу.
Что касается угла апертуры пучка света при испускании, то эту апертуру можно задавать для расхождения или схождения в соответствии с кривизной (кривизнами) отражающих стенок.
Более того, возможно одновременное применение нескольких длин волн в интересах накопления результатов, получаемых из анализов, проводимых с использованием пучка света, принимаемого после его прохождения через жидкость.
Можно использовать длины волн, отличающиеся от спектра ближней инфракрасной области, например, находящиеся в средней инфракрасной области или дальней инфракрасной области. Измерение можно проводить с использованием единственной длины волны или в пределах диапазона длин волн.
Замкнутому контуру, образованному каналом внутри датчика, также можно придать конфигурацию арки, которая ориентирована в разных направлениях относительно силы тяжести: возможна ориентация не только вниз, но и вверх или вбок. Давление текучей среды при циркуляции предотвращает всякое осаждение загрязняющих веществ в замкнутом контуре.

Claims (15)

1. Оптический датчик для анализа жидкости, причем этот датчик (100) содержит в корпусе (1) центральную секцию канала (2’), по которому течет жидкость (3), устройство спектрального анализа, использующее пучок (30) света в диапазоне длин волн, испускаемых источником (22) инфракрасного излучения и принимаемых принимающим устройством (28) после того, как проходит через жидкость (3), подлежащую анализу, и через оптический компонент (9), и несущую пластину (13), расположенную на основании (16), которая несет источник (22) инфракрасного излучения и принимающее устройство (28), отличающийся тем, что жидкость (3), подлежащая анализу, течет через замкнутый контур (4) в центральной секции канала (2’), огороженного стенками оптического компонента (9), которые образуют арку (50), тем, что корпус (1) образует выступ (60) в упомянутой арке (50), и тем, что между оптическим компонентом (9) и корпусом (1) зажата уплотнительная прокладка (10), чтобы предотвратить всякую диффузию жидкости вовнутрь корпуса (1).
2. Оптический датчик для анализа жидкости по п. 1, в котором оптический компонент (9) включает в себя по меньшей мере одну совокупность, состоящую из первой и второй отражающих стенок (91) и (92), которые наклонены относительно оптического пучка (30), тем самым образуя оптический путь исходящего пучка и обратного пучка на несущей пластине (13) между источником (22) инфракрасного излучения и принимающим устройством (28).
3. Оптический датчик для анализа жидкости по п. 2, в котором первая отражающая стенка (91) и вторая отражающая стенка (92) имеют конфигурации плоских или асферических вогнутых поверхностей.
4. Оптический датчик для анализа жидкости по одному из пп. 2 или 3, в котором пучок (30) света расходится в направлении первой отражающей стенки (91), которая имеет конфигурацию вогнутой стенки, так что пучок (30), по существу, проходит через жидкость (3), подлежащую анализу, которая течет в замкнутом контуре (4), и фокусируется на второй отражающей стенке (92) перед достижением принимающего устройства (28).
5. Оптический датчик для анализа жидкости по любому из пп. 2 или 3, в котором по меньшей мере одна из отражающих стенок состоит из отражателя (24, 26), который прикреплен к оптическому компоненту (9).
6. Оптический датчик для анализа жидкости по любому из пп. 1-3, в котором оптический компонент (9) образует сдвоенную арку (50, 52), вследствие чего первая арка (52) образуется в плоскости распространения пучка (30) света, а вторая арка (50) образуется в плоскости, которая перпендикулярна упомянутой плоскости распространения.
7. Оптический датчик для анализа жидкости по п. 6, в котором арки (50, 52) и выступ (60) корпуса (1) образуют замкнутый контур (4) в центральной секции канала (2’) в сердцевине оптического компонента (9), вмещающий жидкость (3), подлежащую анализу.
8. Оптический датчик для анализа жидкости по любому из пп. 1-3, в котором упомянутая полоса длин волн лежит в спектре ближней инфракрасной области.
9. Оптический датчик для анализа жидкости по любому из пп. 1-3, в котором источником (22) инфракрасного излучения является светоизлучающий диод.
10. Оптический датчик для анализа жидкости по любому из пп. 1-3, в котором предусмотрены средства (15, 17) крепления, предназначенные для надежного крепления несущей пластины (13) к корпусу (1), допуская регулируемое сжатие прокладки (10).
11. Способ анализа жидкости с использованием датчика (100) по любому из предыдущих пунктов, отличающийся тем, что включает в себя следующие этапы:
- первый этап, на котором осуществляют циркуляцию жидкости (3), подлежащий анализу, в замкнутом контуре (4) центральной секции канала (2’) в датчике (100);
- второй этап, на котором включают источник (22) инфракрасного излучения датчика для испускания расходящегося пучка (30);
- третий этап, на котором ориентируют пучок (30) света в оптическом компоненте (9) по направлению к первой отражающей стенке (91), которая делает упомянутый пучок сходящимся, а затем направляют через замкнутый контур (4), после чего упомянутый пучок подвергают второму отражению на второй отражающей стенке (92) и, в конце концов, направляют к принимающему устройству (28) на несущей пластине (13).
12. Способ анализа по предыдущему пункту, в котором осуществляют дисперсию пучка (30) света так, что полный пучок не достигает принимающего устройства (28), а основание (16) выполнено с возможностью по меньшей мере частичного приема упомянутого диспергированного пучка (30), причем этот прием посредством основания (16) дополняет прием посредством принимающего устройства (28).
RU2014102207A 2013-01-31 2014-01-23 Инфракрасный оптический датчик, включающий в себя ячейку для измерения пропускания RU2651630C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350855 2013-01-31
FR1350855A FR3001545B1 (fr) 2013-01-31 2013-01-31 Capteur optique infrarouge integrant une cellule de mesure par transmission

Publications (2)

Publication Number Publication Date
RU2014102207A RU2014102207A (ru) 2015-07-27
RU2651630C2 true RU2651630C2 (ru) 2018-04-23

Family

ID=48570242

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014102207A RU2651630C2 (ru) 2013-01-31 2014-01-23 Инфракрасный оптический датчик, включающий в себя ячейку для измерения пропускания

Country Status (5)

Country Link
US (1) US9347876B2 (ru)
CN (1) CN103969224B (ru)
BR (1) BR102014002490A2 (ru)
FR (1) FR3001545B1 (ru)
RU (1) RU2651630C2 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008036630A2 (en) * 2006-09-18 2008-03-27 Howard Lutnick Products and processes for analyzing octane content
CN108351299A (zh) * 2015-12-29 2018-07-31 哈里伯顿能源服务公司 用于对管道的监控传输进行测量的光学计算装置
EP3417273B1 (en) * 2016-02-15 2023-07-19 ExxonMobil Technology and Engineering Company Method and system for in-situ identification of working fluids
CN105891150B (zh) * 2016-05-10 2019-01-29 广东星创众谱仪器有限公司 一种用于近红外光谱分析仪的液体检测装置及其检测方法
JP6995288B2 (ja) * 2018-03-15 2022-01-14 オムロン株式会社 光電センサ
FR3088720A1 (fr) * 2018-11-19 2020-05-22 Cmr Group Sonde adaptée pour la mesure de la composition d'un gaz comburant
DE102022129251A1 (de) * 2022-11-04 2024-05-08 Watergenics GmbH Sonde zur Flüssigkeits-Analyse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835389A (en) * 1988-02-19 1989-05-30 Laser Precision Corporation Internal reflection spectroscopy for deep container immersion
RU2205382C2 (ru) * 1995-04-06 2003-05-27 Альфа Лаваль Агри Аб Способ и устройство для количественного определения частиц в жидких средах
US7339657B2 (en) * 2001-10-11 2008-03-04 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids
EA201000088A1 (ru) * 2007-07-06 2010-06-30 Бп Ойл Интернешнл Лимитед Оптическая кювета

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2838396A1 (de) * 1978-09-02 1980-03-20 Hartmann & Braun Ag Optische sondenvorrichtung
DE3503626A1 (de) * 1985-02-02 1986-08-07 Otto Tuchenhagen GmbH & Co KG, 2059 Büchen Optische sondenvorrichtung fuer die fotometrische analyse von in leitungen stroemenden fluiden
DE4014739A1 (de) * 1990-05-08 1991-11-28 Monitek Gmbh Messvorrichtung
CN1034610C (zh) * 1992-06-25 1997-04-16 厦门大学 原位红外光谱样品池
CN2174700Y (zh) * 1993-11-24 1994-08-17 大庆石油管理局油田建设设计研究院 含油污水中原油浓度在线监测仪
ATE288584T1 (de) * 1999-10-18 2005-02-15 Siemens Plc Vorrichtung zur messung der farbe und trübung von wasser mittels eines einzigen detektors
IL146404A0 (en) * 2001-11-08 2002-07-25 E Afikin Computerized Dairy Ma Spectroscopic fluid analyzer
KR100469870B1 (ko) 2002-08-02 2005-02-02 한국과학기술연구원 디젤 엔진오일 수트 함량 실시간 측정장치
US7373259B2 (en) * 2002-10-29 2008-05-13 E.I. Du Pont De Nemours And Company Method and apparatus for performing chemical reactions in a plurality of samples
DE10336875A1 (de) * 2003-08-11 2005-03-17 Bayer Chemicals Ag Spektroskopische Konzentrationsbestimmung in einer Rektifikationskolonne
US7224455B2 (en) * 2004-05-28 2007-05-29 Teledyne Technologies Incorporated Measuring particulate matter in a fluid
DE102006041274A1 (de) * 2006-09-02 2008-03-06 Marquardt Gmbh Sensor zur Trübungsmessung
US20100096551A1 (en) * 2006-12-28 2010-04-22 Koninklijke Philips Electronics N.V. Spectroscopy measurements
US7605361B2 (en) * 2007-07-09 2009-10-20 Denso Corporation Fuel property detection device
CA2606986A1 (en) * 2007-09-10 2009-03-10 Veris Industries, Llc Duct-mountable sensing unit
CN101303301A (zh) * 2008-06-23 2008-11-12 东北电力大学 烟气粉尘和特性气体同时在线监测方法及装置
US8139222B2 (en) * 2010-03-01 2012-03-20 Gas Technology Institute Pressure controlled spectroscopic heating value sensor
JP5523908B2 (ja) * 2010-04-13 2014-06-18 三菱重工業株式会社 流量測定装置及び流速測定装置
WO2011127551A1 (en) * 2010-04-15 2011-10-20 Groupe Environnemental Labrie Inc. Turbidity measurement apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835389A (en) * 1988-02-19 1989-05-30 Laser Precision Corporation Internal reflection spectroscopy for deep container immersion
RU2205382C2 (ru) * 1995-04-06 2003-05-27 Альфа Лаваль Агри Аб Способ и устройство для количественного определения частиц в жидких средах
US7339657B2 (en) * 2001-10-11 2008-03-04 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids
EA201000088A1 (ru) * 2007-07-06 2010-06-30 Бп Ойл Интернешнл Лимитед Оптическая кювета

Also Published As

Publication number Publication date
CN103969224B (zh) 2018-03-06
US9347876B2 (en) 2016-05-24
BR102014002490A2 (pt) 2015-10-06
CN103969224A (zh) 2014-08-06
US20140211197A1 (en) 2014-07-31
RU2014102207A (ru) 2015-07-27
FR3001545A1 (fr) 2014-08-01
FR3001545B1 (fr) 2015-03-20

Similar Documents

Publication Publication Date Title
RU2651630C2 (ru) Инфракрасный оптический датчик, включающий в себя ячейку для измерения пропускания
CN102265137B (zh) 具有单个的测量和参考检测器的汽车车载微型光谱仪
US7880886B2 (en) Gas sensor
JP6657059B2 (ja) 多重反射型セル、分析装置、排ガス分析装置、及び、光の入射方法
CN110383043B (zh) 光学气体传感器
JP2011501121A (ja) 流体分析用の分光測定デバイス
US7215428B2 (en) Absorption spectroscopy apparatus and method
US20160169800A1 (en) Inline concentration meter and concentration detection method
CN101400989A (zh) 废气分析仪的传感器装置
KR20180104090A (ko) 농도 측정 장치
CN106198471B (zh) 一种基于导光毛细管的生化荧光分析仪及其检测方法
CN105548014A (zh) 可调光程的双吸收光程光学吸收装置
US9377411B2 (en) Transflexion probe and transflective sensor
CN105954232A (zh) 一种液体折射率测量系统
US11630058B2 (en) Concentration measurement device
US10025077B2 (en) Device for measuring solution concentration
WO2020203281A1 (ja) 濃度測定装置
CN108020528A (zh) 一种实现多方法测量的激光对射装置
US20180088038A1 (en) Gas detection device
CN109073543A (zh) 用于测量至少一种溶液中物质的吸收率的方法和测量装置
US8958072B2 (en) Microphotometer
CN211263144U (zh) 一种简易长光程气体吸收池
RU2801786C1 (ru) Устройство для определения концентрации механических примесей и свободной воды в потоке жидкого углеводородного топлива
US20180045642A1 (en) Gas detection device and method for detecting gas concentration
JP5483163B2 (ja) レーザガス分析装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210124