RU2651576C1 - Каталитические системы и способы обработки технологических потоков - Google Patents
Каталитические системы и способы обработки технологических потоков Download PDFInfo
- Publication number
- RU2651576C1 RU2651576C1 RU2016140634A RU2016140634A RU2651576C1 RU 2651576 C1 RU2651576 C1 RU 2651576C1 RU 2016140634 A RU2016140634 A RU 2016140634A RU 2016140634 A RU2016140634 A RU 2016140634A RU 2651576 C1 RU2651576 C1 RU 2651576C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- produced water
- treatment vessel
- methane
- heterogeneous catalyst
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 75
- 238000012545 processing Methods 0.000 title description 24
- 230000003197 catalytic effect Effects 0.000 title description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000000126 substance Substances 0.000 claims abstract description 25
- 230000007062 hydrolysis Effects 0.000 claims abstract description 22
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 22
- 239000002638 heterogeneous catalyst Substances 0.000 claims abstract description 19
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000012530 fluid Substances 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000000694 effects Effects 0.000 claims abstract description 5
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 4
- 239000010941 cobalt Substances 0.000 claims abstract description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000003112 inhibitor Substances 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 3
- 239000007787 solid Substances 0.000 claims abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 72
- 239000003054 catalyst Substances 0.000 claims description 61
- 239000007789 gas Substances 0.000 claims description 42
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 36
- 239000001301 oxygen Substances 0.000 claims description 36
- 229910052760 oxygen Inorganic materials 0.000 claims description 36
- 238000011144 upstream manufacturing Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 150000002894 organic compounds Chemical class 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 150000004677 hydrates Chemical class 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 239000000470 constituent Substances 0.000 abstract description 13
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000003643 water by type Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 67
- 238000007254 oxidation reaction Methods 0.000 description 28
- 230000008569 process Effects 0.000 description 26
- 238000009279 wet oxidation reaction Methods 0.000 description 26
- 230000003647 oxidation Effects 0.000 description 24
- 239000003921 oil Substances 0.000 description 12
- 230000009467 reduction Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000007800 oxidant agent Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 150000002334 glycols Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000003546 flue gas Substances 0.000 description 4
- 230000003301 hydrolyzing effect Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920000620 organic polymer Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WLYASUUWHLJRIL-UHFFFAOYSA-N [N].[N].[N] Chemical compound [N].[N].[N] WLYASUUWHLJRIL-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009299 dissolved gas flotation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- -1 mercaptides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/32—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
- C07C1/321—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
- C07C1/323—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom the hetero-atom being a nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
- C08L33/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/107—Limiting or prohibiting hydrate formation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/06—Treatment of sludge; Devices therefor by oxidation
- C02F11/08—Wet air oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/10—Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/26—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
- C02F2103/28—Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/32—Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/36—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
- C02F2103/365—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/005—Processes using a programmable logic controller [PLC]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/06—Pressure conditions
- C02F2301/066—Overpressure, high pressure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
- C07C2523/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
- C07C2523/46—Ruthenium, rhodium, osmium or iridium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2527/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- C07C2527/20—Carbon compounds
- C07C2527/22—Carbides
- C07C2527/224—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/22—Hydrates inhibition by using well treatment fluids containing inhibitors of hydrate formers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Water Treatments (AREA)
Abstract
Изобретение относится к двум вариантам способа получения метана. Один из вариантов включает в себя приведение в контакт водной текучей среды, содержащей по меньшей мере одно нежелательное составляющее, с гетерогенным катализатором при давлении от приблизительно 20 атм до приблизительно 240 атм и температуре от 150°C до приблизительно 373°C для гидролиза по меньшей мере одного нежелательного составляющего в текучей среде и генерирования количества метана, причем гетерогенный катализатор содержит элемент, выбранный из группы, состоящей из рутения, никеля, кобальта, железа и их сочетаний, и твердую подложку, выбранную из группы, состоящей из оксида алюминия, диоксида кремния и карбида. Предлагаемое изобретение позволяет удалять из обрабатываемых вод кинетические ингибиторы гидратов и гидролизованный полиакриламид. 2 н. и 10 з.п. ф-лы, 4 табл., 4 пр., 1 ил.
Description
УРОВЕНЬ ТЕХНИКИ
1. Область техники, к которой относится изобретение
Настоящее изобретение относится, в общем, к обработке технологических потоков и, конкретнее, к системам и способам каталитического влажного окисления и гидролиза, служащим для обработки нежелательных составляющих, содержащихся в них.
2. Описание предшествующего уровня техники
Для удовлетворения энергетических и производственных потребностей из подземных источников систематически извлекают нефть и газ. Традиционное извлечение нефти и газа представляет собой процесс с интенсивным использованием воды. Добытая вода обычно непригодна для сброса в местные источники воды и может быть закачана в подземные скважины для захоронения. Альтернативно, добытая вода может быть обработана с целью сделать ее подходящей для разнообразных вариантов использования.
В традиционной операции извлечения нефти или газа закачанная вода может быть использована для вытеснения нефти или газа на поверхность у устья скважины. Закачанная вода и/или имеющаяся вода в пласте выходит на поверхность в виде смеси или эмульсии, которые известны как ʺдобытая водаʺ, которая включает в себя нефтяные и газовые продукты. Водную часть и нефтяную часть добытой воды разделяют посредством различных типовых процессов. Части потока отделенной воды могут подвергаться различным операциям обработки в зависимости от их предполагаемого использования. Варианты предполагаемого использования потока воды могут включать в себя повторное закачивание для постоянного захоронения в скважине или заводнения. Альтернативно, предполагаемое использование может требовать улучшенного качества воды, как, например, в случае ирригации.
Характеристики и компоненты добытой воды могут причинять ущерб системе трубопровода, переносящей ее. Например, в контексте применения в глубоких скважинах при более низких температурах органические вещества из добытой воды образуют на стенках труб, переносящих добытую воду, содержащий органические вещества лед (гидраты), в особенности там, где имеются большие перепады давления.
В прошлом проблему содержащего органические вещества льда решали путем добавлением гликолей к добытой воде, однако данный способ является дорогостоящим и для достижения эффективности требует относительно высоких концентраций гликолей. Более того, впоследствии гликоли должны быть удалены, что вносит дополнительную стадию в весь способ обработки.
Кинетические ингибиторы гидратов ʺKHIʺ (также известные как ʺLDHIʺ, низкодозовые ингибиторы гидратов) служат в качестве альтернативы гликолям для ингибирования обрастания льдом, где они могут быть введены в меньших концентрациях.
Хотя KHI обладают некоторыми преимуществами перед гликолями, они также имеют недостатки. Например, KHI имеют точку помутнения обычно в диапазоне 40-80°C.
В указанном диапазоне температур раствор добытой воды может стать мутным из-за осаждения KHI. Некоторые регулирующие органы опасаются, что такой мутный раствор мог бы закупоривать резервуары и, следовательно, они запретили повторное закачивание глубоко в скважину добытой воды, содержащей KHI. В результате применение KHI в таких областях приложения было ограничено.
KHI относятся к классу органических полимеров с высокой молекулярной массой. KHI обладают некоторыми общими свойствами с другим классом полимеров с высокой молекулярной массой, присутствующим в некоторых типах добытой воды, а именно HPAM (гидролизованный полиакриламид). HPAM повышает вязкость, что содействует удалению нефти из подземных источников, часто используясь в виде части более общего способа, называемого интенсифицированная добыча нефти (EOR). Повышенная вязкость, создаваемая HPAM для содействия удалению нефти или газа, впоследствии становится помехой для процессов разделения, применяемых к добытой воде, из-за образования трудноразделимых эмульсий. В результате HPAM предпочтительно удаляют на некоторой ступени в ходе обработки добытой воды, чтобы уменьшить вязкость потока и содействовать разделению.
Каждые из KHI и HPAM вносят вклад в химическую потребность в кислороде (COD) добытой воды. Другие источники COD в добытой воде включают в себя легкие углеводороды и другие органические вещества.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В соответствии с одним или более аспектами предоставлен способ обработки водной смеси. Способ может включать в себя введение водной смеси, содержащей по меньшей мере один из KHI и HPAM, в сосуд для обработки; воздействие на водную смесь давления выше атмосферного в сосуде для обработки или выше по потоку относительно сосуда для обработки; воздействие на водную смесь повышенной температуры в сосуде для обработки или выше по потоку относительно сосуда для обработки; введение в водную смесь катализатора в сосуде для обработки или выше по потоку относительно сосуда для обработки; приведение катализатора в контакт с водной смесью в течение времени, достаточного для того, чтобы разрушить химические связи по меньшей мере в части по меньшей мере одного из KHI и HPAM; и отделение разрушенной части по меньшей мере одного из KHI и HPAM от водной смеси с получением обработанной водной смеси, имеющей остаточный уровень по меньшей мере одного из KHI и HPAM ниже заданного порога.
В соответствии с одним или более аспектами способ может дополнительно включать в себя введение находящегося под давлением богатого кислородом газа в водную смесь выше по потоку относительно сосуда для обработки. Воздействие давления выше атмосферного на водную смесь в сосуде для обработки может включать в себя нагнетание в сосуд для работы под давлением бедного кислородом газа. Бедный кислородом газ может представлять собой инертный газ.
Инертный газ может содержать азот. Катализатор может содержать гетерогенный катализатор. Гетерогенный катализатор может содержать рутений. Приведение катализатора в контакт с водной смесью может способствовать гидролизу по меньшей мере части по меньшей мере одного из KHI и HPAM. Приведение катализатора в контакт с водной смесью может способствовать окислению по меньшей мере части по меньшей мере одного из KHI и HPAM. Способ может дополнительно включать в себя закачивание обработанной водной смеси под землю. Водная смесь может содержать KHI, и заданный порог может составлять 100 мг/л. Водная смесь может содержать HPAM, и заданный порог может составлять 100 мг/л. Повышенная температура может составлять по меньшей мере примерно 250°C. Давление выше атмосферного может находиться в диапазоне от 20 до 240 атм. Водная смесь может представлять собой добытую воду или может быть получена из добытой воды. Добытая вода может быть получена в результате процесса интенсифицированной добычи нефти.
В соответствии с одним или более аспектами предоставлен способ обработки добытой воды. Способ может включать в себя введение добытой воды, имеющей химическую потребность в кислороде по меньшей мере 30000 мг/л, в сосуд для обработки; воздействие на добытую воду давления выше атмосферного в сосуде для обработки или выше по потоку относительно сосуда для обработки; воздействие на добытую воду повышенной температуры в сосуде для обработки или выше по потоку относительно сосуда для обработки; введение катализатора в сосуде для обработки; приведение катализатора в контакт с добытой водой в течение времени, достаточного для того, чтобы разрушить химические связи по меньшей мере в части составляющих, вносящих вклад в химическую потребность в кислороде; и отделение разрушенной части составляющих, вносящих вклад в химическую потребность в кислороде, от добытой воды с получением обработанной добытой воды, имеющей химическую потребность в кислороде ниже заданного порога.
В соответствии с одним или более аспектами заданный порог для химической потребности в кислороде может составлять примерно 100 мг/л. Добытая вода может содержать по меньшей мере один из KHI и HPAM. Способ может дополнительно включать в себя введение находящегося под давлением богатого кислородом газа в добытую воду выше по потоку относительно сосуда для обработки. Катализатор может содержать гетерогенный катализатор. Гетерогенный катализатор может содержать рутений. Приведение катализатора в контакт с водной смесью может способствовать гидролизу по меньшей мере части составляющих, вносящих вклад в химическую потребность в кислороде. Приведение катализатора в контакт с водной смесью может способствовать окислению по меньшей мере части составляющих, вносящих вклад в химическую потребность в кислороде.
В соответствии с одним или более аспектами раскрыт способ получения метана. Способ может включать в себя введение добытой воды, имеющей химическую потребность в кислороде по меньшей мере 30000 мг/л, в сосуд для обработки; воздействие на добытую воду давления в диапазоне от примерно 20 атм до примерно 240 атм в сосуде для обработки или выше по потоку относительно сосуда для обработки; воздействие на добытую воду температуры от примерно 150°C до примерно 373°C в сосуде для обработки или выше по потоку относительно сосуда для обработки; введение катализатора в добытую воду в сосуде для обработки или выше по потоку относительно сосуда для обработки для содействия образованию метана и улавливание образовавшегося метана.
В соответствии с одним или более аспектами способ может дополнительно включать в себя введение находящегося под давлением богатого кислородом газа в добытую воду выше по потоку относительно сосуда для обработки. Катализатор может содержать гетерогенный катализатор. Гетерогенный катализатор может содержать рутений. Приведение катализатора в контакт с водной смесью может способствовать гидролизу по меньшей мере части составляющих, вносящих вклад в химическую потребность в кислороде. Приведение катализатора в контакт с водной смесью может способствовать окислению по меньшей мере части составляющих, вносящих вклад в химическую потребность в кислороде. Способ может дополнительно включать в себя доставку уловленного метана в место использования.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Не предполагается, что прилагаемые чертежи изображены в масштабе. На чертежах каждый одинаковый или почти одинаковый компонент, который проиллюстрирован на разных фигурах, представлен одинаковым числом. Для ясности не каждый компонент может быть отмечен на каждом чертеже. Предпочтительно, неограничивающие варианты осуществления будут описаны со ссылкой на прилагаемые чертежи, где
на Фиг. 1 представлена системная диаграмма для системы обработки согласно одному или более вариантам осуществления.
ПОДРОБНОЕ ОПИСАНИЕ
Данное изобретение не ограничено в своем применении деталями конструкции и размещением компонентов, как изложено в нижеследующем описании или проиллюстрировано на чертежах. Изобретение допускает другие варианты осуществления и может быть реализовано на практике или осуществлено различными путями, помимо таковых, которые иллюстративно представлены в данном описании.
Влажное окисление представляет собой технологию обработки технологических потоков. Способ включает в себя окисление в водной фазе нежелательных составляющих окисляющим агентом, обычно молекулярным кислородом из богатого кислородом газа при повышенных температурах и давлениях. Способ может превращать органические загрязнители в диоксид углерода, воду и биоразлагаемые короткоцепочечные органические кислоты, такие как уксусная кислота. Неорганические составляющие, включая сульфиды, меркаптиды и цианиды, также могут окислены.
Гидролиз представляет собой процесс, схожий с процессом окисления влажным воздухом, который служит для обработки сточных вод, когда кислород не является необходимым реагентом. При гидролизе некоторые составляющие сточных вод и шламов могут непосредственно реагировать с водой при повышенных температурах и давлениях, давая обработанный сточный поток, который обезврежен от токсичных компонентов или удовлетворяет желаемой цели обработки.
В способах каталитического влажного окисления или гидролиза подлежащий обработке водный поток смешивают с окисляющим агентом (или нет в случае гидролиза) и приводят в контакт с катализатором при повышенных температурах и давлениях. Гетерогенные катализаторы обычно расположены на слое, поверх которого пропускается водная смесь, или находятся в форме материала из твердых частиц, который смешивают с водной смесью перед окислением или гидролизом. Катализатор может быть отфильтрован от сточного потока ниже по потоку относительно реакторного блока. Каталитический материал может быть либо рециркулирован, либо удален и заменен.
В соответствии с одним или более вариантами осуществления раскрыты одна или более систем и один или более способов обработки технологических потоков. В нормальном режиме работы раскрытые системы могут принимать технологические потоки из общественных, промышленных, связанных с добычей газа/нефти или жилых источников. Например, в вариантах осуществления, в которых система проводит обработку сточных вод, технологический поток может быть подан из системы отстоя шлама муниципальных сточных вод или другой крупномасштабной канализационной системы. Технологические потоки могут также происходить, например, из заводов по производству пищевых продуктов, установок химической обработки, проектов газификации или целлюлозно-бумажных комбинатов. Технологические потоки могут также происходить из смесей текучих сред, используемых для извлечения нефти и газа из подземных источников. Таким образом, технологический поток может включать в себя по меньшей мере малое количество углеводородов. Технологический поток может быть пропущен через систему путем управления выше по потоку или ниже по потоку относительно системы.
Использованный здесь термин ʺтехнологический потокʺ относится к водной смеси, подаваемой в систему для обработки. После обработки технологический поток может быть дополнительно переработан, возвращен в расположенный выше по потоку процесс, закачан глубоко в скважину или может иным образом покидать систему в виде отходов. Водная смесь обычно включает в себя по меньшей мере одно нежелательное составляющее, способное окисляться или гидролизоваться. Нежелательное составляющее может представлять собой любой материал или соединение, подлежащий(ее) удалению из водной смеси, например, по соображениям защиты общественного здоровья, по соображениям, диктуемым техническим решением процесса, и/или по эстетическим соображениям. В некоторых вариантах осуществления нежелательные составляющие, способные окисляться или гидролизоваться, представляют собой органические соединения. Некоторые крупные органические полимеры, например, KHI, HPAM, крупные аминосоединения и родственные им формы, также могут быть окислены или гидролизованы, так что они могут быть расщеплены на меньшие компоненты, например, мономеры. Источник водной смеси, подлежащей обработке в системе, такой как суспензия, может принимать форму непосредственной подачи трубопроводом из установки или сосуда для хранения. В некоторых вариантах осуществления водная смесь может иметь концентрацию вышеописанных крупных органических полимеров в диапазоне от нескольких ч.н.м. (частей на миллион) до примерно 5%.
В соответствии с одним или более вариантами осуществления может быть желательно разрушить одну или более конкретных химических связей в нежелательном составляющем или продукте(ах) его разрушения. Реакция окисления представляет собой один технический прием разрушения, способный превращать окисляемые органические загрязнители в диоксид углерода, воду и биоразлагаемые короткоцепочечные органические кислоты, такие как уксусная кислота. Один или более раскрытых вариантов осуществления включает в себя системы и способы окислительной обработки водных смесей, содержащих одно или более нежелательных составляющих.
В одном варианте осуществления водную смесь, включающую в себя по меньшей мере одно нежелательное составляющее, подвергают влажному окислению. Водную смесь окисляют окисляющим агентом при повышенной температуре и давлении выше атмосферного в течение времени, достаточного для обработки по меньшей мере одного нежелательного составляющего. Реакция окисления может по существу разрушать целостность одной или более химических связей в нежелательном составляющем. Использованная здесь фраза ʺпо существу разрушатьʺ определена как указывающая по меньшей мере на примерно 95% разрушение. Способ настоящего изобретения, в общем, применим для обработки любого нежелательного составляющего, способного окисляться или гидролизоваться.
Неожиданно было обнаружено, что системы каталитического окисления влажным воздухом и системы гидролиза могут быть включены в состав способов удаления крупных полимерных форм, таких как KHI и HPAM, из добытой воды, поскольку WAO (окисление влажным воздухом) и гидролиз обычно использовались в последующих технологических операциях, а не в предшествующих устройствах, таких как обсужденные здесь.
Согласно одному или более вариантам осуществления водная смесь, такая как поток добытой воды, может быть подвергнута каталитической обработке. Способ может включать в себя увеличение давления и температуры добытой воды, содержащей KHI и/или HPAM. Способ может включать в себя введение катализатора в обрабатываемый поток. В системе окисления влажным воздухом богатый кислородом газ вводят в поток. Затем добытую воду обрабатывают в реакторе, в котором она находится в контакте с катализатором, способствующем окислению и/или гидролизу. В ходе обработки химические связи по меньшей мере в части KHI и/или HPAM разрушаются путем окисления и/или гидролиза, что дает преобразованный или разрушенный продукт. KHI и HPAM, каждый, представляют собой крупные полимеры, которые вносят вклад в повышенную вязкость добытой воды, что препятствует процессам разделения. При разрушении данных крупных компонентов на меньшие компоненты, например мономеры, облегчаются, тем самым, процессы разделения. Разрушенные нежелательные компоненты отделяют от потока, получая обработанную водную смесь, имеющую остаточный уровень KHI и/или HPAM ниже заданного порога, такого, который может диктоваться соответствующим регулирующим органом, или иным образом достаточного для уменьшения выраженности проблемных параметров при обработке воды, таких как точка помутнения, вязкость или образование эмульсий. Например, в некоторых неограничивающих вариантах осуществления заданный порог может составлять примерно 100 мг/л. Заданный порог может быть связан с уровнем, достаточным для устранения или решения проблемы наличия одной или более нежелательной(ых) характеристик или свойств.
Для определения того, находятся ли остаточные уровни нежелательных компонентов ниже желаемого уровня в соответствии с одним или более вариантами осуществления, доступны разнообразные подходы. Один подход состоит в том, чтобы за основу такого определения взять измерение COD. Данный подход доступен, когда с уверенностью можно предположить, что нежелательные формы обусловливают большую часть значения COD, как это имеет место в случае добытой воды на данной стадии цикла ее обработки, и, следовательно, COD можно рассматривать в качестве опосредующего значения для значения KHI или HPAM. В данных обстоятельствах, если COD уменьшается на несколько процентов или ниже некоторого значения, тогда опосредованно считают, что остаточный KHI или HPAM находится ниже заданного порога.
Альтернативный подход состоит в применении аналитического приема, такого как эксклюзионная хроматография (ʺSECʺ), для определения, присутствует ли нежелательное составляющее ниже заданного порога. В хроматографии SEC молекулы разделяются согласно их размеру и, следовательно, ее можно использовать для определения концентрации всех молекул, имеющих размер, больший определенного. Поскольку KHI и HPAM представляют собой относительно крупные полимеры, на KHI или HPAM в потоке добытой воды может приходиться основная часть молекул, a имеющих размер, больший определенного. Следовательно, концентрация крупных молекул, определенная посредством SEC, может представлять собой подходящую оценку для концентрации остаточного KHI или HPAM. Для определения того, присутствует ли остаточный KHI или HPAM в количестве ниже заданного порога, можно также использовать другие приемы.
В дополнение к удалению нежелательных форм применение каталитического окисления влажным воздухом или гидролиза в отношении потока добытой воды может иметь дополнительное преимущество, состоящее в генерировании метана согласно одному или более вариантам осуществления, который может быть впоследствии уловлен и использован или сбыт как побочный продукт. Генерации метана может способствовать применение катализатора, и она особенно выражена, когда присутствует свежий каталитический материал. Генерация метана может происходить благодаря углеродистому материалу в потоке, подвергающемся процессу Фишера-Тропша.
Раскрытые способы влажного окисления или гидролиза могут быть осуществлены в любой известной периодической или непрерывной установке, подходящей для подлежащих обработке соединений. Обычно окисление в водной фазе осуществляют в непрерывной системе влажного окисления, как в качестве примера проиллюстрировано на Фиг. 1. Можно использовать любой окисляющий агент. Окислитель обычно представляет собой кислородсодержащий газ, такой как воздух, обогащенный кислородом воздух или по существу чистый кислород. Использованную здесь фразу ʺобогащенный кислородом воздухʺ определяют как указывающую на воздух, имеющий содержание кислорода более примерно 21%. Аспекты работы системы гидролиза могут быть схожи с таковыми системы 5 окисления влажным воздухом, описанной со ссылкой на Фиг. 1. Однако включение в систему гидролиза компрессора 16, описанного ниже, не было бы необходимым. В некоторых вариантах осуществления может быть осуществлена предварительная обработка, такая как следующие, но без ограничения ими: гравитационное разделение, фильтрация и/или флотация растворенным газом/индукционно-газовая флотация.
В обычном режиме работы системы 5 влажного окисления, как показано со ссылкой на Фиг. 1, водная смесь из источника, показанного как резервуар-накопитель 10, втекает по трубопроводу 12 в насос 14 высокого давления, который повышает давление водной смеси. Давление водной смеси может быть повышено путем нагнетания в сосуд инертного газа. В некоторых вариантах осуществления инертный газ может иметь содержание кислорода меньшее, чем воздух (иначе именуемый бедный кислородом газ), как, например, азот. Водную смесь смешивают с имеющим повышенное давление кислородсодержащим газом, подаваемым компрессором 16, в трубопроводе 18. Кислородсодержащий газ может представлять собой богатый кислородом газ, имеющий содержание кислорода большее, чем воздух. Водная смесь течет через теплообменник 20, где она нагревается до температуры, которая инициирует окисление. Затем нагретая питающая смесь поступает в реакторный сосуд 24 на впуске 38. Реакции влажного окисления обычно являются экзотермическими, и генерированная в реакторе теплота реакции может дополнительно повышать температуру смеси до желаемого уровня. Основная часть реакции окисления протекает в реакторном сосуде 24, который обеспечивает время пребывания, достаточное для достижения желаемой степени окисления. Затем окисленная водная смесь и обедненная кислородом газовая смесь покидают реактор по трубопроводу 26, контролируемому регулирующим давление клапаном 28. Обедненная газовая смесь может содержать, например, H2, CO2 и другие захваченные летучие пары. Горячий окисленный выходящий поток проходит через теплообменник 20, где он охлаждается поступающей сырой необработанной водной смесью и газовой смесью. Охлажденная выходящая смесь течет по трубопроводу 30 в сепараторный сосуд 32, где разделяются жидкость и газы. Жидкий выходящий поток покидает сепараторный сосуд 32 по нижнему трубопроводу 34, тогда как отходящие газы сбрасываются по верхнему трубопроводу 36. Может требоваться обработка отходящего газа в расположенном ниже по потоку блоке обработки отходящего газа, что зависит от его композиции и требований, определяющих сброс в атмосферу. Подвергшийся влажному окислению выходящий поток обычно может быть сброшен в блок операций разделения для дополнительной обработки. Выходящий поток может быть также рециркулирован для дальнейшей переработки в системе влажного окисления.
Катализатор может быть добавлен в водную смесь в любой точке в системе влажного окисления. Катализатор может быть смешан с водной смесью. В одном варианте осуществления катализатор может быть добавлен в источник водной смеси, питающий блок влажного окисления, как проиллюстрировано на Фиг. 1, на которой источник 40 катализатора соединен текучей средой с резервуаром-накопителем 10. В некоторых вариантах осуществления катализатор может быть непосредственно добавлен в блок влажного окисления. В других вариантах осуществления катализатор также может быть подан в водную смесь перед нагревом и/или повышением ее давления.
В других вариантах осуществления катализатор может уже присутствовать в подлежащем обработке технологическом потоке. Водная смесь, поданная в блок окисления, может содержать каталитический материал. Например, переходные металлы могут присутствовать в сточном потоке, подлежащем обработке в системе каталитического влажного окисления. Водные суспензии, такие как суспензии, содержащие летучие органические углеродсодержащие соединения, могут содержать металлы, способные действовать в качестве катализатора. Например, водная смесь может представлять собой суспензию побочных продуктов газификации.
В некоторых вариантах осуществления система может включать в себя контроллер 70 для настройки или регулирования по меньшей мере одного рабочего параметра системы или компонента системы, такого как следующие, но без ограничения ими: срабатывающие клапаны и насосы. Контроллер 70 может находиться в электронной связи с датчиком 50, как проиллюстрировано на Фиг. 1. Контроллер 70 может быть в общем выполнен с возможностью генерации управляющего сигнала для регулирования уровня pH водной смеси в ответ на данные pH-датчика 50, регистрирующего уровень pH за пределами заданного диапазона pH. Например, контроллер 70 может давать управляющий сигнал одну или более клапанам, связанным с источником 60 регулятора pH, чтобы добавить регулятор pH в источник 10 водной смеси. В некоторых вариантах осуществления регулирование уровня pH может содействовать гидролизу или окислению полимеров. По меньшей мере в некоторых вариантах осуществления нейтральный уровень pH может избегаться в пользу либо щелочной, либо кислой среды.
Контроллер 70 обычно представляет собой устройство на основе микропроцессора, такое как программируемый логический контроллер (PLC), либо распределенную систему управления, которая принимает или посылает входные и выходные сигналы от компонентов и компонентам системы влажного окисления. Коммуникационные сети могут допускать размещение любого датчика или генерирующего сигнал устройства на значительном расстоянии от контроллера 70 или связанной с ним компьютерной системы, обеспечивая, тем не менее, передачу данных между ними. Такие механизмы коммуникации могут быть реализованы путем применения любой подходящей технологии, включая технологии, использующие беспроводные протоколы, но без ограничения ими.
Согласно одному или более вариантам осуществления жидкий выходящий поток, подвергнутый влажному окислению, может быть переработан посредством блока 80 вторичной обработки, присоединенного ниже по потоку относительно осуществляющего окисление реакторного сосуда 24, чтобы удалить присутствующие остаточные нежелательные составляющие и/или провести доочистку, когда это необходимо или желательно. Блок 80 вторичной обработки может представлять собой химический скруббер, биологический скруббер, слой адсорбирующей среды или другое устройство типового процесса для осуществления разделения. Блок 80 вторичной обработки может быть выполнен с таким размером, чтобы обеспечивать площадь поверхности, соответствующую желаемой степени доочистки. Альтернативно, жидкий выходящий поток также может быть рециркулирован обратно в реакторный сосуд 24 для дополнительной переработки. Обработка отходящего газа может также требоваться в расположенном ниже по потоку блоке обработки отходящего газа в зависимости от его композиции и требований, определяющих сброс в атмосферу.
Датчики для детектирования концентрации целевого составляющего могут быть предусмотрены выше по потоку и/или ниже по потоку относительно блока 24 влажного окисления для содействия контролю системы. Например, датчик может быть размещен у трубопровода 26 и может находиться в сообщении с контроллером 70 для определения и/или контроля того, должен ли быть направлен жидкий выходящий поток в блок 80 вторичной обработки для того, чтобы отвечать установленным экологическим нормам.
Достаточное количество кислородсодержащего газа обычно подают в систему, чтобы поддержать содержание остаточного кислорода в отходящем газе системы влажного окисления, и давление газа выше атмосферного обычно достаточно для поддержания воды в жидкой фазе при выбранной температуре окисления. Например, минимальное давление в системе при 240°C составляет 33 атмосферы, минимальное давление при 280°C составляет 64 атмосферы, и минимальное давление при 373°C составляет 215 атмосфер. В одном варианте осуществления водную смесь окисляют при давлении от примерно 30 атмосфер до примерно 275 атмосфер. Способ влажного окисления может быть осуществлен при повышенной температуре ниже 374°C, то есть критической температуры воды. В некоторых вариантах осуществления способ влажного окисления может быть осуществлен при сверхкритической повышенной температуре. Время пребывания водной смеси внутри реакционной камеры должно, в общем, быть достаточным для достижения желаемой степени окисления. В некоторых вариантах осуществления время пребывания составляет более примерно одного часа и вплоть до примерно восьми часов. По меньшей мере в одном варианте осуществления время пребывания составляет по меньшей мере примерно 15 минут и вплоть до примерно 6 часов. В одном варианте осуществления водная смесь подвергается окислению в течение от примерно 15 минут до примерно 4 часов. В другом варианте осуществления водная смесь подвергается окислению в течение от примерно 30 минут до примерно 3 часов. По меньшей мере в некоторых вариантах осуществления добытая вода может подвергаться воздействию гетерогенного катализатора в сосуде для работы под давлением при повышенных температуре и давлении в течение времени, достаточного для осуществления каталитической реакции с KHI и/или HPAM, чтобы понизить уровень COD добытой воды, генерируя при этом метан в качестве побочного продукта.
Согласно одному или более вариантам осуществления способ влажного окисления или гидролиза представляет собой каталитический способ влажного окисления. Любая реакция окисления может протекать при содействии катализатора. Водная смесь, содержащая по меньшей мере одно нежелательное составляющее, подлежащее обработке, обычно приводится в контакт с катализатором и окисляющим агентом при повышенной температуре и давлении выше атмосферного. Эффективное количество катализатора может быть, в общем, достаточным, чтобы увеличивать скорости реакции и/или улучшить общую эффективность удаления системой путем разрушения химических связей, включая улучшенную степень снижения химической потребности в кислороде (COD) и/или совокупного органического углерода (TOC). Катализатор может также служить для уменьшения общего потребления энергии системой влажного окисления.
По меньшей мере в одном варианте осуществления катализатор может представлять собой металл или сплав металлов. В одном или более вариантах осуществления катализатор может представлять собой, например, рутений, никель, кобальт, железо или их сплавы, либо их смеси. В некоторых вариантах осуществления катализатор может быть выбран на основе характеристики водной смеси. Гетерогенный катализатор может быть нанесен на подложку. Подложка может представлять собой, например, оксид алюминия, диоксид кремния или подложку из карбида кремния.
Как обсуждено выше в отношении нормального режима работы блока окисления жидкий выходящий поток отделяют от подвергнутой окислению водной смеси ниже по потоку относительно реактора окисления. В некоторых вариантах осуществления катализатор может быть извлечен из жидкого выходящего потока путем процесса разделения. Например, в некоторых вариантах осуществления катализатор может быть осажден из выходящего потока. В одном варианте осуществления для извлечения катализатора может быть использован кристаллизатор. Затем катализатор может быть рециркулирован обратно в систему влажного окисления или удален и заменен свежим катализатор.
Следует принимать во внимание, что в проиллюстрированные системы и способы могут быть внесены многочисленные изменения, модификации и улучшения. Например, одну или более систем можно соединить с несколькими источниками технологических потоков. В некоторых вариантах осуществления система влажного окисления может включать в себя дополнительные датчики для измерения других свойств или рабочих условий системы. Например, система может включать в себя датчики для измерения температуры, перепада давления и расхода потока в разных точках, чтобы способствовать отслеживанию работы системы. В соответствии с одним или более вариантами осуществления катализатор может пополняться во время процесса влажного окисления.
Изобретение предполагает модификацию существующей аппаратуры для модернизации одной(ого) или более систем или компонентов для того, чтобы внедрить предлагаемую в изобретении технологию. Существующая система влажного окисления может быть модифицировано в соответствии с одним или более вариантами осуществления, обсужденными здесь в качестве примера, используя по меньшей мере некоторое из уже существующего оборудования. Например, могут быть предусмотрены один или более датчиков pH, и контроллер в соответствии с одним или более представленными здесь вариантами осуществления может быть добавлен в уже существующую систему влажного окисления, чтобы способствовать растворению катализатора, как, например, когда используют гомогенный катализатор, такой как медь. Согласно другим вариантам осуществления pH можно контролировать для поддержания катализатора в нерастворимом состоянии, когда используют гетерогенный катализатор, такой как цериевый катализатор на подложке.
Функция и преимущества данных и других вариантов осуществления настоящего изобретения могут быть полнее поняты из нижеследующих примеров. По своей природе данные примеры предназначены выступать в качестве иллюстративных и не рассматриваются как ограничивающие объем изобретения. В нижеследующих примерах соединения подвергаются обработке путем влажного окисления или гидролиза, чтобы вызвать разрушение связей в них.
ПРИМЕРЫ
Пример один
Четыре образца добытой воды, содержащей KHI, подвергали окислению влажным воздухом в разных условиях. Результаты показаны в Таблице 1.
Для всех четырех образцов температура добытой воды составляла 250°C внутри реактора. Средние времена пребывания, давление нагнетания и нагнетаемый газ, все, приведены в Таблице 1. В каждом случае в качестве катализатора использовали рутений. Рутений был нанесен либо на оксид алюминия, либо на карбид кремния, как показано в Таблице 1. Измеренное значение COD потока подаваемой добытой воды составляло 23,1 г/л.
Наблюдали, что когда присутствовал гетерогенный катализатор, в ходе начала процесса образовывался метан, ценный и неожиданный побочный продукт. Каталитическая обработка дополнительно приводила к снижению COD, достигающему 59,7%, что указывает на значительную степень обработки KHI.
Таблица 1. Результаты испытания на первой добытой воде
Подача | Образец 1 | Образец 2 | Образец 3 | Образец 4 | |
Температура, °C | -- | 250 | 250 | 250 | 250 |
Время пребывания, мин | -- | 15 | 15 | 180 | 180 |
Давление нагнетания, фунт/дюйм2 изб. (кПа) | -- | 300 (2068) | 300 (2068) | 600 (4137) | 600 (4137) |
Нагнетаемый газ | -- | Воздух | Азот | Азот | Азот |
Катализатор | -- | Ru на оксиде алюминия | Ru на оксиде алюминия | Ru на SiC (карбид кремния) | Ru на оксиде алюминия |
COD, г/л | 23,1 | 10,6 | 15,8 | 10,4 | 9,3 |
TOC, г/л | -- | 3,1 | 4,8 | 3,08 | 2,7 |
% метана в отходящем газе | -- | 2,7 | 3,7 | 4,7 | 5,3 |
% снижения COD | -- | 54,1 | 31,6 | 55,0 | 59,7 |
Пример два
Два образца добытой воды, содержащей KHI, подвергали обработке окислением влажным воздухом в разных условиях. Результаты показаны в Таблице 2.
В первом образце катализатор не присутствовал. Для данного образца не наблюдалось образование метана и наблюдалось ограниченное снижение значения COD. Во втором образце в качестве катализатора использовали рутений на оксиде алюминия. В случае второго образца наблюдали значительное образование газообразного метана и снижение значения COD, что указывает на ценные характеристики катализатора при использовании в способе.
Таблица 2. Результаты испытания на второй добытой воде
Подача | Образец 1 | Образец 2 | |
Температура, °C | -- | 250 | 250 |
Время пребывания, мин | -- | 180 | 180 |
Давление нагнетания, фунт/дюйм2 изб. (кПа) | -- | 600 (4137) | 600 (4137) |
Нагнетаемый газ | -- | Азот | Азот |
Катализатор | -- | Нет | Ru на оксиде алюминия |
COD, г/л | 13,8 | 13,1 | 2,91 |
TOC, г/л | -- | 3,65 | 0,64 |
% метана в отходящем газе | -- | 0,0 | 5,3 |
% снижения COD | -- | 5,1 | 78,9 |
Пример три
Добытую воду, содержащую 15 г/л KHI, подвергали гидролитической обработке в разных условиях без введения богатого кислородом газа в подлежащий обработке поток. Условия и результаты испытания для каждого из четырех разных обработанных образцов потоков показаны в Таблице 3. Анализ методом эксклюзионной хроматографии проводили для оценки присутствия KHI как в подаваемом материале, так и в выходящем потоке.
В первом и третьем образцах катализатор не присутствовал. Каждый из данных образцов давал минимальное уменьшение COD. Для данных образцов также почти не наблюдалось образование метана.
Во втором и четвертом образцах в качестве катализатора использовали рутений на оксиде алюминия. В случае второго образца обработку проводили при 200°C. В случае четвертого образца обработку проводили при 260°C.
В случае второго образца, где обработку проводили при 200°C, образовывалось весьма мало метана. Более того, снижение в значении COD было лучше по сравнению с образцами, в которых катализатор не присутствовал, но все-таки относительно мало. Второй образец показывал 31,6% снижение концентрации HKI.
В случае четвертого образца, однако, где обработку проводили при 260°C, значительный процент отходящего газа имел форму метана, ценного побочного продукта. Более того, для образца 4 наблюдалось снижение COD на 49% и снижение концентрации KHI на 54,64%.
Данные результаты демонстрируют, что в надлежащих условиях значительное снижение значений KHI и COD может быть достигнуто наряду с получением метана посредством раскрытого способа.
Таблица 3. Результаты испытания на третьей добытой воде
Подача | Образец 1 | Образец 2 | Образец 3 | Образец 4 | |
Температура, °C | -- | 200 | 200 | 260 | 260 |
Время пребывания, мин | -- | 15 | 15 | 15 | 15 |
Давление нагнетания, фунт/дюйм2 изб. (кПа) | -- | 300 (2068) | 300 (2068) | 300 (2068) | 300 (2068) |
Нагнетаемый газ | -- | Азот | Азот | Азот | Азот |
Катализатор | -- | Нет | 2% Ru/оксид алюминия | Нет | 2% Ru/оксид алюминия |
COD, г/л | 29,8 | 29,9 | 27,2 | 28,8 | 15,2 |
TOC, г/л | 7,05 | 8,22 | 7,85 | 8,16 | 4,24 |
KHI, г/л | 15,19 | 12,62 | 10,39 | 13,79 | 6,89 |
% снижения KHI | -- | 16,92 | 31,6 | 9,2 | 54,64 |
% метана в отходящем газе | -- | <0,01 | 0,01 | <0,01 | 8,42 |
% снижения COD | -- | -0,3 | 8,7 | 3,4 | 49 |
Пример четыре
Добытую воду, содержащую 1,88 г/л HPAM в форме флокулянта Superfloc®, коммерчески доступного от Cytec, Inc., подвергали гидролитической обработке в разных условиях без введения богатого кислородом газа в подлежащий обработке поток. Условия и результаты испытания для каждого из четырех разных обработанных образцов потоков показаны в Таблице 4. В первом и третьем образцах катализатор не присутствовал.
Во втором и четвертом образцах в качестве катализатора использовали рутений на оксиде алюминия. В случае второго образца обработку проводили при 200°C. В случае четвертого образца обработку проводили при 260°C.
Образцы 2 и 4, в которых присутствовал катализатор, показали более выраженное снижение COD и TOC, чем образцы 1 и 3, в которых катализатор не присутствовал. В каждом из образцов, в которых присутствовал катализатор, достигалось более чем 50% снижение COD.
Таблица 4. Результаты испытания на четвертой добытой воде
Подача | Образец 1 | Образец 2 | Образец 3 | Образец 4 | |
Температура, °C | -- | 200 | 200 | 260 | 260 |
Время пребывания, мин | -- | 15 | 15 | 15 | 15 |
Давление нагнетания, фунт/дюйм2 изб. (кПа) | -- | 300 (2068) | 300 (2068) | 300 (2068) | 300 (2068) |
Нагнетаемый газ | -- | Азот | Азот | Азот | Азот |
Катализатор | -- | Нет | 2% Ru/оксид алюминия | Нет | 2% Ru/оксид алюминия |
COD, г/л | 2,0 | 1,02 | 0,89 | 1,07 | 0,78 |
TOC, г/л | 0,51 | 0,414 | 0,378 | 0,452 | 0,201 |
% метана в отходящем газе | -- | <0,01 | 0,01 | <0,01 | 0,4 |
% снижения COD | -- | 49,0 | 55,5 | 46,5 | 61,1 |
После приведенного здесь описания некоторых иллюстративных вариантов осуществления специалистам в данной области должно быть ясно, что вышеприведенное описание является лишь иллюстративным и неограничивающим, представленным лишь в качестве примера. Многочисленные модификации и другие варианты осуществления входят в сферу специалиста обычной квалификации в данной области и подразумеваются входящими в объем изобретения. В частности, хотя многие из представленных здесь примеров включают определенные сочетания осуществляемых в способе действий или элементов системы, следует понимать, что такие действия и такие элементы могут сочетаться другими образами с достижением тех же целей.
Следует понимать, что варианты осуществления устройств, систем и способов, обсужденных здесь, не ограничены в применении деталями конструкции и размещением компонентов, как изложено в описании или проиллюстрировано на прилагаемых чертежах. Устройства, системы и способы могут быть воплощены в других вариантах осуществления и могут быть реализованы на практике или осуществлены различными путями. Примеры конкретных воплощений приведены здесь лишь в иллюстративных целях и не подразумеваются ограничивающими. В частности, действия, элементы и признаки, обсужденные в связи с любым одним или более вариантами осуществления, не подразумеваются для исключения из схожей роли в любых других вариантах осуществления.
Специалистам в данной области должно быть понятно, что описанные здесь параметры и конфигурации являются иллюстративными и что фактические параметры и/или конфигурации будут зависеть от конкретного применения, в котором использованы системы и технологии данного изобретения. Специалисты в данной области должны также выявить или могут установить, используя лишь общепринятое экспериментирование, эквиваленты для конкретных вариантов осуществления данного изобретения. Следовательно, должно быть понятно, что описанные здесь варианты осуществления представлены лишь в качестве примера и что в пределах объема прилагаемой формулы изобретения и ее эквивалентов данное изобретение может быть осуществлено на практике иначе, чем конкретно описано здесь.
Более того, также следует понимать, изобретение относится к каждому признаку, системе, подсистеме или технологии, описанным здесь, и к любому сочетанию двух или более признаков, систем, подсистем или технологий, описанных здесь, и любое сочетание двух или более признаков, систем, подсистем и/или способов рассматривается как входящее в объем данного изобретения, как изложено в формуле изобретения, если такие признаки, системы, подсистемы и технологии не являются взаимно несовместимыми. Далее, действия, элементы и признаки, обсужденные лишь в связи с одним вариантом осуществления, не подразумеваются для исключения из схожей роли в других вариантах осуществления.
Фразеология и терминология, использованные здесь, служат цели описания и не должны рассматриваться как ограничивающие. Использованный здесь термин ʺнесколькоʺ относится к двум или более позициям или компонентам. Термины ʺсодержащийʺ, ʺвключающий в себяʺ, ʺнесущийʺ, ʺимеющийʺ, ʺ содержащий в своем составеʺ и ʺ включающий в свой составʺ независимо от того, присутствуют ли они в описании или в формуле изобретения и тому подобное, являются неограничивающими терминами, то есть означают ʺвключающий в себя следующее, но без исключения имʺ. Таким образом, подразумевается, что использование таких терминов охватывает позиции, указанных далее, и их эквиваленты, а также дополнительных позиции. Лишь переходные фразы ʺсостоящий изʺ и ʺсостоящий по существу изʺ являются закрытыми или полузакрытыми переходными фразами, соответственно, по отношению к формуле изобретения. Использование порядковых терминов, таких как ʺпервыйʺ, ʺвторойʺ, ʺтретийʺ и тому подобное, в формуле изобретения для определения элемента формулы изобретения, а также порядок представленных элементов, не подразумевают сами по себе какого-либо приоритета, первоочередности или порядка одного элемента формулы изобретения перед другим, либо последовательности во времени, в которой осуществляются действия способа, но они использованы лишь в качестве указателей для различения одного элемента формулы изобретения, имеющего определенное наименование, от другого элемента, имеющего такое же наименование (за исключением порядкового термина), чтобы различать элементы формулы изобретения.
Claims (19)
1. Способ получения метана, включающий в себя:
приведение в контакт водной текучей среды, содержащей по меньшей мере одно нежелательное составляющее, с гетерогенным катализатором при давлении от приблизительно 20 атм до приблизительно 240 атм и температуре от 150°C до приблизительно 373°C для гидролиза по меньшей мере одного нежелательного составляющего в текучей среде и генерирования количества метана,
причем гетерогенный катализатор содержит элемент, выбранный из группы, состоящей из рутения, никеля, кобальта, железа и их сочетаний, и твердую подложку, выбранную из группы, состоящей из оксида алюминия, диоксида кремния и карбида.
2. Способ по п. 1, где воздействие производят при давлении от примерно 20 атм до примерно 40 атм.
3. Способ по п. 1, где воздействие производят при температуре от приблизительно 200°C до приблизительно 260°C.
4. Способ по п. 1, где водная текучая среда содержит добытую воду.
5. Способ по п. 1, где по меньшей мере одно нежелательное составляющее содержит органическое соединение.
6. Способ по п. 5, где органическое соединение содержит по меньшей мере один из кинетического ингибитора гидратов и гидролизованного полиакриламида.
7. Способ по п. 1, где гетерогенный катализатор содержит рутений.
8. Способ по п. 1, где приведение в контакт производят в сосуде для обработки, где способ дополнительно включают в себя введение находящегося под давлением богатого кислородом газа в водную текучую среду выше по потоку относительно сосуда для обработки или в сосуд для обработки, и причем способ дополнительно включает окисление по меньшей мере одного нежелательного составляющего в водной текучей среде.
9. Способ получения метана, включающий в себя:
введение добытой воды, имеющей химическую потребность в кислороде, в сосуд для обработки;
воздействие на добытую воду давления от приблизительно 20 атм до приблизительно 240 атм в сосуде для обработки или выше по потоку относительно сосуда для обработки;
воздействие на добытую воду температуры от приблизительно 150°C до приблизительно 373°C в сосуде для обработки или выше по потоку относительно сосуда для обработки;
введение гетерогенного катализатора в добытую воду в сосуде для обработки или выше по потоку относительно сосуда для обработки для содействия образованию метана, причем гетерогенный катализатор содержит элемент, выбранный из группы, состоящей из рутения, никеля, кобальта, железа и их сочетаний, и твердую подложку, выбранную из группы, состоящей из оксида алюминия, диоксида кремния и карбида; и
улавливание образовавшегося метана.
10. Способ по п. 9, где химическая потребность в кислороде составляет по меньшей мере 30000 мг/л.
11. Способ по п. 9, где гетерогенный катализатор содержит рутений.
12. Способ по п. 9, где введение катализатора содействует гидролизу по меньшей мене части составляющих, вносящих вклад в химическую потребность в кислороде.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461981272P | 2014-04-18 | 2014-04-18 | |
US61/981,272 | 2014-04-18 | ||
PCT/US2015/026357 WO2015161187A2 (en) | 2014-04-18 | 2015-04-17 | Catalytic systems and methods for process stream treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2651576C1 true RU2651576C1 (ru) | 2018-04-23 |
Family
ID=53008933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016140634A RU2651576C1 (ru) | 2014-04-18 | 2015-04-17 | Каталитические системы и способы обработки технологических потоков |
Country Status (8)
Country | Link |
---|---|
US (2) | US10246382B2 (ru) |
EP (1) | EP3131855B1 (ru) |
KR (2) | KR20200013816A (ru) |
CN (1) | CN106458664B (ru) |
ES (1) | ES2923865T3 (ru) |
RU (1) | RU2651576C1 (ru) |
SA (1) | SA516380070B1 (ru) |
WO (1) | WO2015161187A2 (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2843825T3 (es) | 2016-05-25 | 2021-07-20 | Shell Int Research | Proceso de preparación de un catalizador y uso del mismo |
BR112018073878A2 (pt) | 2016-05-25 | 2019-02-26 | Shell Internationale Research Maatschappij B.V. | processo para tratar água residual. |
KR20220082819A (ko) * | 2019-10-26 | 2022-06-17 | 바텔리 메모리얼 인스티튜트 | 실리카 존재 시 pfas의 파괴 |
KR20230064829A (ko) | 2021-11-04 | 2023-05-11 | 양유진 | 습식 산화 반응 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08192191A (ja) * | 1995-01-12 | 1996-07-30 | Kansai Electric Power Co Inc:The | 火力発電所の非定常排水の処理方法 |
US20130228528A1 (en) * | 2007-01-22 | 2013-09-05 | Chad L. Felch | Wet air oxidation process using recycled copper catalyst |
RU2498050C2 (ru) * | 2011-11-18 | 2013-11-10 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) | Способ добычи метана из придонных залежей твердых гидратов |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5630854A (en) * | 1982-05-20 | 1997-05-20 | Battelle Memorial Institute | Method for catalytic destruction of organic materials |
JP2628089B2 (ja) * | 1989-08-18 | 1997-07-09 | 大阪瓦斯株式会社 | 廃水の処理方法 |
JP2001254087A (ja) * | 2000-03-09 | 2001-09-18 | Osaka Gas Co Ltd | 燃料ガスの製造方法 |
EP1484285A4 (en) * | 2002-03-11 | 2006-04-05 | Nippon Catalytic Chem Ind | METHOD FOR TREATING WASTEWATER |
JP4164658B2 (ja) * | 2003-03-31 | 2008-10-15 | 大阪瓦斯株式会社 | 燃料ガスの製造方法 |
TWI381883B (zh) * | 2006-03-10 | 2013-01-11 | Nippon Catalytic Chem Ind | 用於廢水處理之觸媒及使用該觸媒之廢水處理方法 |
US20120168364A1 (en) * | 2009-06-04 | 2012-07-05 | Evans Thomas S | Oil field water recycling system and method |
CA2867565C (en) * | 2012-03-30 | 2021-01-19 | Victor KEASLER | Use of peracetic acid/hydrogen peroxide and peroxide-reducing agents for treatment of drilling fluids, frac fluids, flowback water and disposal water |
-
2015
- 2015-04-17 CN CN201580020091.8A patent/CN106458664B/zh active Active
- 2015-04-17 KR KR1020207003097A patent/KR20200013816A/ko not_active Application Discontinuation
- 2015-04-17 WO PCT/US2015/026357 patent/WO2015161187A2/en active Application Filing
- 2015-04-17 ES ES15719129T patent/ES2923865T3/es active Active
- 2015-04-17 EP EP15719129.7A patent/EP3131855B1/en active Active
- 2015-04-17 KR KR1020167032094A patent/KR102245666B1/ko active IP Right Grant
- 2015-04-17 RU RU2016140634A patent/RU2651576C1/ru active
- 2015-04-17 US US15/128,448 patent/US10246382B2/en active Active
-
2016
- 2016-10-13 SA SA516380070A patent/SA516380070B1/ar unknown
-
2019
- 2019-01-30 US US16/261,749 patent/US10472301B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08192191A (ja) * | 1995-01-12 | 1996-07-30 | Kansai Electric Power Co Inc:The | 火力発電所の非定常排水の処理方法 |
US20130228528A1 (en) * | 2007-01-22 | 2013-09-05 | Chad L. Felch | Wet air oxidation process using recycled copper catalyst |
RU2498050C2 (ru) * | 2011-11-18 | 2013-11-10 | Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) | Способ добычи метана из придонных залежей твердых гидратов |
Also Published As
Publication number | Publication date |
---|---|
US10246382B2 (en) | 2019-04-02 |
US10472301B2 (en) | 2019-11-12 |
EP3131855B1 (en) | 2022-07-13 |
CN106458664B (zh) | 2020-02-18 |
EP3131855A2 (en) | 2017-02-22 |
CN106458664A8 (zh) | 2017-06-30 |
CN106458664A (zh) | 2017-02-22 |
US20190152875A1 (en) | 2019-05-23 |
ES2923865T3 (es) | 2022-10-03 |
KR20200013816A (ko) | 2020-02-07 |
KR102245666B1 (ko) | 2021-04-27 |
KR20170002455A (ko) | 2017-01-06 |
WO2015161187A2 (en) | 2015-10-22 |
SA516380070B1 (ar) | 2020-06-15 |
US20170174583A1 (en) | 2017-06-22 |
WO2015161187A3 (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10472301B2 (en) | Catalytic systems and methods for process stream treatment | |
US9630867B2 (en) | Treatment of spent caustic waste | |
US5439592A (en) | Method for removal of water soluble organics from oil process water | |
EP2439176A1 (en) | Treatment of water for use in hydraulic fracture stimulation | |
CN104926021B (zh) | 酚氨废水处理装置 | |
JP2010516446A (ja) | 再循環触媒を使用する湿式空気酸化方法 | |
JP6743352B2 (ja) | フミン含有排水の処理方法、及びフミン含有排水の処理装置 | |
WO2012071672A1 (en) | Treatment of produced water | |
WO2016139626A1 (en) | Method for separating pollutant from wastewater and system thereof | |
CN103102039B (zh) | 一种高酸原油电脱盐废水的达标排放处理方法 | |
KR102098493B1 (ko) | 생산수 처리 시스템 | |
JP5020490B2 (ja) | 有機汚泥の処理方法及び有機汚泥処理設備 | |
US9637404B2 (en) | Method for treating organic laden produced water | |
CN107021579A (zh) | 一种采用水热法资源化处理压裂返排液的方法 | |
KR20150144337A (ko) | 재순화된 구리, 바나듐 또는 철 촉매를 사용한 습식 공기 산화 공정 | |
EP3439781A1 (en) | Low temperature wet air oxidation | |
JP2016515927A (ja) | 均一触媒湿式酸化を可能にするためのpH制御 | |
RU2783358C2 (ru) | Способ обезвреживания полигонного фильтрата и других жидких отходов с высоким содержанием трудноокисляемых органических веществ (по показателю ХПК) на основе сверхкритического водного окисления и устройство для его реализации | |
CN213680159U (zh) | 废水回收设备 | |
Gao et al. | Treatment of oilfield wastewater by FentonÕs process | |
EA000928B1 (ru) | Способ удаления примесей из углеводородной текучей среды | |
Al-Shaabi et al. | Produced Water Management for Sustainable Reinjection––Bench Scale Tests to Remove and Destroy KHI | |
CN115465981A (zh) | 一种低成本的兰炭废水处理系统及方法 | |
JP2000033260A (ja) | 超臨界水酸化処理液からの重金属除去方法 | |
CA2776167A1 (en) | Steam generator blowdown management |