RU2649699C2 - Low noise production room - Google Patents
Low noise production room Download PDFInfo
- Publication number
- RU2649699C2 RU2649699C2 RU2015118825A RU2015118825A RU2649699C2 RU 2649699 C2 RU2649699 C2 RU 2649699C2 RU 2015118825 A RU2015118825 A RU 2015118825A RU 2015118825 A RU2015118825 A RU 2015118825A RU 2649699 C2 RU2649699 C2 RU 2649699C2
- Authority
- RU
- Russia
- Prior art keywords
- sound
- frame
- absorbing
- perforated
- cavities
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000006096 absorbing agent Substances 0.000 claims abstract description 24
- 238000013016 damping Methods 0.000 claims abstract description 23
- 239000011358 absorbing material Substances 0.000 claims abstract description 18
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- 238000004078 waterproofing Methods 0.000 claims abstract description 5
- 210000003739 neck Anatomy 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 claims description 2
- 230000000284 resting effect Effects 0.000 claims description 2
- 239000012780 transparent material Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 3
- 239000011490 mineral wool Substances 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Building Environments (AREA)
Abstract
Description
Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства в качестве средства защиты от шума.The invention relates to industrial acoustics, in particular to broadband sound attenuation, and can be used in all sectors of the economy as a means of protection against noise.
Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая конструкция по патенту РФ №2425196, кл. F01N 1/04, [прототип], содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.The closest technical solution to the technical nature and the achieved result is the acoustic design according to the patent of the Russian Federation No. 2425196, class. F01N 1/04, [prototype], comprising a frame on the ceiling of a building and a wall with sound-absorbing lining.
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия.The disadvantage of the technical solution adopted as a prototype is the relatively low noise attenuation efficiency due to the relatively low coefficient of vibration damping of the floor.
Технический результат - повышение эффективности шумоглушения.The technical result is an increase in the efficiency of noise reduction.
Это достигается тем, что в акустической конструкции цеха, содержащей каркас цеха, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, согласно изобретению пол выполнен на упругом ' основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.This is achieved by the fact that in the acoustic structure of the workshop, containing the workshop framework, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located, and installed above the noisy equipment, according to the invention, the floor is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the bases a floor slab with cavities through layers of vibration-damping material and waterproofing material with a gap relative to the bearing walls of the production room, and the cavities of the base plate are filled with vibration-damping material, for example, foamed polymer.
На фиг. 1 изображен общий вид малошумного производственного помещения, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - конструкция подвесного потолка, на фиг. 4 - конструкция штучного звукопоглотителя.In FIG. 1 shows a general view of a low-noise production room; FIG. 2 is a section through a floor of a building, in FIG. 3 - design of a false ceiling, in FIG. 4 - design of a piece of sound absorber.
Малошумное производственное помещение (фиг. 1) содержит каркас цеха (не показан), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием 11. Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного помещения. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям, слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия. Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».The low-noise production room (Fig. 1) contains a workshop frame (not shown), window 9 and
В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (не показано).As a sound-absorbing material, a rigid porous material can also be used, for example, foam aluminum or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%. As a sound-absorbing material, a material in the form of crumbs of solid vibration-damping materials, for example, elastomer, or polyurethane, or plastic compound can be used, and the size of the fractions of the crumb lies in the optimal range of values: 0.3–2.5 mm (not shown).
Подвесной акустический потолок (фиг. 3) состоит из жесткого каркаса 19, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В×С, отношение которых лежит в оптимальном интервале величин В:С=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 21, имеющих скобы 22 для прокладки проводов электропитания к светильникам 24, установленным в каркасе 19. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов 23. К каркасу прикреплен перфорированный лист 20, на котором через слой акустического прозрачного материала расположен слой звукопоглощающего материала 18. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и Е-толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5. Перфорированный лист 20 имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации - 10…15%, причем по форме перфорация может быть выполнена в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного сечения (на чертеже показаны квадратные отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.Suspended acoustic ceiling (Fig. 3) consists of a
Штучный звукопоглотитель резонансного типа (фиг. 4) содержит жесткий каркас из верхней, активной части, 25, и нижней, реактивной, части 28, выполненной в виде по крайней мере трех коаксиально и осесимметрично расположенных резонансных цилиндров 32, 33 и 35, полости которых снабжены отверстиями 31, 34, 36 разного диаметра, выполняющими функции горловин резонатора Гельмгольца. Опорные диски 37 и 38, расположенные по торцам цилиндров, жестко и герметично соединяют их между собой, образуя реактивную часть 28 жесткого каркаса звукопоглотителя.The resonant-type piece sound absorber (Fig. 4) contains a rigid frame of the upper, active part, 25, and the lower,
Верхняя, активная, часть 25 выполнена в виде жесткой перфорированной цилиндрической обечайки 26 с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом. Соединение верхней 25 и нижней 28 частей выполнено посредством упругодемпфирующего элемента 29, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки 26 шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку помещения.The upper,
Вокруг перфорированной цилиндрической обечайки 26 расположен по крайней мере один винтовой звукопоглощающий элемент 27, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку 26 и опирающейся в опорный диск 30, соединенный с реактивной частью 28 звукопоглотителя.Around the perforated
Винтовой звукопоглощающий элемент 27 выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость (не показано), при этом пространство, образованное внешней и внутренней винтовыми поверхностями, заполнено звукопоглощающим материалом (не показано) с плотностью, меньшей, чем у винтового звукопоглощающего элемента 27.The screw sound-absorbing
Резонансный звукопоглотитель работает следующим образом.The resonant sound absorber operates as follows.
Звуковые волны, распространяясь на промышленном или транспортном объектах, взаимодействуют со звукопоглощающим материалом винтового звукопоглощающего элемента 27, расположенным в верхней активной части 25 каркаса, а также в перфорированной цилиндрической обечайке 26, при этом происходит снижение шума на низких, средних и высоких частотах соответственно.Sound waves propagating at an industrial or transport facility interact with the sound-absorbing material of a screw sound-absorbing
Соединение верхней 25 и нижней 28 частей каркаса посредством упругодемпфирующего элемента 29, позволяет демпфировать высокочастотные колебания, которые могут излучаться жестким каркасом, что позволяет его использовать для снижения шума на транспортных объектах. Звукопоглощение на средних и высоких частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных воздушными полостями резонансных цилиндров 32, 33 и 35, полости которых снабжены отверстиями 31, 34, 36 разного диаметра, выполняющими функции горловин резонатора Гельмгольца, для гашения шума в заданной полосе частот, при этом для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило, большие объемы полостей резонансных цилиндров 32, 33 и 35 выбирают для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с винтовым звукопоглощающим элементом 27 приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.The connection of the upper 25 and lower 28 parts of the frame by means of an
Малошумное производственное помещение работает следующим образом.Low-noise production room works as follows.
Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например, типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой.Sound energy from the
Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Sound waves propagating in the production room interact with cavities filled with sound absorber.
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases, and, as a result, the sound absorption coefficient increases.
При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например пластикат, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60-80 кг/м.When installing vibroactive equipment on
Подвесной акустический потолок работает следующим образом.False acoustic ceiling works as follows.
Подвешивание подвесного акустического потолка осуществляют на подвесках 21, которые крепятся к потолку с помощью дюбель-винтов 23, а другим концом закреплены на каркасе 19. Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями. Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.Suspension of a suspended acoustic ceiling is carried out on
Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки характеристик на требуемый частотный диапазон шумоподавления за счет изменения длины подвеса.An advantage of the invention is its versatility of application for various production facilities having a wide variety of noise characteristics. It should be noted the relative ease of tuning the characteristics to the required frequency range of noise reduction by changing the length of the suspension.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015118825A RU2649699C2 (en) | 2015-05-20 | 2015-05-20 | Low noise production room |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015118825A RU2649699C2 (en) | 2015-05-20 | 2015-05-20 | Low noise production room |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2015118825A RU2015118825A (en) | 2016-12-10 |
RU2015118825A3 RU2015118825A3 (en) | 2018-03-15 |
RU2649699C2 true RU2649699C2 (en) | 2018-04-04 |
Family
ID=57759664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015118825A RU2649699C2 (en) | 2015-05-20 | 2015-05-20 | Low noise production room |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2649699C2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2425196C1 (en) * | 2010-08-20 | 2011-07-27 | Олег Савельевич Кочетов | Low noise shop |
US20120247867A1 (en) * | 2010-01-08 | 2012-10-04 | Jun Yang | Composite sound-absorbing device with built in resonant cavity |
RU129125U1 (en) * | 2012-08-21 | 2013-06-20 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
RU138068U1 (en) * | 2013-05-30 | 2014-02-27 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
-
2015
- 2015-05-20 RU RU2015118825A patent/RU2649699C2/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120247867A1 (en) * | 2010-01-08 | 2012-10-04 | Jun Yang | Composite sound-absorbing device with built in resonant cavity |
RU2425196C1 (en) * | 2010-08-20 | 2011-07-27 | Олег Савельевич Кочетов | Low noise shop |
RU129125U1 (en) * | 2012-08-21 | 2013-06-20 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
RU138068U1 (en) * | 2013-05-30 | 2014-02-27 | Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING |
Also Published As
Publication number | Publication date |
---|---|
RU2015118825A3 (en) | 2018-03-15 |
RU2015118825A (en) | 2016-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2480561C1 (en) | Acoustic structure of workshop | |
RU2425196C1 (en) | Low noise shop | |
RU2501918C1 (en) | Sound-absorbing elements of rooms | |
RU2425197C1 (en) | Sound absorbing design of shop | |
RU129125U1 (en) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING | |
RU2543826C2 (en) | Shop acoustic finishing | |
RU138068U1 (en) | LOW SEISMIC-RESISTANT PRODUCTION BUILDING | |
RU2490400C1 (en) | Acoustic structure for production premises | |
RU2455433C1 (en) | Acoustically comfortable room | |
RU2439253C1 (en) | Acoustically comfortable room with noise protective equipment | |
RU2540991C1 (en) | Single-piece sound absorber for acoustic structure of production facility | |
RU2442861C1 (en) | Acoustic dissipation elements for operational buildings | |
RU2611650C1 (en) | Low noise seismic resistance industrial building | |
RU2440468C1 (en) | Acoustic structure | |
RU2579020C2 (en) | Sound-absorbing structure of industrial premises | |
RU2671278C1 (en) | Workshop acoustic structure | |
RU2648102C1 (en) | Acoustically comfortable room | |
RU2649699C2 (en) | Low noise production room | |
RU2610013C1 (en) | Kochetov low-noise manufacturing building | |
RU2658941C2 (en) | Suspended acoustical ceiling | |
RU2490401C1 (en) | Production room with low noise level | |
RU2425931C1 (en) | Production room with low noise level | |
RU2543827C2 (en) | Shop acoustic finishing | |
RU2585770C1 (en) | Kochetov single-piece sound absorber for acoustic structure of shop | |
RU2600236C1 (en) | Kochetov low-noise structure for earthquake-resistant industrial buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HE9A | Changing address for correspondence with an applicant |