RU2649695C1 - Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления - Google Patents

Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления Download PDF

Info

Publication number
RU2649695C1
RU2649695C1 RU2017121706A RU2017121706A RU2649695C1 RU 2649695 C1 RU2649695 C1 RU 2649695C1 RU 2017121706 A RU2017121706 A RU 2017121706A RU 2017121706 A RU2017121706 A RU 2017121706A RU 2649695 C1 RU2649695 C1 RU 2649695C1
Authority
RU
Russia
Prior art keywords
frequency
minutes
frequency plasma
substrates
cleaning
Prior art date
Application number
RU2017121706A
Other languages
English (en)
Inventor
Валентина Васильевна Азарова
Вадим Альбертович Галеев
Илдар Гарифович Гафаров
Юрий Дмитриевич Голяев
Анастасия Юрьевна Голяева
Александр Владимирович Товстопят
Виталий Владимирович Фокин
Original Assignee
Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" filed Critical Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха"
Priority to RU2017121706A priority Critical patent/RU2649695C1/ru
Application granted granted Critical
Publication of RU2649695C1 publication Critical patent/RU2649695C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B11/00Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
    • B08B11/04Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto specially adapted for plate glass, e.g. prior to manufacture of windshields
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с. Затем проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 минут до 10 минут при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин. Способ обеспечивает получение чистой гидрофильной поверхности подложек ситалла без загрязнений в виде отдельных частиц или в виде пленки. 3 з.п. ф-лы, 1 табл.

Description

Изобретение относится к плазменной технологии и может использоваться для очистки подложек из ситалла, которые в дальнейшем применяются для изготовления различных элементов и устройств микроэлектроники.
Заявленное изобретение относится к области плазменной очистки в высокочастотной (ВЧ) плазме пониженного давления подложек из ситалла. Этот материал, прошедший обработку, широко используются для изготовления различных микроэлектронных элементов и устройств, применяемых в ракетно-космическом и наземном приборостроении. К изделиям из ситалла предъявляются высокие требования к чистоте поверхности перед выполнением дальнейших технологических операций.
Подложки ситалла проходят достаточно сложный технологический цикл, связанный с нарезанием материала на отдельные пластины, шлифованием и полированием пластин и очисткой их поверхности. Для очистки поверхности подложки после финишной полировки применяют методы химической и плазмохимического травления, гидромеханической отмывки и вакуум-термической обработки. Однако каждый из методов в отдельности имеет свои недостатки и не обеспечивают чистоту поверхности подложек, требуемую при выполнении дальнейших технологических процессов.
Известны различные способы химической очистки поверхности полупроводниковых пластин и диэлектриков (поликристаллический корунд, ситалл, кварц, сапфир и т.п.) (RU 2395135, заявка 2009105201/28, 16.02.2009, опубл. 20.07.2010; SU 17747469, заявка 4851538, 16.07.1990, опубл. 15.07.1992). Недостатком химических способов очистки является невозможность получения чистой гидрофильной поверхности без загрязнений, образование тонкой пленки на поверхности обработанных подложек, предварительно прошедших операцию финишной полировки; необходимость промывки и сушки (отжига) подложек после химической очистки; длительность процесса, высокая стоимость химических реактивов.
Наиболее близким способом к предлагаемому способу и принятому за прототип является способ плазмохимической обработки подложек из сапфира и ситалла (RU 2541436, заявка 2013150231/28, 11.11.2013, опубл. 10.02.2015). По данному способу после предварительной протирки изделий спиртом со всех сторон, включая протирку спиртом всех торцов подложки, производят предварительный обдув изделий нейтральным газом и помещают изделия в камеру плазменной установки в межэлектродное пространство взаимно перпендикулярно и параллельно стенкам рабочей камеры. Затем производят очистку изделий в ВЧ-разряде в среде доминирования кислорода при мощности 500-600 Вт, давлении 106,67-120,99 Па в течение 10-20 мин. Проверка качества обработки поверхности проводится по свидетелю методом краевого угла смачивания по окончании очистки. По данному способу в качестве рабочего газа может использоваться смесь кислорода с азотом (80-85% O2, 15-20% N2).
Недостатками данного способа является следующее. Предварительный обдув изделий нейтральным газом не устраняет полностью на поверхности ситалловой подложки остатки органики, пыли, масляных пленок, других загрязнений. Резкое плазменное воздействие на поверхность подложки уже на начальной стадии обработки мощностью 500-600 Вт на такую поверхность приводит к образованию на подложке тонкой (1-50 нм) пленки, заметной при исследованиях поверхности методами атомсиловой микроскопии. Дальнейшая обработка подложки в указанных диапазонах мощностей и давлений может повышать адгезионную прочность этой пленки к поверхности подложки, что ухудшает характеристики ситалловой подложки в дальнейших технологических операциях. Использование в плазменной очистке смеси кислород-азот (80-85% O2, 15-20% N2) также приводит к образованию на активированной плазмой поверхности оксидных или нитридных соединений и тонких пленок с высокой адгезией к поверхности ситалла, что ухудшает технические характеристики в конечных изделиях. В случае использования неизолированных электродов ВЧ плазменной системы возможна эрозия материала электрода на ситалловую подложку.
Задачей предлагаемого способа обработки подложек из ситалла в струе высокочастотной плазмы пониженного давления является получение чистой гидрофильной поверхности подложки ситалла без видимых следов загрязнений в виде отдельных частиц или в виде пленки.
Поставленная задача решается за счет того, что после промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с, затем проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 мин до 10 мин при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин. В качестве технологического газа используется Ar или смесь Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 при частоте высокочастотного генератора от 1,76 МГц до 13,56 МГц.
Улучшение качества обработки подложки достигается очисткой поверхности от остатков материалов финишной полировки после химической очистки, удаления остатков реактивов и образовавшихся химических соединений после химической очистки; приданием поверхности гидрофильных свойств. Гарантированная повторяемость процесса достигается установленными диапазонами оптимальной очистки поверхности подложки ситалла (мощности струи высокочастотной плазмы, плотности теплового потока на поверхность подложки ситалла, расхода технологического газа, давления процесса, времени очистки, места расположения подложки). Повышение выхода годной продукции обеспечивается уровнем современной техники, позволяющей поддерживать с высокой точностью установленные параметры разряда в режимах оптимальной обработки подложек ситалла. Снижение себестоимости выпускаемой продукции обеспечивается одновременной обработкой промышленной партии подложек, сокращением времени обработки подложек и неограниченным ресурсом высокочастотных (ВЧ) плазмотронов.
Пример реализации предлагаемого способа.
Подложки из ситалла, прошедшие финишную полировку и химическую очистку любым известным способом, промываются деионизованной водой и размещаются в кварцевых кассетах. Кварцевые кассеты с подложками размещаются на карусельном устройстве в вакуумном блоке установки с высокочастотным струйным плазмотроном на расстоянии от среза плазмотрона L от 60 мм до 120 мм. Проводится откачка вакуумного блока до предварительного давления (p) от 1,0 Па до 2,0 Па. Включением высокочастотного генератора в диапазоне частот от 1,76 МГц до 13,36 МГц при мощности генератора Рвчг от 100 Вт до 120 Вт в плазмотроне возбуждается ВЧ-разряд. Способ реализуется на разрешенных частотах для плазменных генераторов 1,76 МГц, 5,28 МГц и 13,56 МГц. При увеличении мощности генератора (Рвчг) свыше 1000 Вт и расхода технологического газа (G) свыше 0,04 г/с, образуется струя плазмы, которая воздействует на поверхность подложки. Увеличением расхода технологического газа от 0,05 г/с до 0.06 г/с при мощности генератора 1500 Вт происходит плавный нагрев подложки в течение от 1 мин до 2 мин, и частичное обезгаживание ситалла, удаление легколетучих органических соединений с поверхности подложки. После плавного нагрева подложки в течение от 5 мин до 10 мин проводится очистка поверхности подложки ситалла при расходе газа 0,06-0,08 г/с при давлении в вакуумном блоке от 19 Па до 26,6 Па. После обработки расход газа плавно уменьшается до 0,04 г/с течение 1 мин для избежания резкого термодинамического удара. По завершении очистки карусельным устройством обработанная подложка выводится из зоны обработки (из струи плазмы), а в рабочую зону перемещается следующая подложка. После обработки последней загруженной в карусельное устройство подложки проводится остужение подложек в вакууме в течение 5-10 мин, затем извлечение обработанной партии из вакуумного блока. В вакуумном блоке возможно расположить более десяти подложек для обработки в едином технологическом цикле.
Оптимально время обработки одной подложки составляет 5-10 мин. При использовании смеси газа Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 оптимальное время составляет от 3 до 5 мин. При обработке в течение менее 3-х мин эффект очистки не наблюдается. Дальнейшее увеличение времени обработки свыше 5 мин заметной разницы по качеству очищаемой поверхности не дает.
Контроль качества очистки проводится по измерению краевого угла смачиваемости α. Измерение α проводится по растеканию капли дионизованной воды на поверхности подложки и вычислению угла между поверхностью подложки и касательной, построенной к капле, до и после обработки подложки.
Примеры режимов заявляемого способа и результаты обработки ситалловых подложек представлены в таблице 1. Угол смачиваемости поверхности ситалла до обработки составляет от 60° до 70°. После очистки в струе высокочастотного разряда угол смачиваемости α изменяется от 1,5° до 2°.
Основным механизмом, приводящим к очистке поверхности в плазме высокочастного разряда при указанных давлениях, является термический нагрев подложки и рекомбинация ионов Ar на поверхности. Около обрабатываемой поверхности подложки в ВЧ плазме пониженного давления образуется слой положительного заряда (СПЗ) толщиной до 1,5-2 мм. В структуре СПЗ выделяются область двойного электрического слоя (дебаевский слой) и область колебаний электронного газа. Роль каждой из этих областей различна. Проходя сквозь СПЗ к поверхности образца, ионы плазмы набирают энергию преимущественно в области колебаний электронного газа. В дебаевском слое ионный поток фокусируется на неоднородностях микрорельефа поверхности, на которых происходит рекомбинация ионов с выделением энергии рекомбинации. Для Ar она составляет 15,6 эВ.
Figure 00000001
В результате происходит удаление остатков материалов финишной полировки, удаления остатков реактивов и образовавшихся химических соединений после химической очистки. Установленные в представленном способе диапазоны параметров р, Рвчг, G, t на частотах ВЧ генератора от 1,76 МГц до 13,56 МГц обеспечивают в месте размещения обрабатываемых подложка на расстоянии L от 60 до 120 мм значения энергии ионов и теплового потока плазмы, необходимые для эффективной очистки подложки от загрязнений.
При обработке подложки при значениях р, Рвчг, G, меньших указанных диапазонов оптимальной обработки, значения энергии ионов и теплового потока плазмы недостаточно для проведения эффективной очистки. Превышение р, Рвчг, G могут приводить, кроме очистки поверхности, к изменению структуры и морфологии поверхности, что не всегда приемлемо для дальнейших технологических процессов, в которых используются подложки из ситалла.
При использование в качестве технологического газа смеси Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 за счет диссоциация молекулы кислорода (O2→O+O+е) образуются атомы кислорода, которые обладают высокой реакционной способностью с углеродсодержащими соединениями и вступают в реакцию с органикой. Образующиеся в результате очистки CO, CO2 и H2O являются стабильными соединениями, которые удаляются из реакционной камеры вакуумными насосами. В результате более высокой реакционной способности смеси Ar+O2 по сравнению с обработкой в чистом аргоне проводится очистка поверхности подложки за более короткий промежуток времени от 5 мин до 6 мин. Превышение в смеси технологического газа кислорода более 20% может приводить к травлению поверхности, что не является задачей данного изобретения. Меньшее количество кислорода в смеси не приводит к сокращению времени обработки.
Из приведенных данных видно, что предлагаемый способ обеспечивает получение чистой гидрофильной поверхности подложки ситалла без загрязнений в виде отдельных частиц или в виде пленки.

Claims (4)

1. Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления, включающий химическую очистку и промывку в деионизованной воде, отличающийся тем, что после промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с, проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 мин до 10 мин при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин.
2. Способ по п. 1, отличающийся тем, что обработку ведут с среде технологического газа Ar.
3. Способ по п. 1, отличающийся тем, что обработку ведут в смеси технологического газа Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 в течение от 3 мин до 5 мин.
4. Способ по пп. 1-3, отличающийся тем, что обработку ведут в струе высокочастотной плазмы на частотах от 1, 76 МГц до 13,56 МГц.
RU2017121706A 2017-06-21 2017-06-21 Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления RU2649695C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121706A RU2649695C1 (ru) 2017-06-21 2017-06-21 Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121706A RU2649695C1 (ru) 2017-06-21 2017-06-21 Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Publications (1)

Publication Number Publication Date
RU2649695C1 true RU2649695C1 (ru) 2018-04-04

Family

ID=61867552

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121706A RU2649695C1 (ru) 2017-06-21 2017-06-21 Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Country Status (1)

Country Link
RU (1) RU2649695C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984328A2 (en) * 1998-09-04 2000-03-08 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. A method of surface etching silica glass, for instance for fabricating phase masks
WO2003070390A2 (en) * 2002-02-20 2003-08-28 Radiiontech Co., Ltd Cleaning apparatus using atmospheric pressure plasma
RU46446U1 (ru) * 2003-12-24 2005-07-10 Чамов Анатолий Владимирович Устройство для очистки поверхности пластин
RU2364574C2 (ru) * 2004-01-28 2009-08-20 Сэн-Гобэн Гласс Франс Способ очистки подложки
RU2541436C1 (ru) * 2013-11-11 2015-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ плазмохимической обработки подложек из поликора и ситалла

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984328A2 (en) * 1998-09-04 2000-03-08 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. A method of surface etching silica glass, for instance for fabricating phase masks
WO2003070390A2 (en) * 2002-02-20 2003-08-28 Radiiontech Co., Ltd Cleaning apparatus using atmospheric pressure plasma
RU46446U1 (ru) * 2003-12-24 2005-07-10 Чамов Анатолий Владимирович Устройство для очистки поверхности пластин
RU2364574C2 (ru) * 2004-01-28 2009-08-20 Сэн-Гобэн Гласс Франс Способ очистки подложки
RU2541436C1 (ru) * 2013-11-11 2015-02-10 Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") Способ плазмохимической обработки подложек из поликора и ситалла

Similar Documents

Publication Publication Date Title
TWI671786B (zh) 清潔高深寬比通孔
TWI575594B (zh) 清洗鋁電漿室部件之方法
CN111940394B (zh) 半导体高阶制程apc装置的石英部件再生清洗方法
TWI695429B (zh) 電漿處理方法
WO2002050883A1 (fr) Procede de nettoyage et procede d'attaque
KR100265289B1 (ko) 플라즈마식각장치의 캐소우드 제조방법 및 이에 따라 제조되는 캐소우드
KR102563633B1 (ko) 에칭 방법 및 플라즈마 에칭 재료
JP3699678B2 (ja) セラミック絶縁体の洗浄方法
CN106920730A (zh) 一种清洁刻蚀硅基片等离子体处理装置的方法
US10056236B2 (en) Plasma processing method
CN103495928B (zh) 一种提高蓝宝石衬底片表面质量和产品良率的加工方法
KR100259220B1 (ko) 수소 플라즈마 다운 스트림 처리 장치 및 수소 플라즈마 다운스트림 처리 방법
JP2008103701A (ja) シリコンウェハのウェット処理方法
CN113103076A (zh) 一种基于感应耦合等离子体的晶圆抛光装置
KR102017138B1 (ko) 탄화규소 제품의 재생 방법 및 재생된 탄화규소 제품
RU2649695C1 (ru) Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления
RU2708812C1 (ru) Способ обработки поверхности пластин карбида кремния в низкотемпературной индуктивно-связанной плазме
CN112192323A (zh) 一种无亚表面损伤抛光设备及方法
JP2012243958A (ja) プラズマ処理方法
CN104282518A (zh) 等离子体处理装置的清洁方法
WO2014158320A1 (en) Wet cleaning of chamber component
KR102625872B1 (ko) 물리적 연마 단계 및 양극산화 단계를 포함하는 알루미늄 소재 리모트 플라즈마 소스 챔버의 표면 처리 방법
JP6638334B2 (ja) プラズマ処理装置部品のクリーニング方法及びクリーニング装置
JP2001250785A (ja) 炭化ケイ素が被覆された半導体熱処理用部材の洗浄方法
JP3147868U (ja) 基板処理装置