RU2649695C1 - Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления - Google Patents
Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления Download PDFInfo
- Publication number
- RU2649695C1 RU2649695C1 RU2017121706A RU2017121706A RU2649695C1 RU 2649695 C1 RU2649695 C1 RU 2649695C1 RU 2017121706 A RU2017121706 A RU 2017121706A RU 2017121706 A RU2017121706 A RU 2017121706A RU 2649695 C1 RU2649695 C1 RU 2649695C1
- Authority
- RU
- Russia
- Prior art keywords
- frequency
- minutes
- frequency plasma
- substrates
- cleaning
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004140 cleaning Methods 0.000 title claims abstract description 26
- 239000002241 glass-ceramic Substances 0.000 title abstract 5
- 230000008569 process Effects 0.000 claims abstract description 17
- 239000000126 substance Substances 0.000 claims abstract description 11
- 239000008367 deionised water Substances 0.000 claims abstract description 7
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 230000007423 decrease Effects 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000011282 treatment Methods 0.000 claims description 3
- 238000011109 contamination Methods 0.000 abstract description 4
- 230000005660 hydrophilic surface Effects 0.000 abstract description 4
- 238000004157 plasmatron Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 238000000746 purification Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 16
- 239000000919 ceramic Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- -1 nitride compounds Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/006—Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B11/00—Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto
- B08B11/04—Cleaning flexible or delicate articles by methods or apparatus specially adapted thereto specially adapted for plate glass, e.g. prior to manufacture of windshields
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0075—Cleaning of glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с. Затем проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 минут до 10 минут при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин. Способ обеспечивает получение чистой гидрофильной поверхности подложек ситалла без загрязнений в виде отдельных частиц или в виде пленки. 3 з.п. ф-лы, 1 табл.
Description
Изобретение относится к плазменной технологии и может использоваться для очистки подложек из ситалла, которые в дальнейшем применяются для изготовления различных элементов и устройств микроэлектроники.
Заявленное изобретение относится к области плазменной очистки в высокочастотной (ВЧ) плазме пониженного давления подложек из ситалла. Этот материал, прошедший обработку, широко используются для изготовления различных микроэлектронных элементов и устройств, применяемых в ракетно-космическом и наземном приборостроении. К изделиям из ситалла предъявляются высокие требования к чистоте поверхности перед выполнением дальнейших технологических операций.
Подложки ситалла проходят достаточно сложный технологический цикл, связанный с нарезанием материала на отдельные пластины, шлифованием и полированием пластин и очисткой их поверхности. Для очистки поверхности подложки после финишной полировки применяют методы химической и плазмохимического травления, гидромеханической отмывки и вакуум-термической обработки. Однако каждый из методов в отдельности имеет свои недостатки и не обеспечивают чистоту поверхности подложек, требуемую при выполнении дальнейших технологических процессов.
Известны различные способы химической очистки поверхности полупроводниковых пластин и диэлектриков (поликристаллический корунд, ситалл, кварц, сапфир и т.п.) (RU 2395135, заявка 2009105201/28, 16.02.2009, опубл. 20.07.2010; SU 17747469, заявка 4851538, 16.07.1990, опубл. 15.07.1992). Недостатком химических способов очистки является невозможность получения чистой гидрофильной поверхности без загрязнений, образование тонкой пленки на поверхности обработанных подложек, предварительно прошедших операцию финишной полировки; необходимость промывки и сушки (отжига) подложек после химической очистки; длительность процесса, высокая стоимость химических реактивов.
Наиболее близким способом к предлагаемому способу и принятому за прототип является способ плазмохимической обработки подложек из сапфира и ситалла (RU 2541436, заявка 2013150231/28, 11.11.2013, опубл. 10.02.2015). По данному способу после предварительной протирки изделий спиртом со всех сторон, включая протирку спиртом всех торцов подложки, производят предварительный обдув изделий нейтральным газом и помещают изделия в камеру плазменной установки в межэлектродное пространство взаимно перпендикулярно и параллельно стенкам рабочей камеры. Затем производят очистку изделий в ВЧ-разряде в среде доминирования кислорода при мощности 500-600 Вт, давлении 106,67-120,99 Па в течение 10-20 мин. Проверка качества обработки поверхности проводится по свидетелю методом краевого угла смачивания по окончании очистки. По данному способу в качестве рабочего газа может использоваться смесь кислорода с азотом (80-85% O2, 15-20% N2).
Недостатками данного способа является следующее. Предварительный обдув изделий нейтральным газом не устраняет полностью на поверхности ситалловой подложки остатки органики, пыли, масляных пленок, других загрязнений. Резкое плазменное воздействие на поверхность подложки уже на начальной стадии обработки мощностью 500-600 Вт на такую поверхность приводит к образованию на подложке тонкой (1-50 нм) пленки, заметной при исследованиях поверхности методами атомсиловой микроскопии. Дальнейшая обработка подложки в указанных диапазонах мощностей и давлений может повышать адгезионную прочность этой пленки к поверхности подложки, что ухудшает характеристики ситалловой подложки в дальнейших технологических операциях. Использование в плазменной очистке смеси кислород-азот (80-85% O2, 15-20% N2) также приводит к образованию на активированной плазмой поверхности оксидных или нитридных соединений и тонких пленок с высокой адгезией к поверхности ситалла, что ухудшает технические характеристики в конечных изделиях. В случае использования неизолированных электродов ВЧ плазменной системы возможна эрозия материала электрода на ситалловую подложку.
Задачей предлагаемого способа обработки подложек из ситалла в струе высокочастотной плазмы пониженного давления является получение чистой гидрофильной поверхности подложки ситалла без видимых следов загрязнений в виде отдельных частиц или в виде пленки.
Поставленная задача решается за счет того, что после промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с, затем проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 мин до 10 мин при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин. В качестве технологического газа используется Ar или смесь Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 при частоте высокочастотного генератора от 1,76 МГц до 13,56 МГц.
Улучшение качества обработки подложки достигается очисткой поверхности от остатков материалов финишной полировки после химической очистки, удаления остатков реактивов и образовавшихся химических соединений после химической очистки; приданием поверхности гидрофильных свойств. Гарантированная повторяемость процесса достигается установленными диапазонами оптимальной очистки поверхности подложки ситалла (мощности струи высокочастотной плазмы, плотности теплового потока на поверхность подложки ситалла, расхода технологического газа, давления процесса, времени очистки, места расположения подложки). Повышение выхода годной продукции обеспечивается уровнем современной техники, позволяющей поддерживать с высокой точностью установленные параметры разряда в режимах оптимальной обработки подложек ситалла. Снижение себестоимости выпускаемой продукции обеспечивается одновременной обработкой промышленной партии подложек, сокращением времени обработки подложек и неограниченным ресурсом высокочастотных (ВЧ) плазмотронов.
Пример реализации предлагаемого способа.
Подложки из ситалла, прошедшие финишную полировку и химическую очистку любым известным способом, промываются деионизованной водой и размещаются в кварцевых кассетах. Кварцевые кассеты с подложками размещаются на карусельном устройстве в вакуумном блоке установки с высокочастотным струйным плазмотроном на расстоянии от среза плазмотрона L от 60 мм до 120 мм. Проводится откачка вакуумного блока до предварительного давления (p) от 1,0 Па до 2,0 Па. Включением высокочастотного генератора в диапазоне частот от 1,76 МГц до 13,36 МГц при мощности генератора Рвчг от 100 Вт до 120 Вт в плазмотроне возбуждается ВЧ-разряд. Способ реализуется на разрешенных частотах для плазменных генераторов 1,76 МГц, 5,28 МГц и 13,56 МГц. При увеличении мощности генератора (Рвчг) свыше 1000 Вт и расхода технологического газа (G) свыше 0,04 г/с, образуется струя плазмы, которая воздействует на поверхность подложки. Увеличением расхода технологического газа от 0,05 г/с до 0.06 г/с при мощности генератора 1500 Вт происходит плавный нагрев подложки в течение от 1 мин до 2 мин, и частичное обезгаживание ситалла, удаление легколетучих органических соединений с поверхности подложки. После плавного нагрева подложки в течение от 5 мин до 10 мин проводится очистка поверхности подложки ситалла при расходе газа 0,06-0,08 г/с при давлении в вакуумном блоке от 19 Па до 26,6 Па. После обработки расход газа плавно уменьшается до 0,04 г/с течение 1 мин для избежания резкого термодинамического удара. По завершении очистки карусельным устройством обработанная подложка выводится из зоны обработки (из струи плазмы), а в рабочую зону перемещается следующая подложка. После обработки последней загруженной в карусельное устройство подложки проводится остужение подложек в вакууме в течение 5-10 мин, затем извлечение обработанной партии из вакуумного блока. В вакуумном блоке возможно расположить более десяти подложек для обработки в едином технологическом цикле.
Оптимально время обработки одной подложки составляет 5-10 мин. При использовании смеси газа Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 оптимальное время составляет от 3 до 5 мин. При обработке в течение менее 3-х мин эффект очистки не наблюдается. Дальнейшее увеличение времени обработки свыше 5 мин заметной разницы по качеству очищаемой поверхности не дает.
Контроль качества очистки проводится по измерению краевого угла смачиваемости α. Измерение α проводится по растеканию капли дионизованной воды на поверхности подложки и вычислению угла между поверхностью подложки и касательной, построенной к капле, до и после обработки подложки.
Примеры режимов заявляемого способа и результаты обработки ситалловых подложек представлены в таблице 1. Угол смачиваемости поверхности ситалла до обработки составляет от 60° до 70°. После очистки в струе высокочастотного разряда угол смачиваемости α изменяется от 1,5° до 2°.
Основным механизмом, приводящим к очистке поверхности в плазме высокочастного разряда при указанных давлениях, является термический нагрев подложки и рекомбинация ионов Ar на поверхности. Около обрабатываемой поверхности подложки в ВЧ плазме пониженного давления образуется слой положительного заряда (СПЗ) толщиной до 1,5-2 мм. В структуре СПЗ выделяются область двойного электрического слоя (дебаевский слой) и область колебаний электронного газа. Роль каждой из этих областей различна. Проходя сквозь СПЗ к поверхности образца, ионы плазмы набирают энергию преимущественно в области колебаний электронного газа. В дебаевском слое ионный поток фокусируется на неоднородностях микрорельефа поверхности, на которых происходит рекомбинация ионов с выделением энергии рекомбинации. Для Ar она составляет 15,6 эВ.
В результате происходит удаление остатков материалов финишной полировки, удаления остатков реактивов и образовавшихся химических соединений после химической очистки. Установленные в представленном способе диапазоны параметров р, Рвчг, G, t на частотах ВЧ генератора от 1,76 МГц до 13,56 МГц обеспечивают в месте размещения обрабатываемых подложка на расстоянии L от 60 до 120 мм значения энергии ионов и теплового потока плазмы, необходимые для эффективной очистки подложки от загрязнений.
При обработке подложки при значениях р, Рвчг, G, меньших указанных диапазонов оптимальной обработки, значения энергии ионов и теплового потока плазмы недостаточно для проведения эффективной очистки. Превышение р, Рвчг, G могут приводить, кроме очистки поверхности, к изменению структуры и морфологии поверхности, что не всегда приемлемо для дальнейших технологических процессов, в которых используются подложки из ситалла.
При использование в качестве технологического газа смеси Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 за счет диссоциация молекулы кислорода (O2→O+O+е) образуются атомы кислорода, которые обладают высокой реакционной способностью с углеродсодержащими соединениями и вступают в реакцию с органикой. Образующиеся в результате очистки CO, CO2 и H2O являются стабильными соединениями, которые удаляются из реакционной камеры вакуумными насосами. В результате более высокой реакционной способности смеси Ar+O2 по сравнению с обработкой в чистом аргоне проводится очистка поверхности подложки за более короткий промежуток времени от 5 мин до 6 мин. Превышение в смеси технологического газа кислорода более 20% может приводить к травлению поверхности, что не является задачей данного изобретения. Меньшее количество кислорода в смеси не приводит к сокращению времени обработки.
Из приведенных данных видно, что предлагаемый способ обеспечивает получение чистой гидрофильной поверхности подложки ситалла без загрязнений в виде отдельных частиц или в виде пленки.
Claims (4)
1. Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления, включающий химическую очистку и промывку в деионизованной воде, отличающийся тем, что после промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза высокочастотного плазмотрона в течение от 1 мин до 2 мин при мощности ВЧ генератора от 1400 Вт до 1500 Вт изменением расхода технологического газа от 0,04 г/с до 0,06 г/с, проводят очистку подложек из ситалла в струе высокочастотной плазмы в течение от 5 мин до 10 мин при мощности высокочастотного генератора от 1500 Вт до 1750 Вт, расходе плазмообразующего газа от 0,06 до 0,08 г/с, давлении от 19,0 до 26,6 Па с последующим плавным снижением расхода газа от 0,06 г/с до 0,04 г/с в течение от 1 мин до 2 мин.
2. Способ по п. 1, отличающийся тем, что обработку ведут с среде технологического газа Ar.
3. Способ по п. 1, отличающийся тем, что обработку ведут в смеси технологического газа Ar+O2 в пропорциях от 78% до 80% Ar и от 20 до 22% O2 в течение от 3 мин до 5 мин.
4. Способ по пп. 1-3, отличающийся тем, что обработку ведут в струе высокочастотной плазмы на частотах от 1, 76 МГц до 13,56 МГц.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017121706A RU2649695C1 (ru) | 2017-06-21 | 2017-06-21 | Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017121706A RU2649695C1 (ru) | 2017-06-21 | 2017-06-21 | Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2649695C1 true RU2649695C1 (ru) | 2018-04-04 |
Family
ID=61867552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017121706A RU2649695C1 (ru) | 2017-06-21 | 2017-06-21 | Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2649695C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0984328A2 (en) * | 1998-09-04 | 2000-03-08 | CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. | A method of surface etching silica glass, for instance for fabricating phase masks |
WO2003070390A2 (en) * | 2002-02-20 | 2003-08-28 | Radiiontech Co., Ltd | Cleaning apparatus using atmospheric pressure plasma |
RU46446U1 (ru) * | 2003-12-24 | 2005-07-10 | Чамов Анатолий Владимирович | Устройство для очистки поверхности пластин |
RU2364574C2 (ru) * | 2004-01-28 | 2009-08-20 | Сэн-Гобэн Гласс Франс | Способ очистки подложки |
RU2541436C1 (ru) * | 2013-11-11 | 2015-02-10 | Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") | Способ плазмохимической обработки подложек из поликора и ситалла |
-
2017
- 2017-06-21 RU RU2017121706A patent/RU2649695C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0984328A2 (en) * | 1998-09-04 | 2000-03-08 | CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. | A method of surface etching silica glass, for instance for fabricating phase masks |
WO2003070390A2 (en) * | 2002-02-20 | 2003-08-28 | Radiiontech Co., Ltd | Cleaning apparatus using atmospheric pressure plasma |
RU46446U1 (ru) * | 2003-12-24 | 2005-07-10 | Чамов Анатолий Владимирович | Устройство для очистки поверхности пластин |
RU2364574C2 (ru) * | 2004-01-28 | 2009-08-20 | Сэн-Гобэн Гласс Франс | Способ очистки подложки |
RU2541436C1 (ru) * | 2013-11-11 | 2015-02-10 | Открытое акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (ОАО "Российские космические системы") | Способ плазмохимической обработки подложек из поликора и ситалла |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI671786B (zh) | 清潔高深寬比通孔 | |
TWI575594B (zh) | 清洗鋁電漿室部件之方法 | |
CN111940394B (zh) | 半导体高阶制程apc装置的石英部件再生清洗方法 | |
TWI695429B (zh) | 電漿處理方法 | |
WO2002050883A1 (fr) | Procede de nettoyage et procede d'attaque | |
KR100265289B1 (ko) | 플라즈마식각장치의 캐소우드 제조방법 및 이에 따라 제조되는 캐소우드 | |
KR102563633B1 (ko) | 에칭 방법 및 플라즈마 에칭 재료 | |
JP3699678B2 (ja) | セラミック絶縁体の洗浄方法 | |
CN106920730A (zh) | 一种清洁刻蚀硅基片等离子体处理装置的方法 | |
US10056236B2 (en) | Plasma processing method | |
CN103495928B (zh) | 一种提高蓝宝石衬底片表面质量和产品良率的加工方法 | |
KR100259220B1 (ko) | 수소 플라즈마 다운 스트림 처리 장치 및 수소 플라즈마 다운스트림 처리 방법 | |
JP2008103701A (ja) | シリコンウェハのウェット処理方法 | |
CN113103076A (zh) | 一种基于感应耦合等离子体的晶圆抛光装置 | |
KR102017138B1 (ko) | 탄화규소 제품의 재생 방법 및 재생된 탄화규소 제품 | |
RU2649695C1 (ru) | Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления | |
RU2708812C1 (ru) | Способ обработки поверхности пластин карбида кремния в низкотемпературной индуктивно-связанной плазме | |
CN112192323A (zh) | 一种无亚表面损伤抛光设备及方法 | |
JP2012243958A (ja) | プラズマ処理方法 | |
CN104282518A (zh) | 等离子体处理装置的清洁方法 | |
WO2014158320A1 (en) | Wet cleaning of chamber component | |
KR102625872B1 (ko) | 물리적 연마 단계 및 양극산화 단계를 포함하는 알루미늄 소재 리모트 플라즈마 소스 챔버의 표면 처리 방법 | |
JP6638334B2 (ja) | プラズマ処理装置部品のクリーニング方法及びクリーニング装置 | |
JP2001250785A (ja) | 炭化ケイ素が被覆された半導体熱処理用部材の洗浄方法 | |
JP3147868U (ja) | 基板処理装置 |