RU2648514C2 - Способ получения структурированных гидрогелей - Google Patents

Способ получения структурированных гидрогелей Download PDF

Info

Publication number
RU2648514C2
RU2648514C2 RU2016110444A RU2016110444A RU2648514C2 RU 2648514 C2 RU2648514 C2 RU 2648514C2 RU 2016110444 A RU2016110444 A RU 2016110444A RU 2016110444 A RU2016110444 A RU 2016110444A RU 2648514 C2 RU2648514 C2 RU 2648514C2
Authority
RU
Russia
Prior art keywords
mpa
hydrogels
structured
pressure
reactor
Prior art date
Application number
RU2016110444A
Other languages
English (en)
Other versions
RU2016110444A (ru
Inventor
Петр Сергеевич Тимашев
Ксения Николаевна Бардакова
Анастасия Анатольевна Акованцева
Владимир Исаакович Юсупов
Виктор Николаевич Баграташвили
Original Assignee
Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" filed Critical Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук"
Priority to RU2016110444A priority Critical patent/RU2648514C2/ru
Publication of RU2016110444A publication Critical patent/RU2016110444A/ru
Application granted granted Critical
Publication of RU2648514C2 publication Critical patent/RU2648514C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к медицине, в частности к биомедицинскому материаловедению, и раскрывает метод получения гидрогелей с заданными механическими свойствами и архитектоникой. Способ включает формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор аллилхитозана в 4% уксусной кислоте с добавлением 1 масс. % фотоинициатора Irgacure 2959 и 10 масс. % сшивающего агента полиэтиленгликольдиакрилата (ПЭГ-ДА) с молекулярной массой 500 Да, последующее структурирование композиции на лазерном стереолитографе с помощью сфокусированного лазерного излучения в УФ-области спектра, последующую отмывку непрореагировавшего материала с использованием воды и помещение структурированных гидрогелей в реактор высокого давления, куда в дальнейшем напускается углекислый газ под давлением 8 мПа и проводится нагрев реактора до температуры 40°C, при повышении давления до 15 МПа и выдерживании системы при таких параметрах 3 часа. Изобретение может быть использовано для изготовления матриц-носителей клеток для регенеративной медицины. 2 ил., 1 пр.

Description

Изобретение относится к материаловедению, а именно к методам получения гидрогелей с заданными механическими свойствами и архитектоникой, и может быть использовано, например, в области биомедицинского материаловедения для изготовления матриц-носителей клеток для регенеративной медицины.
Необходимость создания гидрогелей с заданными механическими свойствами и архитектоникой для регенеративной медицины обусловлена созданием замещающих трехмерных матриц-носителей клеток, содержащих биоактивные компоненты.
Хорошо известен способ получения гидрогелей заданной формы, основанный на полимеризации глутарового альдегида (см., например, http://chem21.info/info/369248/). Способ заключается в помещении глутарового альдегида в необходимую форму, разогреве формы с глутаровым альдегидом до 45-48°С и последующем охлаждении его до комнатной температуры, в результате чего происходит затвердение гидрогеля. С помощью известного способа можно из гидрогеля формировать различные объекты.
Основной недостаток известного способа заключается в том, что с его помощью невозможно сформировать структурированный с заданными архитектоникой и механическими свойствами гидрогель, поэтому этот способ не находит применения для изготовления матриц-носителей клеток для регенеративной медицины.
Указанного недостатка лишен наиболее близкий к заявляемому способ получения структурированных гидрогелей, основанный на лазерной стереолитографии (Тимашев П.С., Бардакова К.Н., Демина Т.С. и др. Новый биосовместимый материал на основе модифицированного твердофазным методом хитозана для лазерной стереолитографии // Современные технологии в медицине. 2015. Т. 7, №3. С. 20-31), основанный на инициировании локальных пространственных сшивок между реакционноспособными звеньями макромолекул под действием лазерного излучения в ультрафиолетовой области спектра. Известный способ включает послойное нанесение тонких слоев жидкой фотополимеризующейся композиции, с последующим формированием на каждом слое с помощью сканирования сфокусированного лазерного излучения в ультрафиолетовой области спектра структуры полимера заданной конфигурации, с последующей отмывкой непрореагирующего материала с использованием воды.
Известный способ позволяет создавать структуры заданной архитектоники на базе трехмерной компьютерной модели, которая может быть разработана с использованием как специального программного обеспечения, так и данных, полученных методами анализа пространственной структуры объекта in vivo, например MPT - данных дефектов тканей при создании соответствующих полимерных матриц-носителей клеток (Mankovich N.J., Samson D., Pratt W., Lew D., Beumer J. Surgical planning using three-dimensional imaging and computer modeling // Otolaryngologic Clinics of North America. 1994. V. 27. N. 5. P. 875-889).
Основной недостаток известного метода заключается в том, что получаемый по известному способу структурированный гидрогель является излишне мягким. Наши измерения показали, что такие структурированные гидрогели обладают низкими значениями модуля Юнга, не превышающими 10-30 кПа. А дополнительное удаление влаги из таких гидрогелей путем обычной сушки делает их излишне жесткими (модуль Юнга превышает 200 МПа). Как хорошо известно (Pereira, Т.F., Silva, М.А.С., Oliveira, М.F., Maia, I.A., Silva, J.V.L., Costa, M.F., &
Figure 00000001
, R.M.S.M. Effect of process parameters on the properties of selective laser sintered Poly (3-hydroxybutyrate) scaffolds for bone tissue engineering // Virtual and Physical Prototyping. 2012. V. 7. N. 4. P. 275-285), оптимальным с точки зрения создания матриц-носителей клеток для регенеративной медицины являются материалы, модуль Юнга которых сопоставим с соответствующими значениями окружающих биологических тканей, что снижает толщину фиброзной капсулы, образующейся вокруг матрицы. Например, значения модуля Юнга нейрональных клеток лежат в диапазоне 60-90 кПа (Mirela Mustata, Ken Ritchie, Helen A. McNally, Neuronal elasticity as measured by atomic force microscopy // Journal of Neuroscience Methods. 2010. V. 186. P. 35-41).
Задача изобретения состоит в получении структурированных гидрогелей с заданными архитектоникой, модуль Юнга которых лежит в диапазоне 50-110 кПа.
Техническим результатом является создание способа получения гидрогелей с заданными механическими свойствами и архитектоникой.
Поставленная задача и достигаемый результат обеспечиваются применением способа получения структурированного гидрогеля, включающего формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор аллилхитозана в 4% уксусной кислоте с добавлением 1 масс. % фотоинициатора Irgacure 2959 и 10 масс. % сшивающего агента полиэтиленгликольдиакрилата (ПЭГ-ДА) с молекулярной массой 500 Да, последующее структурирование композиции на лазерном стереолитографе с помощью сфокусированного лазерного излучения в УФ-области спектра. Затем производят отмывку непрореагировавшего материала с использованием воды и помещение структурированных гидрогелей в реактор высокого давления, куда в дальнейшем напускают углекислый газ под давлением 8 МПа и проводят нагрев реактора до температуры 40°С при повышении давления до 15 МПа и выдерживании системы при таких параметрах 3 часа.
Пример реализации разработанного способа.
В качестве структурированного гидрогеля использовались матрицы, полученные авторами по методике, описанной в работе (Тимашев П.С., Бардакова К.Н., Демина Т.С. и др. Новый биосовместимый материал на основе модифицированного твердофазным методом хитозана для лазерной стереолитографии // Современные технологии в медицине. 2015. Т. 7, №3. С. 20-31). Для приготовления фоточувствительной композиции использовали аллилхитозан, полученный методом твердофазного реакционного смешения хитозана и аллилбромида в условиях сдвигового деформирования. Готовили 3 масс. % раствор аллилхитозана в 4% уксусной кислоте (хитозан с высокой степенью кристалличности отделяли на центрифуге). Далее в смесь добавляли 1 масс. % фотоинициатора Irgacure 2959, перемешивание раствора производили в течение 2 часов. После вводили полиэтиленгликольдиакрилат (ПЭГ-ДА, молекулярная масса 500 Да, концентрация 10 масс. %). Композицию оставляли перемешиваться на сутки, после чего производили структурирование полученных матриксов на лазерном стереолитографе.
Для увеличения модуля Юнга полученные матриксы помещались в реактор высокого давления, куда в дальнейшем напускался углекислый газ до давления 8 мПа. Затем проводился нагрев реактора до температуры 40°С, при этом давление повышалось до 15 МПа. При таких параметрах система выдерживалась 3 часа, после чего углекислый газ выпускался из камеры, а полученные структурированные гидрогели с необходимым значением модуля Юнга извлекались.
Для оценки механических характеристик гидрогелей использовался наноиндентер (Piuma (Optic 11, Нидерлады)), позволяющий оценивать механические характеристики гидрогеля в пределах от 1 кПа до 500 МПа. Измерения проводили как в водной, так и воздушной среде. Спектроскопия комбинационного рассеяния использовалась для установления изменений в химическом составе структурированных гидрогелей после обработки углекислым газом в сверхкритическом состоянии.
На фиг. 1 представлены спектры комбинационного рассеяния исходного структурированного гидрогеля (1) и структурированного гидрогеля после обработки углекислым газом в сверхкритическом состоянии (2).
На фиг. 2 показаны полученные значения модуля Юнга исходного структурированного гидрогеля и структурированного гидрогеля после обработки углекислым газом в сверхкритическом состоянии. Показаны средние значения и стандартные отклонения.
Как видно из фиг. 1, спектр комбинационного рассеяния структурированного гидрогеля после обработки углекислым газом в сверхкритическом состоянии (2) качественно не отличается от исходного (1), что подтверждает неизменности химического состава структуры. Снижение интенсивности всех полос спектра комбинационного рассеяния связано с понижением концентрации низкомолекулярных несшитых фрагментов в процессе обработки в среде сверхкритического углекислого газа. Из фиг. 2 видно, что модуль Юнга структурированных гидрогелей после обработки углекислым газом в сверхкритическом состоянии в среднем увеличивается с 22±8 кПа до 82±31 кПа.
Достигнутое увеличение модуля Юнга структурированных гидрогелей с 22±8 кПа в исходном гидрогеле до 82±31 кПа после обработки диоксидом углерода при температуре 40°С и давлении 15 МПа в течение 3 часов произошло за счет понижения концентрации низкомолекулярных несшитых фрагментов, вымытых из матрицы в процессе обработки. Поскольку количество удаленных несшитых фрагментов зависит от параметров такой обработки (температуры, давления и времени), то варьируя эти параметры, можно для каждых конкретных гидрогелей подобрать диапазон оптимальных параметров для заданного увеличения модуля Юнга.
Таким образом, предложенный способ позволил достичь заявленных целей, а именно, получить структурированный гидрогель с заданной архитектоникой, модуль Юнга которого лежит в диапазоне 50-110 кПа.

Claims (1)

  1. Способ получения структурированного гидрогеля, включающий формирование тонких слоев жидкой фотополимеризующейся композиции, содержащей 3 масс. % раствор аллилхитозана в 4% уксусной кислоте с добавлением 1 масс. % фотоинициатора Irgacure 2959 и 10 масс. % сшивающего агента полиэтиленгликольдиакрилата (ПЭГ-ДА) с молекулярной массой 500 Да, последующее структурирование композиции на лазерном стереолитографе с помощью сфокусированного лазерного излучения в УФ-области спектра, последующую отмывку непрореагировавшего материала с использованием воды и помещение структурированных гидрогелей в реактор высокого давления, куда в дальнейшем напускается углекислый газ под давлением 8 мПа и проводится нагрев реактора до температуры 40°C, при повышении давления до 15 МПа и выдерживании системы при таких параметрах 3 часа.
RU2016110444A 2016-03-22 2016-03-22 Способ получения структурированных гидрогелей RU2648514C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016110444A RU2648514C2 (ru) 2016-03-22 2016-03-22 Способ получения структурированных гидрогелей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016110444A RU2648514C2 (ru) 2016-03-22 2016-03-22 Способ получения структурированных гидрогелей

Publications (2)

Publication Number Publication Date
RU2016110444A RU2016110444A (ru) 2017-09-27
RU2648514C2 true RU2648514C2 (ru) 2018-03-26

Family

ID=59931025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016110444A RU2648514C2 (ru) 2016-03-22 2016-03-22 Способ получения структурированных гидрогелей

Country Status (1)

Country Link
RU (1) RU2648514C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108992670A (zh) * 2018-07-24 2018-12-14 武汉理工大学 一种近红外光聚合可注射水凝胶的制备与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035726A2 (en) * 2003-10-09 2005-04-21 Elisseeff Jennifer H Multi-layered polymerizing hydrogels for tissue regeneration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035726A2 (en) * 2003-10-09 2005-04-21 Elisseeff Jennifer H Multi-layered polymerizing hydrogels for tissue regeneration

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKOPOVA T.A. et.al. Solid-state synthesis of unsaturated chitosan derivatives to design 3D structures through two-photon-induced polymerization. Mendeleev Communications. Elsevier, vol.25, N4, p. 280-282. *
SLAUGHTER В.V. et.al. Hydrogels in Regenerative Medicine. Advanced Materials 2009, 21 (32-33), 3307-3329. AHMADI F. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci. 2015 Jan-Feb; 10(1): 1-16. *
ТИМАШЕВ П.С. и др. Новый биосовместимый материал на основе модифицированного твердофазным методом хитозана для лазерной стереолитографии. Современные технологии в медицине. 2015. Т.7, N3. С.20-31. *
ТИМАШЕВ П.С. и др. Новый биосовместимый материал на основе модифицированного твердофазным методом хитозана для лазерной стереолитографии. Современные технологии в медицине. 2015. Т.7, N3. С.20-31. AKOPOVA T.A. et.al. Solid-state synthesis of unsaturated chitosan derivatives to design 3D structures through two-photon-induced polymerization. Mendeleev Communications. Elsevier, vol.25, N4, p. 280-282. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108992670A (zh) * 2018-07-24 2018-12-14 武汉理工大学 一种近红外光聚合可注射水凝胶的制备与应用

Also Published As

Publication number Publication date
RU2016110444A (ru) 2017-09-27

Similar Documents

Publication Publication Date Title
Huh et al. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting
CN108367100B (zh) 水凝胶的光活化制备
JP6757329B2 (ja) 自己組み込み型ヒドロゲル及びその製造方法
CN113713179B (zh) 高综合性能光固化生物3d打印复合水凝胶及其制备方法和应用
Drzewiecki et al. A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine
Shi et al. Three‐dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering
KR101983741B1 (ko) 바이오 잉크 및 이의 제조방법
Hsu et al. Novel flexible nerve conduits made of water‐based biodegradable polyurethane for peripheral nerve regeneration
Prendergast et al. A biofabrication method to align cells within bioprinted photocrosslinkable and cell-degradable hydrogel constructs via embedded fibers
CN106310380B (zh) 一种纳米纤维化丝素蛋白凝胶及其制备方法
EP3230044A1 (en) Graft scaffold for cartilage repair and process for making same
CN107592815A (zh) 三维打印用组合物及其制备方法、以及利用其的三维结构体的制备方法
Houben et al. Indirect solid freeform fabrication of an initiator‐free photocrosslinkable hydrogel precursor for the creation of porous scaffolds
CN112321778A (zh) 一种双蛋白水凝胶的制备方法
CN116966345A (zh) 3d可打印生物凝胶及其使用方法
JP2008280406A (ja) 相互侵入型高分子ゲルとその製造方法
CN109431971A (zh) 一种可注射载药水凝胶及其制备方法
BR112018004251B1 (pt) Dispositivo médico biodegradável implantável e método para produzir um dispositivo médico biodegradável implantável
Stolz et al. Cryo‐3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration
RU2648514C2 (ru) Способ получения структурированных гидрогелей
CN108310463A (zh) 一种3d打印生物墨水及其制备方法
KR101383527B1 (ko) 합성 고분자, 폴리사카라이드 및 단백질을 포함하는 크라이오젤 스캐폴드 및 상기 스캐폴드를 이용한 조직 재생방법
Cianciosi et al. Flexible Allyl‐Modified Gelatin Photoclick Resin Tailored for Volumetric Bioprinting of Matrices for Soft Tissue Engineering
KR101617075B1 (ko) 수화겔형 실크 피브로인 창상피복재 및 그 제조방법
Bardakova et al. 3D printing biodegradable scaffolds with chitosan materials for tissue engineering

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20201217