RU2644896C1 - Способ получения полимерного электроизоляционного материала - Google Patents

Способ получения полимерного электроизоляционного материала Download PDF

Info

Publication number
RU2644896C1
RU2644896C1 RU2017106758A RU2017106758A RU2644896C1 RU 2644896 C1 RU2644896 C1 RU 2644896C1 RU 2017106758 A RU2017106758 A RU 2017106758A RU 2017106758 A RU2017106758 A RU 2017106758A RU 2644896 C1 RU2644896 C1 RU 2644896C1
Authority
RU
Russia
Prior art keywords
mixing
ethylene
temperature
mixture
propylene
Prior art date
Application number
RU2017106758A
Other languages
English (en)
Inventor
Наиль Тимирзянович Гайнуллин
Надежда Александровна Перминова
Original Assignee
Наиль Тимирзянович Гайнуллин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Наиль Тимирзянович Гайнуллин filed Critical Наиль Тимирзянович Гайнуллин
Priority to RU2017106758A priority Critical patent/RU2644896C1/ru
Application granted granted Critical
Publication of RU2644896C1 publication Critical patent/RU2644896C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D109/00Coating compositions based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Изобретение относится к получению полимерного материала для изготовления изоляции электрического кабеля от агрессивной среды, в частности нефтепогружного кабеля, применяемого для питания погружных электродвигателей, в том числе для установок электроцентробежных насосов в нефтяных скважинах. Получают полимерный электроизоляционный материал путем приготовления композиции, включающей этиленпропиленовый диеновый каучук, содержащий, мол.%: этилен - 60-77, этилиденнорборнен - 0,9-6, пропилен – остальное, вулканизирующую систему, содержащую органический пероксид и соагент вулканизации - 1,2-полибутадиен, наполнитель - технический углерод с размером частиц 250-403 нм, высокодисперсный диоксид кремния, оксид цинка, свинцовый сурик, бифункциональный винилсилан, парафиновое масло, антиоксидант, кальцинированный каолин с влажностью менее 0,4% и технологические добавки, перемешиванием компонентов и ее вулканизацией. При этом сначала перемешивают 17-22 мин в смесителе все компоненты, кроме вулканизующей системы, при температуре смеси в конце смешения не менее 145°С, после охлаждения смеси до 60-65°С вводят вулканизующую систему, перемешивают 5-8 мин при температуре смеси в конце смешения не более 110°С и осуществляют вулканизацию под давлением 7,4 МПа при температуре 170°С в течение 20 мин. Техническим результатом является повышение термостабильности, диэлектрических, упруго-прочностных свойств, снижение значений относительной остаточной деформации сжатия, увеличение срока эксплуатации изоляционного материала. 1 ил., 2 табл., 1 пр.

Description

Изобретение относится к получению полимерного материала для изготовления изоляции электрического кабеля от агрессивной среды, в частности нефтепогружного кабеля, применяемого для питания погружных электродвигателей, в том числе для установок с электроцентробежными насосами в нефтяных скважинах.
Условия эксплуатации кабельных линий, особенно в настоящее время с увеличением глубин бурения скважин более 2000 м, являются чрезвычайно жесткими - воздействие повышенных температур (до 200-230°С), высокого гидростатического давления (более 100 МПа), агрессивных скважинных жидкостей, затруднение отвода тепла от кабеля, повышенный газовый фактор в скважине, перепад давления, неравномерное распределение температуры по длине кабельной линии в период эксплуатации (температура увеличивается вниз от устья, то есть значительное повышение температуры наблюдается в нижних участках, где располагается двигатель и насос), резкие скачки температуры, растягивающие нагрузки при спуске и подъеме двигателя. Все вышеперечисленные эксплуатационные факторы негативно влияют на электрические, механические и сорбционные свойства изоляции нефтепогружных кабелей, существенно снижая их рабочий ресурс.
Наиболее распространенными изоляционными материалами для нефтепогружных кабелей являются полимерные композиции на основе полиэтилена высокой плотности, блоксополимера этилена с пропиленом. Однако по причине недостаточной термостойкости (при температуре выше 120°С материал расплавляется и деформируется) данные виды кабелей не применяются в глубоких скважинах и могут использоваться только в качестве основной кабельной линии - на верхних участках.
В случаях, когда кабель предназначен для использования в глубоких скважинах, то есть в экстремальных условиях, используются альтернативные изоляционные материалы на основе этиленпропиленового диенового каучука с освинцованными жилами с длительно допустимой температурой нагрева токопроводящих жил до 230°С.
Большинство известных разработок в области эластомерных композиций на основе этиленпропиленового каучука обладают хорошими диэлектрическими свойствами, устойчивостью к воздействию агрессивных сред и удовлетворительно перерабатываются методом экструзии.
Известен способ получения материала на основе этиленпропиленового каучука, включающий получение композиции, содержащей хлорсульфированный полиэтилен, пероксидную вулканизующую систему, наполнители, в том числе тальк, технический углерод, оксид цинка, триоксид сурьмы, антиоксиданты, ее обработку путем смешения компонентов, экструзии полученной композиции при 450ºF и литья при 450ºF (US 4419475, опубл. 06.12. 1983).
Наиболее близким к заявленному является способ получения полимерного изоляционного материала из композиции, включающей этиленпропиленовый диеновый каучук, содержащий этилен и пропилен в соотношении от 20:80 ло 80:20 и третий мономер - циклический диолефин 2-20, нафтеновое масло, пероксидную вулканизующую систему, содержащую органический пероксид и соагент вулканизации - низкомолекулярный жидкий 1,2-полибутадиен, наполнители, в том числе углерод технический, тонкодисперсный диоксид кремния, оксид цинка, диоксид титана, соединение свинца, силан, антиоксидант и технологические добавки, путем перемешивания всех компонентов и вулканизации с получением изделий требуемых размеров (US 3926900, опубл. 16.12.1975).
Недостатками известного способа являются невысокие физико-механические показатели и недостаточная термо- и агрессивостойкость - только до 150°С.
Техническим результатом заявленного способа является повышение термостабильности, диэлектрических, упруго-прочностных свойств, снижение значений относительной остаточной деформации сжатия, увеличение срока эксплуатации изоляционного материала.
Достижение технического результата обеспечивается тем, что в способе получения полимерного электроизоляционного материала путем приготовления композиции, включающей этиленпропиленовый диеновый каучук, содержащий этилен, пропилен и диолефин, вулканизирующую систему, содержащую органический пероксид и соагент вулканизации - 1,2-полибутадиен, наполнитель - технический углерод, высокодисперсный диоксид кремния, оксид цинка, соединение свинца, силан, парафиновое масло, антиоксидант, технологические добавки, перемешиванием компонентов и ее вулканизации, используют этиленпропиленовый диеновый каучук с содержанием, мол. %: этилен 60-77, этилиденнорборнен 0,9-6, пропилен - остальное, в качестве соединения свинца - свинцовый сурик, в качестве силана - бифункциональный винилсилан, технический углерод с размером частиц 250-403 нм и дополнительно -кальцинированный каолин с влажностью менее 0,4%, перемешивание осуществляют в две стадии - сначала перемешивают 17-22 мин в смесителе все компоненты, кроме вулканизующей системы, при температуре смеси в конце смешения не менее 145°С, после охлаждения смеси до 60-65°С вводят вулканизующую систему, перемешивают 5-8 мин при температуре смеси в конце смешения не более 110°С, осуществляют вулканизацию под давлением 7,4 МПа при температуре 170°С в течение 20 минут, при следующем соотношении компонентов, масс. ч.:
Указанный каучук 100,0
Указанный каолин 120,0-200,0
Указанный технический углерод 0,2-0,6
Высокодисперсный диоксид кремния 5,0-20,0
Оксид цинка 3,0-7,0
Свинцовый сурик 5,0-8,0
Антиоксидант 1,2-2,5
Бифункциональный винилсилан 1,2-2,5
Парафиновое масло 5,0-25,0
Вулканизирующая система:
Органический пероксид (100% активного вещества) 2,5-3,8
Указанный соагент (100% активного вещества) 6,0-12,0
Технологические добавки 1,0-3,5
Полученный по заявленному изобретению материал используют в качестве изоляционного материала с заданной толщиной изоляции, наносимого на проводник методом экструзии бесшовного слоя. Кабель, изготовленный с использованием разработанного материала с освинцованными жилами, может применяться в нефтедобывающей отрасли для электропитания двигателей погружных электрических насосов в условиях повышенной агрессивности эксплуатационной среды и допустимой температурой нагрева токопроводящих жил до 200-230°С.
При увеличении количественного содержания указанных в предлагаемом способе кальцинированного каолина и соагента вулканизации резиновые смеси характеризуются повышенной твердостью, вязкостью и склонны к подвулканизации, что затрудняет их переработку на технологическом оборудовании. В то же время, увеличение концентрации парафинового масла приведет к снижению упруго-прочностных свойств и повышению показателя относительной остаточной деформации сжатия изделия.
В качестве базового эластомерного материала выбран сополимер этилена, пропилена и диенового мономера - этилен-пропиленовый тройной каучук (EPDM) с содержанием этилена 60-77 мол. %, диенового мономера (третий мономер) - этилиденнорборнена (ЭНБ) от 0,9 до 6 мол. % и пропилена - остальное. Высокое содержание третьего указанного мономера обеспечивает высокую скорость вулканизации и прочность вулканизатов. Каучуки с низким содержанием пропиленовых звеньев способны к высокому наполнению и позволяют получать вулканизаты с высокой прочностью, твердостью по сравнению с каучуками, содержащими 50-60 мол. % пропилена. Примеры этилен-пропиленового тройного каучука с содержанием этилена 60-77 мол. %, диенового мономера (третий мономер) - этилиденнорборнена (ЭНБ) от 0,9 до 6 мол. %, используемого в заявленном способе, следующие - Keltan 2470 (содержание, мол. %: этилена 69,0, ЭНБ 4,5, пропилена 26,5), Keltan 5470 (соответственно 66,0, 3,5 и 30,5) (Lanxess, Deutschland GmbH); Vistalon 1703 (соответственно 76,8, 0,9 и 22,3), Vistalon 7001 (соответственно 73,0, 5,0 и 22,0) (Exxon Mobil Corporation); Nordel 4725 (соответственно 70,0, 4,9 и 25,1) (The Dow Chemical Company).
Так как при вулканизации изолированных жил кабеля основным видом теплоносителя чаще является насыщенный пар, который может привести к ухудшению электроизоляционных характеристик, а изделия эксплуатируются в условиях повышенных температур и газового фактора, то для улучшения устойчивости резиновой смеси к воздействию воды, пара, композиция содержит оксид свинца (II и IV) - свинцовый сурик.
Примеры оксида свинца (II и IV), применяемого для создания изоляционного материала: Rhenogran Pb3O4-80 (RheinChemie, Deutschland GmbH), Red Lead Oxide (Китай).
Для получения резиновой смеси с повышенной устойчивостью к термоокислительному старению и воздействию агрессивных эксплуатационных сред в качестве вулканизующей в предлагаемом способе используется пероксидная сшивающая система. Возможны пероксиды различной химической природы: пероксид диизопропилбензола (пероксид кумила, Perkadox BC-FF, Luperox DC40P), 2,5-ди(трет-бутилперокси)-2,5-диметилгексан (Luperox 101XL45, DHBP-45), 1,3 и 1,4-ди(трет-бутилпероксиизоропил)бензол (Luperox F-40, Perkadox 14-40). Высокую скорость вулканизации, наилучшую устойчивость к тепловому старению и агрессивостойкость вулканизатов обеспечивает пероксид кумила.
Для улучшения структуры сетки вулканизатов, то есть для повышения плотности и регулярности поперечных связей между макромолекулами каучука, а также для более эффективного использования пероксида, целесообразно вводить в резиновые смеси, вулканизуемые органическими пероксидами, низкомолекулярные соединения, легко распадающиеся на радикалы - соагенты вулканизации. Для получения резиновой смеси с необходимым уровнем свойств и хорошей технологичностью использован 1,2-полибутадиен, в т.ч. в виде смолы, при этом необходимо, чтобы концентрация вводимого 1,2-полибутадиена составляла 6-12 мас. ч. (при использовании смолы - в пересчете на 100% активного вещества) от веса смеси. С увеличением концентрации возрастает твердость и вязкость компаунда. Такой материал имеет низкую эластичность и непригоден в качестве изоляции кабелей. Низкомолекулярные (жидкие) 1,2-полибутадиеновые смолы с высоким содержанием винила (более 70% звеньев в положении 1,2) и различной молекулярной массы (1800-4000) показали наибольшую эффективность как соагенты пероксидной вулканизации резиновой смеси на основе этиленпропиленового диенового каучука. Полимерный материал (резиновые изделия), вулканизованный с помощью пероксида и жидкого полибутадиена, обладает высокими физико-механическими показателями, твердостью, низким значением относительной остаточной деформации сжатия, высокой устойчивостью к повышенным температурам (более 200°С) и действию растворителей и эксплуатационных сред. Использование жидких 1,2-полибутадиенов в качестве соагента позволило сохранить время начала вулканизации композиции (резиновой смеси) без изменения скорости вулканизации, также они выполнили роль неэкстрагируемого пластификатора, что в свою очередь снизило вязкость резиновой смеси и улучшило ее перерабатываемость на технологическом оборудовании, а высокая реакционная способность повысила плотность вулканизационной сетки.
Примеры низкомолекулярного (жидкого) 1,2-полибутадиена, применяемого для создания изоляционного материала: Ricon 150 (содержание 1,2-звеньев 70%), Ricon 152 (содержание 1,2-звеньев 80%) (Cray Valley USA, LLC).
В связи с тем, что материал для изоляции кабеля должен быть повышенной твердости (80-90 единиц Шор А) и при этом технологичным при экструдировании, то в качестве наполнителя выбран дегидратированный кальцинированный каолин с влажностью менее 0,4%. Повышенная влажность сырья может вызвать агломерацию наполнителя при смешении и образование пористости резиновой оболочки в процессе вулканизации.
Примеры кальцинированного каолина, применяемого для создания изоляционного материала: КО-0298, КО-0398 (ООО «Батолит», Россия), Translink 37 (BASF, Германия), Polestar 503 (Imerys Minerals, UK).
Другим активным наполнителем по изобретению является высокодисперсный оксид кремния (сильногидратированная кремнекислота, белые сажи). Применение белых саж в качестве наполнителя улучшает теплостойкость и маслостойкость резины. Введение в резиновую смесь бифункционального силана значительно повышает взаимодействие неорганического наполнителя (кальцинированный каолин, белые сажи) с органическим полимером (каучуком), улучшая механические и электрические свойства последних, особенно после воздействия влаги и пара. Бифункциональный силан обладает реакционно-способной винил-группой и гидролизуемыми этоксигруппами. При добавлении силана к наполнителю этоксигруппы гидролизуются в присутствии влаги с образованием силанольных групп. Конденсация одной, двух или даже трех силанольных групп с гидроксильными группами на поверхности наполнителя приводит к прочной привязке силана. Винилфункциональной концевой группой силан может присоединиться к полимеру путем реакции с пероксидной сеткой.
Примеры осажденных кремнекислот, применяемых для создания изоляционного материала: БС-120 (ОАО «Сода», Россия), Ultrasil VN3 (Degussa, Германия), Vulkasil S, Vulkasil C (Lanxess, Deutschland GmbH).
Примеры органических бифункциональных винилсиланов, применяемых для создания изоляционного материала: Dynasylan VTMOEO (Degussa, Германия), Silanogran HVS (Kettlitz, Deutschland GmbH), JLSi-401 (JLS-Chemical LTD, Китай).
В связи с тем, что композиция для получаемого полимерного материала (резины) является высоконаполненной смесью, которая должна быть при этом технологичной при изготовлении изделий, в качестве наполнителя использован технический углерод, также выполняющий функцию окрашивания полимерного материала по изобретению. Использован технический углерод, состоящий из частиц большого размера - технический углерод с размером частиц 250-403 нм, с низкой структурностью. Данный техуглерод обладает удовлетворительной обрабатываемостью, хорошо распределяется в резиновой смеси, не оказывает влияния на процесс вулканизации, в количестве, не превышающем 0,2-0,6 массовых частей, не ухудшает диэлектрические характеристики резиновых смесей.
Примеры марок технического углерода с размером частиц 250-403 нм, применяемого в качестве черного пигмента, - углерод термический Т-900 (ОАО «Туймазытехуглерод»), Corax №990 (Degussa AG, Germany), углерод печной П-803 (ОАО «Туймазытехуглерод».
Для защиты резиновых оболочек кабельных изделий от разрушительного действия кислорода, высоких температур и предотвращения процессов термической и термоокислительной деструкции необходимо использование антиоксидантов. Наиболее эффективным противостарителем для резин на основе этиленпропиленового диенового каучука является 2,2,4-триметил-1,2-дигидрохинолин полимеризованный (Ацетонанил Н, Vulkanox HS/LG (RheinChemie, Deutschland GmbH), Antioxidant TMQ). Для повышения стойкости к тепловому старению также служит оксид цинка (белила цинковые).
Введение обычных технологических добавок в рецептуру резиновой смеси способствует более равномерному диспергированию наполнителей в матрице каучука, снижению вязкости и, следовательно, улучшению пластоэластических и реометрических свойств резиновой смеси. Наилучший эффект был достигнут при использовании в качестве технологических добавок безводных насыщенных эфиров жирных кислот (Aflux 42, Aflux 54 (RheinChemie, Deutschland GmbH), Struktol WB42 (Struktol Company, America), а также смеси сложных эфиров и цинковых солей жирных кислот (Struktol WA48 (Struktol Company, America), полиэтиленгликоля ПЭГ-4000, парафина нефтяного марки Т-1.
Применение парафинового масла в качестве мягчителя улучшает технологические свойства высоконаполненной резиновой смеси, распределение сыпучих ингредиентов и значительно снижает цикл смешения. Высокоочищенные парафиновые масла являются эффективными мягчителями резин на основе этиленпропиленового диенового каучука и не оказывают заметного влияния на электроизоляционные характеристики.
Примеры парафиновых масел, применяемых для создания изоляционного материала: Стабилоил-18М (Россия), Sunpar 2280 (Sunoco Petronas Lubricants, Belgium), Tudalen В 8014 (Klaus Dahleke KG, Deutschland).
Пример выполнения изобретения (масс. ч.):
Этиленпропиленовый диеновый каучук с содержанием, мол. %: этилена 70,
этиленнорборнена 4 и пропилена 26, 100,0
Кальцинированный каолин КО-0298 с влажностью 0,3% 160,0
Технический углерод марки Т-900 0,5
Высокодисперсный оксид кремния Vulkasil С 10,0
Оксид цинка 5,0
Свинцовый сурик 8,0
Антиоксидант (Antioxidant TMQ) 1,6
Винилсилан Silanogran HVS 2,3
Парафиновое масло Tudalen В 8014 10,0
Вулканизующая система:
Органический пероксид (100% активного вещества) Perkadox BC-FF 2,8
Соагент вулканизации (100% активного вещества) Ricon 12,0
Технологическая добавка Struktol WB42 1,0
Получение эластомерной композиции было произведено в промышленных условиях в резиносмесителе с роторами типа «Интермикс» со свободным объемом камеры 20 л совместно с вальцами.
По изобретению резиновую смесь изготавливали в две стадии.
Процесс смешения маточной смеси (стадия I) в резиносмесителе со свободным рабочим объемом камеры 20 л, коэффициентом заполнения камеры 70% (18,5 кг) и скорости роторов 30 об/мин, выполнялся в следующей последовательности:
1) загрузка указанного каучука, его переработка 120 с;
2) загрузка углерода Т-900, 1/2 количества кальцинированного каолина КО-0298, Vulkasil С, винилсилана Silanogran HVS, перемешивание до момента разогрева смеси до 90°С;
3) введение 1/2 количества кальцинированного каолина КО-0298, парафинового масла Tudalen В 8014, антиоксиданта (Antioxidant TMQ), оксида цинка, свинцового сурика, технологической добавки Struktol WB42, перемешивание до достижения смесью температуры 135°С;
4) опускание плунжера;
5) перемешивание до достижения смесью температуры 150°С;
6) выгрузка маточной смеси.
Введение вулканизующей системы (Perkadox BC-FF, Ricon 152) проводилось на стадии II на вальцах после ее охлаждения до температуры 60-65°С. После окончания введения ингредиентов 5-6 раз пропускали свернутую в рулон резиновую смесь при минимально возможном тонком зазоре между валками. Затем, увеличив зазор между валками, выпустили смесь в виде ленты заданного калибра. Температура смеси в конце смешения 100°С. Цикл смешения стадии 118-20 мин, стадии II - 8 мин. Охлаждение лент - водяное.
Вулканизацию стандартных образцов из резиновой смеси проводили на вулканизационном гидравлическом прессе с электрическим обогревом при температуре 170°С, давлении 7,4 МПа в течение 20 мин.
Сравнительные технические характеристики резиновых композиций (стандартные образцы):
Figure 00000001
Результаты испытаний изолированных жил, изготовленных из резиновой смеси по изобретению методом экструзии (условия вулканизации: давление пара 14,25 бар, температура 195°С в течение 2,7 мин):
Figure 00000002
Оценку устойчивости нефтепогружного кабеля с изолированными жилами на основе разработанной эластомерной композиции к воздействию нагретого до 230°С синтетического электроизоляционного масла проводили следующим образом:
1) нагрев масла до 230°С, выдержка кабеля в масле в течение 10 ч;
2) охлаждение масла с погруженным в него кабелем в течение последующих 14 ч;
3) количество циклов нагрев-охлаждение 10.
Образец кабеля до и после испытаний на устойчивость в нагретом масле испытывали высоким напряжением (12 кВ). Пробоев изоляции не было зафиксировано. Внешний вид изоляции после снятия брони и свинцовой оболочки - удовлетворительный (отсутствуют следы оплавления, деструкции и механического повреждения резиновой изоляции), показан на фото 1.
На основании полученных результатов можно утверждать, что разработанный способ обеспечивает получение материала, имеющего лучшие результаты по физико-механическим испытаниям, изменению показателей после воздействия высоких температур, а также обладающего высокими электроизоляционными свойствами и устойчивостью к воздействию нагретого масла, что позволяет использовать его как изоляционный материал для кабелей, эксплуатирующихся в агрессивной скважинной среде. Полученный заявленным способом материал обеспечивает необходимую электрическую прочность токопроводящих жил, является термостойким, агрессивно-стойким, благодаря чему нет нарушения целостности изоляции, а следовательно, нет утечек тока и пробоев.

Claims (4)

  1. Способ получения полимерного электроизоляционного материала путем приготовления композиции, включающей этиленпропиленовый диеновый каучук, содержащий этилен, пропилен и диолефин, вулканизирующую систему, содержащую органический пероксид и соагент вулканизации - 1,2-полибутадиен, наполнитель - технический углерод, высокодисперсный диоксид кремния, оксид цинка, соединение свинца, силан, парафиновое масло, антиоксидант, технологические добавки, перемешиванием компонентов и ее вулканизации, отличающийся тем, что используют этиленпропиленовый диеновый каучук с содержанием, мол.%: этилен - 60-77, этилиденнорборнен - 0,9-6, пропилен - остальное, в качестве соединения свинца - свинцовый сурик, в качестве силана - бифункциональный винилсилан, технический углерод с размером частиц 250-403 нм и дополнительно - кальцинированный каолин с влажностью менее 0,4%, перемешивание осуществляют в две стадии - сначала перемешивают 17-22 мин в смесителе все компоненты, кроме вулканизующей системы, при температуре смеси в конце смешения не менее 145°С, после охлаждения смеси до 60-65°С вводят вулканизующую систему, перемешивают 5-8 мин при температуре смеси в конце смешения не более 110°С, осуществляют вулканизацию под давлением 7,4 МПа при температуре 170°С в течение 20 мин при следующем соотношении компонентов, масс.ч.:
  2. указанный каучук 100,0 указанный каолин 120,0-200,0 указанный технический углерод 0,2-0,6 высокодисперсный диоксид кремния 5,0-20,0 оксид цинка 3,0-7,0 свинцовый сурик 5,0-8,0 антиоксидант 1,2-2,5 бифункциональный винилсилан 1,2-2,5 парафиновое масло 5,0-25,0
  3. вулканизирующая система:
  4. органический пероксид (100% активного вещества) 2,5-3,8 указанный соагент (100% активного вещества) 6,0-12,0 технологические добавки 1,0-3,5
RU2017106758A 2017-03-01 2017-03-01 Способ получения полимерного электроизоляционного материала RU2644896C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017106758A RU2644896C1 (ru) 2017-03-01 2017-03-01 Способ получения полимерного электроизоляционного материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017106758A RU2644896C1 (ru) 2017-03-01 2017-03-01 Способ получения полимерного электроизоляционного материала

Publications (1)

Publication Number Publication Date
RU2644896C1 true RU2644896C1 (ru) 2018-02-14

Family

ID=61226852

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017106758A RU2644896C1 (ru) 2017-03-01 2017-03-01 Способ получения полимерного электроизоляционного материала

Country Status (1)

Country Link
RU (1) RU2644896C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804166C1 (ru) * 2022-11-24 2023-09-26 Акционерное общество "Тамбовмаш" Компаунд электроизоляционный на основе этиленпропилендиенового каучука

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926900A (en) * 1973-12-13 1975-12-16 Borg Warner Oil-resistant blends for electrical insulation
US4419475A (en) * 1980-11-20 1983-12-06 General Electric Company Heat resistant ethylene-propylene rubber with improved tensile properties and insulated conductor product thereof
US4789708A (en) * 1986-07-15 1988-12-06 Hughes Tool Company Synthetic elastomer with improved chemical, aging and oil resistance
RU2012112237A (ru) * 2011-04-01 2013-10-10 Эвоник Дегусса Гмбх Резиновые смеси
RU2012156002A (ru) * 2012-12-24 2014-06-27 Общество с ограниченной ответственностью "Башпласт" Электроизоляционная композиция с низким выделением токсичных продуктов при горении

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926900A (en) * 1973-12-13 1975-12-16 Borg Warner Oil-resistant blends for electrical insulation
US4419475A (en) * 1980-11-20 1983-12-06 General Electric Company Heat resistant ethylene-propylene rubber with improved tensile properties and insulated conductor product thereof
US4789708A (en) * 1986-07-15 1988-12-06 Hughes Tool Company Synthetic elastomer with improved chemical, aging and oil resistance
RU2012112237A (ru) * 2011-04-01 2013-10-10 Эвоник Дегусса Гмбх Резиновые смеси
RU2012156002A (ru) * 2012-12-24 2014-06-27 Общество с ограниченной ответственностью "Башпласт" Электроизоляционная композиция с низким выделением токсичных продуктов при горении

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804166C1 (ru) * 2022-11-24 2023-09-26 Акционерное общество "Тамбовмаш" Компаунд электроизоляционный на основе этиленпропилендиенового каучука

Similar Documents

Publication Publication Date Title
US9595365B2 (en) Thermoplastic, semiconductive compositions
EP2257603B1 (en) Low-smoke, fire-resistant and water-resistant cable coating
US10138353B2 (en) Crosslinkable polymeric compositions with N,N,N′,N′,N″,N″-hexaallyl-1,3,5-triazine-2,4,6-triamine crosslinking coagent, methods for making the same, and articles made therefrom
KR101933255B1 (ko) 폴리부타디엔 가교 조제를 사용하여 제조한 에틸렌 중합체 전도체 코팅
US11359080B2 (en) Polymer composition and cable with advantageous electrical properties
US11685823B2 (en) Crosslinkable polymeric compositions with amine-functionalized interpolymers, methods for making the same, and articles made therefrom
WO2019121735A1 (en) Cable made from crosslinkable composition with antioxidant and beneficial methane formation
KR20180097507A (ko) 반도전성 차폐 조성물
KR20170061153A (ko) 가교된 층을 포함하는 전기 장치
JPS632290B2 (ru)
RU2644896C1 (ru) Способ получения полимерного электроизоляционного материала
US4806424A (en) Electrical conductor insulated with insulating and jacketing material having improved resistance to hot fluids and gases
KR20100002650A (ko) 절연재 제조용 수지 조성물 및 이의 제조방법
KR20210037585A (ko) 케이블용 가교된 층
CN116348967A (zh) 用于电绝缘的聚氨基硅氧烷防水树剂
KR101704026B1 (ko) 수가교 난연성 절연재 제조용 조성물
KR20190110973A (ko) 내한성 및 내유성을 갖는 쉬스 조성물
CN117304615A (zh) 一种重型汽车用绝缘线束护套橡胶
BE897157A (fr) Compositions elastomeres ingnifugees et produits manufactures en comprenant

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190302

NF4A Reinstatement of patent

Effective date: 20200406

MM4A The patent is invalid due to non-payment of fees

Effective date: 20210302