RU2639590C2 - Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений - Google Patents
Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений Download PDFInfo
- Publication number
- RU2639590C2 RU2639590C2 RU2016117158A RU2016117158A RU2639590C2 RU 2639590 C2 RU2639590 C2 RU 2639590C2 RU 2016117158 A RU2016117158 A RU 2016117158A RU 2016117158 A RU2016117158 A RU 2016117158A RU 2639590 C2 RU2639590 C2 RU 2639590C2
- Authority
- RU
- Russia
- Prior art keywords
- line
- currents
- instantaneous values
- voltages
- short circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000003491 array Methods 0.000 title claims abstract description 20
- 230000014509 gene expression Effects 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 2
- 238000013016 damping Methods 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004870 electrical engineering Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- YQNRVGJCPCNMKT-LFVJCYFKSA-N 2-[(e)-[[2-(4-benzylpiperazin-1-ium-1-yl)acetyl]hydrazinylidene]methyl]-6-prop-2-enylphenolate Chemical compound [O-]C1=C(CC=C)C=CC=C1\C=N\NC(=O)C[NH+]1CCN(CC=2C=CC=CC=2)CC1 YQNRVGJCPCNMKT-LFVJCYFKSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Locating Faults (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
Изобретение относится к области электротехники, а именно к средствам обработки информации в электротехнике, и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных и апериодической составляющей. Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений заключается в том, что измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени, передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°. Далее производят фильтрацию мгновенных значений напряжений и токов с применением дискретного преобразования Фурье и получают комплексные составляющие фазных напряжений и токов, зафиксированных в начале и конце линии. Расчет расстояния до места короткого замыкания lреализуют согласно выражению,где i – мнимая единица;– коэффициент распространения электромагнитной волны;– коэффициент затухания электромагнитной волны;– коэффициент изменения фазы электромагнитной волны; Z– волновое сопротивление линии; L – длина линии. 1 ил., 10 табл.
Description
Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места короткого замыкания на воздушной линии электропередачи (ЛЭП).
Известен способ одностороннего определения места короткого замыкания на воздушной ЛЭП по массивам мгновенных значений токов и напряжений [Гриб О.Г., Светелик Г.А., Калюжный Д.Н. Автоматизированные методы и средства определения мест повреждения линий электропередачи.- Харьков: ХГАГХ. 2003. - 146 с.], заключающийся в том, что решают уравнение петли короткого замыкания относительно расстояния до места повреждения, составленного по мгновенным значениям токов и напряжений аварийного режима.
Недостатком способа является высокая погрешность определения расстояния до места повреждения на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных и апериодической составляющей.
Наиболее близким техническим решением к предлагаемому изобретению является «Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений» [Патент на изобретение РФ № 2504792, МПК G01R 31/08, опубл. 20.01.2014, Бюл. №2], заключающийся в том, что в режиме короткого замыкания измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз
в начале
и в конце
где T – период сигнала напряжения/тока, N – число отсчетов на периоде T,
передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°, далее одновременно определяют массивы мгновенных значений симметричных составляющих напряжений и токов в начале и конце линии и соответствующие им векторные значения , затем определяют расстояние до места короткого замыкания l1 из выражения
где - коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии.
Недостатком способа-прототипа является высокая погрешность определения расстояния до места повреждения на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных и апериодической составляющей.
Задача изобретения состоит в повышении точности способа определения места повреждения на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных и апериодической составляющей.
Поставленная задача достигается способом определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений, заключающимся в том, что в режиме короткого замыкания измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале , и в конце линии для одних и тех же моментов времени с дискретностью массивов мгновенных значений
где T – период сигнала напряжения/тока, N – число отсчетов на периоде T,
передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°, по массивам мгновенных значений производят вычисление комплексных составляющих токов и напряжений, входящих в расчетное выражение для расстояния до места короткого замыкания l1. Согласно предлагаемому способу дополнительно производят фильтрацию мгновенных значений напряжений и токов с применением дискретного преобразования Фурье и получением комплексных составляющих фазных напряжений и токов, зафиксированных в начале и конце линии, а расчет расстояния до места короткого замыкания l1 реализуют согласно выражению
где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB –волновое сопротивление линии; L – длина линии.
Предложенный способ позволяет более точно определять место короткого замыкания за счет фильтрации посредством дискретного преобразования Фурье исходных массивов мгновенных значений фазных токов и напряжений, измеренных на обоих концах линии, а также полученного авторами нового расчетного выражения для определения места повреждения ЛЭП, что позволяет исключить влияние апериодической и высокочастотных составляющих аварийных напряжений и токов и обеспечивает повышенную точность определения места повреждения.
На фиг.1 представлена структурная схема реализации способа определения места короткого замыкания на воздушной линии электропередачи, которая является аналогичной способу-прототипу.
В таблицах 1, 6 приведены цифровые отсчеты мгновенных значений сигналов напряжении и токов всех трех фаз в начале линии.
В таблицах 2, 7 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов всех трех фаз в конце линии.
В таблицах 3, 4, 8, 9 приведены промежуточные результаты расчета места короткого замыкания на воздушной линии электропередачи.
В таблицах 5, 10 представлены реальное, определенное предложенным способом и способом-прототипом значения расстояния до места короткого замыкания, а также погрешность определения места короткого замыкания.
Способ может быть осуществлен с помощью устройства для определения места короткого замыкания на воздушной линии электропередачи, представленного на фиг.1. В начале и в конце линии электропередачи 1 (ЛЭП) установлены регистраторы аварийных событий РАС1 и РАС2, обозначенные соответственно на фиг.1 цифрами 21 и 22. Регистраторы аварийных событий 21 и 22 через каналы связи 31 и 32 связаны с ЭВМ 4. ЭВМ 4 с помощью коммуникационного программного обеспечения реализует сбор мгновенных значений напряжений и токов с регистраторов аварийных событий 21, 22, производит расчет требуемых комплексов напряжений и токов по мгновенным значениям, хранит значения постоянных расчетных коэффициентов, а также выполняет вычислительные операции, необходимые для определения места повреждения ЛЭП 1. Как правило, в предприятиях электрических сетей (ПЭС) такая ЭВМ устанавливается в центре управления сетями (ЦУС), а выполнение операций, необходимых для расчета расстояния до места повреждения, возлагается на диспетчера ЦУС.
В качестве примера реализации способа определения места короткого замыкания на воздушной линии электропередачи рассмотрим однофазное короткое замыкание на расстоянии l1=200 км воздушной ЛЭП, напряжением 500 кВ протяженностью l=600 км, выполненной проводом АС- 500/64. Определим, что короткое замыкание происходит в момент времени t=0,02 c. Для получения аварийных токов и напряжений, а также расчетов расстояния до места повреждения ЛЭП проводилось моделирование в программном комплексе Matlab. Получение мгновенных значений аварийных токов и напряжений выполнялось для двух случаев: в условиях апериодической составляющей с интенсивностью 100% от значения амплитуды сигнала основной (f=50 Гц) частоты, а также при наличии высокочастотных составляющих (в состав сигналов токов и напряжений входила третья гармоника интенсивностью 20% от значения амплитуды основной частоты и пятая гармоника интенсивностью 15% от значения амплитуды основной частоты).
Предлагаемый способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений реализуется следующим образом.
Посредством регистраторов аварийных событий 21 и 22 измеряют в режиме короткого замыкания мгновенные значения сигналов напряжений и токов всех трех фаз в начале (табл.1) и в конце (табл.2) линии для одних и тех же моментов времени с дискретностью массивов мгновенных значений, определяемой N=64 отсчета на период промышленной частоты.
С использованием каналов связи 31 и 32 указанные мгновенные значения предаются в ЭВМ 4 для последующей фильтрации и определения комплексных составляющих фазных напряжений и токов. В отличие от способа-прототипа для фильтрации мгновенных значений и получения комплексных составляющих фазных напряжений и токов применяется дискретное преобразование Фурье (ДПФ) [например, Шнеерсон Э.М. Цифровая релейная защита. – М.: Энергоатомиздат, 2007. 549 с.]. С учетом принятых обозначений выражения для реализации ДПФ принимают вид
Фильтрующие свойства ДПФ позволяют обеспечить подавление нежелательных составляющих (апериодической и высокочастотных) в мгновенных значениях аварийных сигналов напряжений и токов, что в совокупности с точным расчетом по формульному выражению
где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; коэффициент изменения фазы электромагнитной волны; ZB –волновое сопротивление линии; L – длина линии;
обеспечивает высокую точность расчета расстояния до повреждения.
Следует отметить, что в способе-прототипе используется метод расчета комплексных составляющих токов и напряжений, не обладающий требуемыми свойствами фильтрации [Функциональный контроль и диагностика электротехнических и электромеханических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения/ B.C. Аврамчук, Н.Л. Бацева, Е.И. Гольдштейн, И.Н. Исаченко, Д.В. Ли, А.О. Сулайманов, И.В. Цапко//Под ред. Е.И. Гольдштейна. Томск: Печатная мануфактора. 2003. – 240 с.] и уступающий по точности оценки комплексов токов и напряжений по мгновенным значениям в условиях апериодической и высокочастотных составляющих. Это подтверждает сравнительный анализ точности оценки комплексов напряжений и токов, приведенный в табл. 5, табл. 10 с использованием мгновенных значений, полученных по результатам моделирования табл. 1, 2, 6, 7.
После получения комплексных значений аварийных фазных напряжений и токов, с использованием постоянных коэффициентов (аналогичных способу-прототипу), а также ЭВМ 4 диспетчер ЦУС ПЭС выполняет расчет расстояния до места короткого замыкания по формуле
где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии.
По результатам расчетов таблиц 5, 10 видно, что расчетное расстояние до места короткого замыкания в условиях наличия в мгновенных значениях аварийных напряжений и токов апериодической и высокочастотных составляющих не совпадает с реальным значением. Относительную погрешность ε вычислим по формуле [Бронштейн И.Н., Семендяев К.А. Справочник для инженеров и учащихся ВТУзов. – М.: Наука. 1980. – 976 с.]. Погрешность соответствует формульному выражению
где a – расчетное значение, z – реальное значение. Полученные значения относительной погрешности расчета расстояния до места повреждения для предлагаемого способа и способа-прототипа приведены в табл. 5, 10. Анализ таблиц показывает, что по результатам моделирования предлагаемый способ обладает на 2,5% большей точностью по сравнению с прототипом.
Таким образом, предлагаемый способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений более точен в реализации в условиях наличия в мгновенных значениях аварийных напряжений и токов апериодической и высокочастотных составляющих по сравнению с прототипом, что обеспечивает достижение требуемой цели изобретения.
а) Сигнал состоит из первой гармоники и апериодической составляющей в фазе А, возникающей в момент короткого замыкания
Таблица 1 – Мгновенные значения сигналов токов и напряжений в начале линии (см. в конце описания).
Таблица 2 – Мгновенные значения сигналов токов и напряжений в конце линии (см. в конце описания).
Таблица 3 – Векторные значения напряжений и токов трех фаз в начале линии (см. в конце описания).
Таблица 4 – Векторные значения напряжений и токов трех фаз в конце линии (см. в конце описания).
Таблица 5 – Результаты определения места короткого замыкания (см. в конце описания).
б) Сигналы содержат апериодическую составляющую в фазе А, возникающую в момент короткого замыкания, третью и пятую гармонику в фазе А.
Амплитуда 3-й гармоники равна 20% от амплитуды сигнала, амплитуда 5-й гармоники равна 15% от амплитуды сигнала
Таблица 6 - Мгновенные значения сигналов токов и напряжений в начале линии (см. в конце описания).
Таблица 7 - Мгновенные значения сигналов токов и напряжений в конце линии (см. в конце описания).
Таблица 8 – Векторные значения напряжений и токов трех фаз в начале линии (см. в конце описания).
Таблица 9 – Векторные значения напряжений и токов трех фаз в конце линии (см. в конце описания).
Таблица 10 – Результаты определения места короткого замыкания (см. в конце описания).
Claims (9)
- Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений, заключающийся в том, что в режиме короткого замыкания измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз
- в начале
- где T – период сигнала напряжения/тока, N – число отсчетов на периоде T,
- передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°, по массивам мгновенных значений производят вычисление комплексных составляющих токов и напряжений, входящих в расчетное выражение для расстояния до места короткого замыкания l1, отличающийся тем, что дополнительно производят фильтрацию мгновенных значений напряжений и токов с применением дискретного преобразования Фурье и получением комплексных составляющих фазных напряжений и токов, зафиксированных в начале и конце линии, а расчет расстояния до места короткого замыкания l1 реализуют согласно выражению
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016117158A RU2639590C2 (ru) | 2016-05-04 | 2016-05-04 | Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016117158A RU2639590C2 (ru) | 2016-05-04 | 2016-05-04 | Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016117158A RU2016117158A (ru) | 2017-11-10 |
RU2639590C2 true RU2639590C2 (ru) | 2017-12-21 |
Family
ID=60264158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016117158A RU2639590C2 (ru) | 2016-05-04 | 2016-05-04 | Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2639590C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2719278C1 (ru) * | 2019-10-31 | 2020-04-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Способ определения места и расстояния до места однофазного замыкания на землю в электрических сетях 6-35 кВ с изолированной или компенсированной нейтралью |
RU2753838C1 (ru) * | 2020-12-23 | 2021-08-24 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Способ определения расстояния до мест замыканий на землю на двух линиях электропередачи в сетях с малыми токами замыкания на землю |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044547A1 (en) * | 2001-11-23 | 2003-05-30 | Abb Ab | Fault location using measurements from two ends of a line |
CN102081132A (zh) * | 2010-12-04 | 2011-06-01 | 西南交通大学 | 一种动态条件下的输电线路故障双端测距方法 |
US8183871B2 (en) * | 2006-01-12 | 2012-05-22 | Abb Technology Ltd. | Method and device for fault location in a two-terminal transmission or distribution power line |
RU2504792C1 (ru) * | 2012-07-17 | 2014-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений |
RU2508556C1 (ru) * | 2012-10-24 | 2014-02-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") | Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов |
RU2531769C2 (ru) * | 2013-07-23 | 2014-10-27 | Степан Георгиевич Тигунцев | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии |
-
2016
- 2016-05-04 RU RU2016117158A patent/RU2639590C2/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003044547A1 (en) * | 2001-11-23 | 2003-05-30 | Abb Ab | Fault location using measurements from two ends of a line |
US8183871B2 (en) * | 2006-01-12 | 2012-05-22 | Abb Technology Ltd. | Method and device for fault location in a two-terminal transmission or distribution power line |
CN102081132A (zh) * | 2010-12-04 | 2011-06-01 | 西南交通大学 | 一种动态条件下的输电线路故障双端测距方法 |
RU2504792C1 (ru) * | 2012-07-17 | 2014-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" | Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений |
RU2508556C1 (ru) * | 2012-10-24 | 2014-02-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутский государственный технический университет" (ФГБОУ ВПО "ИрГТУ") | Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов |
RU2531769C2 (ru) * | 2013-07-23 | 2014-10-27 | Степан Георгиевич Тигунцев | Способ определения места короткого замыкания на воздушной линии электропередачи по замерам с двух концов линии |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2719278C1 (ru) * | 2019-10-31 | 2020-04-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Способ определения места и расстояния до места однофазного замыкания на землю в электрических сетях 6-35 кВ с изолированной или компенсированной нейтралью |
RU2753838C1 (ru) * | 2020-12-23 | 2021-08-24 | федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Способ определения расстояния до мест замыканий на землю на двух линиях электропередачи в сетях с малыми токами замыкания на землю |
Also Published As
Publication number | Publication date |
---|---|
RU2016117158A (ru) | 2017-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin et al. | Travelling wave time–frequency characteristic-based fault location method for transmission lines | |
Sidhu et al. | Discrete-Fourier-transform-based technique for removal of decaying DC offset from phasor estimates | |
Ren et al. | A hybrid method for power system frequency estimation | |
EP3190727B1 (en) | Method and device for detecting standing-wave ratio | |
CN102435860B (zh) | 一种介质损耗电流测试仪的工作方法 | |
Razzaghi et al. | On the use of electromagnetic time reversal to locate faults in series-compensated transmission lines | |
RU2639590C2 (ru) | Способ определения места короткого замыкания на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений | |
Celeita et al. | Dynamic state estimation for double-end traveling wave arrival identification in transmission lines | |
CN106771586B (zh) | 一种直流控制保护板卡的回路信号分析方法及装置 | |
Yang et al. | A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT | |
CN107036720A (zh) | 一种超短啁啾脉冲时域相位与频域相位测量方法及系统 | |
Glik et al. | Detection, classification and fault location in HV lines using travelling waves | |
CN104237832B (zh) | 一种复阻抗标准器的校准方法及装置 | |
Prabakar et al. | Use of traveling wave signatures in medium-voltage distribution systems for fault detection and location | |
CN109030957B (zh) | 介质损耗测量方法 | |
Gustafsson et al. | Electromagnetic dispersion modeling and measurements for HVDC power cables | |
Minzhong et al. | Error analysis for dielectric loss factor measurement based on harmonic analysis | |
RU2640091C2 (ru) | Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений | |
CN103454480B (zh) | 一种利用变压器套管测算变压器入侵雷电压波形的方法 | |
CN105223422A (zh) | 数字式介质损耗测量装置及方法 | |
CN105572452A (zh) | 一种粒子加速器在准连续运行状态下的高斯束团平均电流测量方法 | |
CN112034285B (zh) | 一种计及幅值谱和相位谱的高频阻抗参数提取方法 | |
JP7123768B2 (ja) | 線路定数測定装置及び線路定数測定方法 | |
Ren et al. | An improved fourier method for power system frequency estimation | |
CN104360153A (zh) | 电网谐波在线检测与分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180505 |