RU2633800C2 - Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, и модуль фоновой подсветки с такой пленкой - Google Patents

Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, и модуль фоновой подсветки с такой пленкой Download PDF

Info

Publication number
RU2633800C2
RU2633800C2 RU2016105820A RU2016105820A RU2633800C2 RU 2633800 C2 RU2633800 C2 RU 2633800C2 RU 2016105820 A RU2016105820 A RU 2016105820A RU 2016105820 A RU2016105820 A RU 2016105820A RU 2633800 C2 RU2633800 C2 RU 2633800C2
Authority
RU
Russia
Prior art keywords
phosphorus
optical film
based optical
backlight module
measurement zones
Prior art date
Application number
RU2016105820A
Other languages
English (en)
Other versions
RU2016105820A (ru
Inventor
Ху ХЭ
Original Assignee
Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд. filed Critical Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд.
Publication of RU2016105820A publication Critical patent/RU2016105820A/ru
Application granted granted Critical
Publication of RU2633800C2 publication Critical patent/RU2633800C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Planar Illumination Modules (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Изобретение относится к области жидкокристаллических дисплеев, а именно к способам скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки. Способ скрининга включает следующие этапы: а) деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения и получение спектра пропускания каждой из зон измерения; b) получение значения цветности каждой из зон измерения, совпадающего с оптической пленкой на основе фосфора; с) проверка значений цветности, полученных на этапе b) в интервале стандартной цветности; причем процесс скрининга завершают, если все значения цветности находятся в таком интервале; согласование по меньшей мере одной зоны измерения с новой оптической пленкой на основе фосфора, если значение цветности этой по меньшей мере одной из зон измерения не находится в упомянутом интервале, и возврат к этапу b). Изобретение обеспечивает повышенную насыщенность фоновой подсветки при более глубоком проникновении и улучшенной равномерности цвета. 2 н. и 10 з.п. ф-лы, 5 ил.

Description

1. Область техники
Настоящее изобретение относится к области жидкокристаллических дисплеев (ЖК-дисплеев) и, более конкретно, к способу скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, и к модулю фоновой подсветки с такой пленкой.
2. Описание известного уровня техники
Жидкокристаллический дисплей (ЖК-дисплей) находит широкое применение в связи с его преимуществами, заключающимися в тонкости, экономии энергии и низком уровне излучения. ЖК-дисплей в основном включает панель ЖК-дисплея и модуль фоновой подсветки. Модуль фоновой подсветки установлен напротив панели ЖК-дисплея и обеспечивает для нее источник света при отображении информации, чтобы панель ЖК-дисплея могла отображать изображения за счет света от модуля фоновой подсветки.
Известны два типа модулей фоновой подсветки - прямые и боковые. Однако независимо от типа модуля фоновой подсветки источник света как центральное устройство обеспечивает эффект отображения для модуля фоновой подсветки, такой как яркость, цветность и насыщенность цвета модуля фоновой подсветки. Яркость модуля фоновой подсветки регулируется световым потоком, величиной, способами возбуждения источника света и расположением оптических пленок в модуле фоновой подсветки. Цветность модуля фоновой подсветки настраивается до стандартной по спектру источника света, спектру пропускания оптического материала и спектру цветового фильтра. Насыщенность цвета модуля фоновой подсветки, как дополнительный критерий, в основном используется для различения высококлассного типа (т.е. высококачественного ЖК-дисплея) и низкокачественного типа (т.е. низкокачественного ЖК-дисплея). Критерий насыщенности цвета модуля фоновой подсветки для обычного низкокачественного типа составляет 62%-70%. С другой стороны, критерий насыщенности цвета модуля фоновой подсветки для высококачественного типа составляет свыше 75%. Помимо этого, равномерность цветности на стороне модуля фоновой подсветки оптимизирует визуальное восприятие ЖК-дисплея. Например, хроматизм модуля фоновой подсветки внутри низкокачественного типа ограничен значением ниже 0,010.
Как показано на Фиг. 1, боковой модуль фоновой подсветки включает светопроводящую панель 10, источник света 20 рядом со стороной входа света светопроводящей панели 10 и оптическую пленку с порошком фосфора 30 на стороне выхода света светопроводящей панели 10. В источнике света 20 применены синие светодиоды, и оптическая пленка с порошком фосфора 30 преобразует часть синего света от источника света 20 в красный и зеленый свет, и затем остаток синего света и преобразованный красный и зеленый свет смешиваются для получения белого света как источника подсветки модуля фоновой подсветки. По сравнению с белым светодиодом как источником света модуля фоновой подсветки модуль фоновой подсветки с Фиг. 1 оптимизирован под цветовой фильтр в ЖК-дисплее, чтобы получить улучшенную насыщенность цвета и коэффициент пропускания. Материал светопроводящей панели (полиметилметакрилат, МС и т.д.) и наличие узлов сетки в светопроводящей панели однако приводят к тому, что светопроводящая панель получает больше синего света, так что цветность светопроводящей панели в направлении от источника света возрастает постепенно и, поэтому, оказывает сильное влияние на равномерность цветности модуля фоновой подсветки внутри.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Согласно настоящему изобретению, способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, включает следующие этапы: а) деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения и получение спектра пропускания каждой из этих нескольких зон измерения; b) получение значения цветности для каждой из этих нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора; с) проверка, находится ли значение цветности каждой из этих нескольких зон измерения, полученное на этапе b), в интервале стандартной цветности. Процесс скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, завершают, если значение цветности каждой из этих нескольких зон измерения, совпадающее с оптической пленкой на основе фосфора, находится в интервале стандартной цветности; согласование по меньшей мере одной зоны измерения с новой оптической пленкой на основе фосфора, если значение цветности этой по меньшей мере одной из зон измерения, совпадающее с оптической пленкой на основе фосфора, не находится в интервале стандартной цветности, и возврат к Этапу b).
Кроме того, Этап b), кроме того, включает следующие этапы: Этап b1) - получение спектра пропускания оптической пленки на основе фосфора, совпадающего с несколькими зонами измерения; Этап b2) - получение спектра пропускания оптической пленки на основе фосфора после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора; Этап b3) - получение значения цветности для каждой из этих нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора по спектру пропускания, полученному на Этапе b2).
Кроме того, оптическая пленка на основе фосфора, совпадающая с несколькими зонами измерения, имеет разные рабочие параметры.
Кроме того, оптическая пленка на основе фосфора является пленкой с квантовыми точками.
Согласно настоящему изобретению, способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, включает следующие этапы: а) деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения и получение спектра пропускания каждой из этих нескольких зон измерения; b) получение спектра пропускания n-й оптической пленки на основе фосфора, где n является положительным целым числом; с) получение спектра пропускания m-й зоны измерения после того, как m-я зона измерения будет совпадать с n-й оптической пленкой на основе фосфора, где m является положительным целым числом; d) получение значения цветности m-й зоны измерения после того, как каждая m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора по спектру пропускания, полученному на Этапе с); е) проверка значения цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, полученной на Этапе d), в интервале стандартной цветности; если значение цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, не находится в интервале стандартной цветности, возврат к этапу b), где n устанавливают как n+1 (n=n+1); если значение цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, находится в интервале стандартной цветности, возврат к этапу с), где m устанавливают как m+1 (m=m+1).
Кроме того, оптическая пленка на основе фосфора является пленкой с квантовыми точками.
Кроме того, каждая из оптических пленок на основе фосфора имеет разные рабочие параметры.
Согласно настоящему изобретению, модуль фоновой подсветки включает источник света и светопроводящую панель. Светопроводящая панель включает поверхность входа света и поверхность выхода света, и источник света расположен рядом с поверхностью входа света. Модуль фоновой подсветки кроме того включает оптическую пленку на основе фосфора, которую проверяют способом скрининга, как сказано выше. Оптическая пленка на основе фосфора расположена на поверхности выхода света.
Кроме того, оптическая пленка на основе фосфора является пленкой с квантовыми точками.
Кроме того, оптическую пленку на основе фосфора располагают на поверхности выхода света посредством печати или напыления покрытия.
Оптическую пленку на основе фосфора можно использовать в качестве задней подсветки модуля фоновой подсветки, поскольку оптическая пленка на основе фосфора в конечном итоге преобразует свет, создаваемый источником света, в белый свет. Рабочие параметры оптической пленки на основе фосфора изменяются в зависимости от того, какая часть зоны измерения модуля фоновой подсветки совпадает с оптической пленкой на основе фосфора. Разные оптические пленки на основе фосфора имеют разные рабочие параметры. Поэтому оптическая пленка на основе фосфора в высокой степени соответствует модулю фоновой подсветки. Модуль фоновой подсветки настоящего изобретения имеет высокую насыщенность при большой глубине проникновения и повышенной равномерности цвета.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 - известный модуль фоновой подсветки, способный повышать насыщенность цвета.
Фиг. 2 - процесс способа скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, согласно первому варианту осуществления настоящего изобретения.
Фиг. 3 - пример деления зон измерения.
Фиг. 4 - процесс способа скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, согласно второму варианту осуществления настоящего изобретения.
Фиг. 5 - схема подсветки настоящего изобретения.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Прилагаемые чертежи включены для обеспечения более полного понимания изобретения и являются частью настоящего описания изобретения. Чертежи иллюстрируют варианты осуществления изобретения и вместе с описанием служат для объяснения принципов изобретения.
Вариант осуществления 1
На Фиг. 2 представлен процесс способа скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, согласно первому варианту осуществления настоящего изобретения.
Как показано на Фиг. 2, способ скрининга оптической пленки на основе фосфора включает следующие этапы:
Этап S1: деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения с последующим получением спектра пропускания каждой из нескольких зон измерения. На этом этапе несколько зон измерения могут быть распределены от одной стороны модуля фоновой подсветки до самой дальней стороны. Например, первая зона измерения A1, вторая зона измерения A2, …, m-я зона измерения Am распределены по порядку от одной стороны модуля фоновой подсветки до самой дальней стороны. Следует сказать, что деление зон измерения внутренней поверхности модуля фоновой подсветки не ограничено показанным на Фиг. 3. Спектр пропускания относится к пропусканию для каждой длины волны в диапазоне видимого света в данном варианте осуществления. Более того, значения цветности нескольких зон измерения, показанных на внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора, измеряют и получают с помощью оптического измерительного устройства (такого как спектральный радиометр и цветоанализатор). Матрицу цветности формируют по нескольким зонам измерения, показанным на внутренней поверхности модуля фоновой подсветки. Матрица цветности включает значение цветности каждой из нескольких зон измерения. Из матрицы цветности может быть получена разница значений цветности. Также по матрице цветности можно понять, находятся ли значения цветности в интервале стандартной цветности или нет. Интервал стандартной цветности будет описан более подробно.
Этап S2: получение значения цветности каждой из нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора.
Этап S3: проверка, находится ли значение цветности каждой из нескольких зон измерения, полученное на Этап S2, в интервале стандартной цветности. Согласно данному варианту осуществления, интервалом стандартной цветности называется "стандартная цветность ± допустимое отклонение цветности", при этом, в действительности, модуль фоновой подсветки может иметь разные размеры, так что интервал стандартной цветности соотносится с размером модуля фоновой подсветки.
На Этапе S3, если значение цветности каждой из нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора, находится в интервале стандартной цветности, скрининг оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, считается успешным, и процесс скрининга завершается. Следует сказать, что значение цветности каждой из нескольких зон измерения на внутренней поверхности модуля фоновой подсветки отличается одно от другого, так что рабочие параметры (такие как элементы, пропорция и плотность фосфора) оптической пленки на основе фосфора различны для каждой из нескольких зон измерения. Поэтому зона с проверенной скринингом оптической пленкой на основе фосфора, которая соответствует зоне измерения и выполнена согласно рабочим параметрам, включает рабочие параметры, отличающиеся от таковых другой зоны. Каждая зона соответствует ее индивидуальной зоне измерения. Если значение цветности каждой из нескольких зон измерения, совпадающее с оптической пленкой на основе фосфора, не находится в интервале стандартной цветности, то по меньшей мере одну зону измерения согласуют с новой оптической пленкой на основе фосфора (рабочие параметры новой оптической пленки на основе фосфора отличаются от таковых у прежней оптической пленки на основе фосфора, согласующейся по меньшей мере с одной зоной измерения) и возвращаются к Этапу S2.
Этап S2, кроме того, включает следующие этапы:
Этап S21: получение спектра пропускания оптической пленки на основе фосфора, совпадающего с каждой из зон измерения.
Этап S22: умножение пропускания для каждой длины волны спектра пропускания каждой из нескольких зон измерения на пропускание для каждой длины волны спектра пропускания оптической пленки на основе фосфора с последующим получением спектра пропускания каждой из нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора.
Этап S23: получение значения цветности каждой из нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора по спектру пропускания каждой из нескольких зон измерения, совпадающему с оптической пленкой на основе фосфора на Этапе S22. На Этапе S22 пропускание для каждой длины волны спектра пропускания каждой из нескольких зон измерения, совпадающей с оптической пленкой на основе фосфора, умножают на функцию зрения (т.е. значение фотопического зрения, длина волны которого реагирует на разные состояния), и значения параметров трех основных цветов получают посредством интегралов в полосе видимого света. Кроме того, значение цветности каждой из нескольких зон измерения, совпадающее с оптической пленкой на основе фосфора, получают по полученным значениям параметров трех основных цветов. Значение цветности в данном варианте осуществления определяют по цветовому пространству CIE 1931, хотя значение цветности в настоящем изобретении не ограничено. Например, значение цветности может быть определено по цветовому пространству CIE 1976 и т.д.
Помимо этого, квантовые точки (КТ) имеют характеристики широких спектров возбуждения, благоприятного распределения, узких и симметричных спектров излучения, регулируемого цвета, стабильной химической реакции света и длительного существования флуоресценции. Благодаря этим сильным сторонам, оптической пленкой на основе фосфора предпочтительно является пленка с квантовыми точками.
Вариант осуществления 2
На Фиг. 4 представлен процесс способа скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, согласно второму варианту осуществления настоящего изобретения.
Как показано на Фиг. 4, способ скрининга оптической пленки на основе фосфора включает следующие этапы:
Этап S1: деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения с последующим получением спектра пропускания каждой из нескольких зон измерения. На этом этапе несколько зон измерения могут быть распределены от одной стороны модуля фоновой подсветки до самой дальней стороны. Например, первая зона измерения A1, вторая зона измерения А2, …, m-я зона измерения Am распределены по порядку от одной стороны модуля фоновой подсветки до самой дальней стороны. Следует сказать, что деление зон измерения внутренней поверхности модуля фоновой подсветки не ограничено показанным на Фиг. 3. В данном варианте осуществления спектр пропускания относится к пропусканию для каждой длины волны в полосе частот видимого света. Более того, значения цветности нескольких зон измерения на внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора измеряют и получают с помощью оптического измерительного устройства (такого как спектральный радиометр и цветоанализатор). Матрицу цветности формируют по нескольким зонам измерения, показанным на внутренней поверхности модуля фоновой подсветки. Матрица цветности включает значение цветности каждой из нескольких зон измерения. Из матрицы цветности может быть получена разница значений цветности. Также по матрице цветности можно понять, находятся ли значения цветности в интервале стандартной цветности или нет. Интервал стандартной цветности будет описан более подробно.
Этап S2: получение спектра пропускания n-й оптической пленки на основе фосфора, где n - положительное целое число.
Этап S3: умножение пропускания для каждой длины волны спектра пропускания m-й зоны измерения на пропускание для каждой длины волны спектра пропускания n-й оптической пленки на основе фосфора с последующим получением спектра пропускания m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, где m - положительное целое число.
S4: получение значения цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора по спектру пропускания m-й зоны измерения, совпадающему с n-й оптической пленкой на основе фосфора на Этапе S3. На Этапе S3 пропускание для каждой длины волны спектра пропускания m-й зоны измерения, соответствующего n-й оптической пленке на основе фосфора, умножают на функцию зрения (т.е. значение фотопического зрения, длина волны которого реагирует на разные состояния), и значения параметров трех основных цветов получают посредством интегралов в полосе видимого света. Кроме того, значение цветности m-й зоны измерения, совпадающее с n-й оптической пленкой на основе фосфора, получают по полученным значениям параметров трех основных цветов. Значение цветности в данном варианте осуществления определяют по цветовому пространству CIE 1931, хотя значение цветности в настоящем изобретении не ограничено. Например, значение цветности может быть определено по цветовому пространству CIE 1976 и т.д.
Этап S5: проверка, находится ли каждое из значений цветности, полученных на Этапе S4, в интервале стандартной цветности. Согласно данному варианту осуществления, интервалом стандартной цветности называется "стандартная цветность ± допустимое отклонение цветности", при этом, в действительности, модуль фоновой подсветки может иметь разные размеры, так что интервал стандартной цветности соотносится с размером модуля фоновой подсветки.
На Этапе S5, если значение цветности m-й зоны измерения после того, как m зона измерения совпадет с n оптической пленки на основе фосфора, не находится в интервале стандартной цветности, возвращаются на Этап S2, где n устанавливают как n+1 (n=n+1). Следует сказать, что значение цветности каждой зоны измерения на внутренней поверхности модуля фоновой подсветки отличается от другого, так что рабочие параметры (такие как элементы, пропорция и плотность фосфора) оптической пленки на основе фосфора разные для каждой зоны измерения. Поэтому зона, которая соответствует проверенной скринингом оптической пленке на основе фосфора и выполнена согласно рабочим параметрам, включает рабочие параметры, отличающиеся от таковых другой зоны. Каждая зона соответствует ее индивидуальной зоне измерения. Если значение цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, находится в интервале стандартной цветности, возвращаются на Этап S3, где m устанавливают как m+1 (m=m+1).
Помимо этого, квантовые точки (КТ) имеют характеристики широких спектров возбуждения, благоприятного распределения, узких и симметричных спектров излучения, регулируемого цвета, стабильной химической реакции света и длительного существования флуоресценции. Благодаря этим сильным сторонам, оптической пленкой на основе фосфора предпочтительно является пленка с квантовыми точками.
В настоящем изобретении предложен модуль фоновой подсветки 100, включающий оптическую пленку на основе фосфора 400. Модуль фоновой подсветки 100 выполнен согласно способу скрининга, который описан в первом или втором варианте осуществления. Детали модуля фоновой подсветки 100 показаны на Фиг. 5.
Модуль фоновой подсветки 100 включает источник света (такой как синий светодиод) 200 и светопроводящую панель 300, как показано на Фиг. 5. Светопроводящая панель 300 включает поверхность входа света 301 и поверхность выхода света 302. Источник света 200 расположен рядом с поверхностью входа света 301. Оптическую пленку на основе фосфора 400 проверяют согласно способу скрининга, описанному в первом или втором варианте осуществления, и располагают на поверхности выхода света 302 посредством печати или напыления покрытия.
Помимо этого, квантовые точки (КТ) имеют характеристики широких спектров возбуждения, благоприятного распределения, узких и симметричных спектров излучения, регулируемого цвета, стабильной химической реакции света и длительного существования флуоресценции. Благодаря этим сильным сторонам, оптической пленкой на основе фосфора 400 предпочтительно является пленка с квантовыми точками.
Оптическая пленка на основе фосфора 400 может быть использована в качестве фоновой подсветки модуля фоновой подсветки 100, поскольку оптическая пленка на основе фосфора 400 в конечном итоге преобразует свет, создаваемый источником света 200, в белый свет. Как описано в первом или втором варианте осуществления, рабочие параметры оптической пленки на основе фосфора 400 изменяются в зависимости от части зоны измерения (зоны отображения) модуля фоновой подсветки 100, совпадающей с оптической пленкой на основе фосфора 400. Разные оптические пленки на основе фосфора 400 имеют разные рабочие параметры. Поэтому оптическая пленка на основе фосфора 400 в высокой степени совпадает с модулем фоновой подсветки 100. Модуль фоновой подсветки 100 имеет повышенную насыщенность при большой глубине проникновения и повышенной равномерности цвета.
Специалисты в данной области техники легко поймут, что в устройство могут быть внесены многочисленные модификации и изменения, но без нарушения объема изобретения. Соответственно, приведенное выше раскрытие должно истолковываться как ограничиваемое только объемом прилагаемой формулы изобретения.

Claims (27)

1. Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, включающий следующие этапы:
Этап а) деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения и получение спектра пропускания каждой из этих нескольких зон измерения;
Этап b) получение значения цветности для каждой из этих нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора;
Этап с) проверка значения цветности каждой из этих нескольких зон измерения, полученного на Этапе b), в интервале стандартной цветности;
процесс скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, завершают, если значение цветности каждой из этих нескольких зон измерения, совпадающее с оптической пленкой на основе фосфора, находится в интервале стандартной цветности;
согласование по меньшей мере одной зоны измерения с новой оптической пленкой на основе фосфора, если значение цветности этой по меньшей мере одной из зон измерения, совпадающее с оптической пленкой на основе фосфора, не находится в интервале стандартной цветности, и возврат к этапу b).
2. Способ скрининга по п. 1, отличающийся тем, что Этап b), кроме того, включает следующие этапы:
Этап b1) получение спектра пропускания оптической пленки на основе фосфора, совпадающего с несколькими зонами измерения;
Этап b2) получение спектра пропускания оптической пленки на основе фосфора после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора;
Этап b3) получение значения цветности для каждой из этих нескольких зон измерения после того, как каждая из этих нескольких зон измерения совпадет с оптической пленкой на основе фосфора по спектру пропускания, полученному на Этапе b2).
3. Способ скрининга по п. 1, отличающийся тем, что оптическая пленка на основе фосфора, совпадающая с несколькими зонами измерения, имеет разные рабочие параметры.
4. Способ скрининга по п. 2, отличающийся тем, что оптическая пленка на основе фосфора, совпадающая с несколькими зонами измерения, имеет разные рабочие параметры.
5. Способ скрининга по п. 1, отличающийся тем, что оптическая пленка на основе фосфора является пленкой с квантовыми точками.
6. Способ скрининга по п. 2, отличающийся тем, что оптическая пленка на основе фосфора является пленкой с квантовыми точками.
7. Способ скрининга по п. 3, отличающийся тем, что оптическая пленка на основе фосфора является пленкой с квантовыми точками.
8. Способ скрининга по п. 4, отличающийся тем, что оптическая пленка на основе фосфора является пленкой с квантовыми точками.
9. Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, включающий следующие этапы:
a) деление внутренней поверхности модуля фоновой подсветки без оптической пленки на основе фосфора на несколько зон измерения и получение спектра пропускания каждой из этих нескольких зон измерения;
b) получение спектра пропускания n-й оптической пленки на основе фосфора, где n является положительным целым числом;
c) получение спектра пропускания m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, где m является положительным целым числом;
d) получение значения цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора по спектру пропускания, полученному на этапе с);
e) проверка значения цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, полученного на Этапе d), в интервале стандартной цветности;
если значение цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, не находится в интервале стандартной цветности, возврат к Этапу b), где n устанавливают как n+1 (n=n+1);
если значение цветности m-й зоны измерения после того, как m-я зона измерения совпадет с n-й оптической пленкой на основе фосфора, находится в интервале стандартной цветности, возврат к этапу с), где m устанавливают как m+1 (m=m+1).
10. Способ скрининга по п. 9, отличающийся тем, что оптическая пленка на основе фосфора является пленкой с квантовыми точками.
11. Способ скрининга по п. 9, отличающийся тем, что каждая из оптических пленок на основе фосфора имеет разные рабочие параметры.
12. Способ скрининга по п. 10, отличающийся тем, что каждая из оптических пленок на основе фосфора имеет разные рабочие параметры.
RU2016105820A 2013-09-02 2013-09-04 Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, и модуль фоновой подсветки с такой пленкой RU2633800C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310392976.3 2013-09-02
CN201310392976.3A CN103447247B (zh) 2013-09-02 2013-09-02 适用于背光模组的荧光粉光学膜片的筛选方法及背光模组
PCT/CN2013/082938 WO2015027528A1 (zh) 2013-09-02 2013-09-04 适用于背光模组的荧光粉光学膜片的筛选方法及背光模组

Publications (2)

Publication Number Publication Date
RU2016105820A RU2016105820A (ru) 2017-08-24
RU2633800C2 true RU2633800C2 (ru) 2017-10-18

Family

ID=49730313

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016105820A RU2633800C2 (ru) 2013-09-02 2013-09-04 Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, и модуль фоновой подсветки с такой пленкой

Country Status (6)

Country Link
JP (1) JP6216065B2 (ru)
KR (1) KR101778900B1 (ru)
CN (1) CN103447247B (ru)
GB (1) GB2531202B (ru)
RU (1) RU2633800C2 (ru)
WO (1) WO2015027528A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107077025B (zh) * 2014-10-30 2021-07-20 东洋纺株式会社 液晶显示装置和偏光板
CN106157869B (zh) * 2016-06-30 2019-11-05 京东方科技集团股份有限公司 一种显示图像的色偏修正方法、修正装置及显示装置
CN106969906B (zh) * 2017-04-26 2019-05-03 武汉华星光电技术有限公司 一种显示器的色度学计算方法及色度计算方法
CN107262380A (zh) * 2017-07-18 2017-10-20 深圳中天云创科技有限公司 一种手机背光源视觉自动检测设备及检测方法
CN108535226A (zh) * 2018-03-19 2018-09-14 厦门大学 一种基于多路探头的荧光片发射光性能测试装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883684A (en) * 1997-06-19 1999-03-16 Three-Five Systems, Inc. Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield
US6653778B1 (en) * 1999-09-24 2003-11-25 Fuji Electric Co., Ltd. Fluorescent color conversion film, fluorescent color conversion filter using the conversion film, and organic light-emitting device equipped with the conversion filter
CN201437941U (zh) * 2009-04-30 2010-04-14 达运精密工业(苏州)有限公司 Led背光模组及液晶显示装置
CN103115282A (zh) * 2011-11-16 2013-05-22 苏州通亮照明科技有限公司 一种背光模组及用于背光模组上的扩散构件

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543148A (en) * 1968-12-16 1970-11-24 Siemens Ag Apparatus for automatic testing of electrical devices by testing their characteristic curves for excess of tolerance zones
JP4076095B2 (ja) * 1995-09-11 2008-04-16 株式会社日立製作所 カラー液晶表示装置
KR20070026462A (ko) * 2004-06-11 2007-03-08 니폰 덴키 가라스 가부시키가이샤 플랫 패널 디스플레이용 판유리의 선별방법, 플랫 패널디스플레이용 판유리 및 그 제조방법
US7256057B2 (en) * 2004-09-11 2007-08-14 3M Innovative Properties Company Methods for producing phosphor based light sources
KR100735148B1 (ko) * 2004-11-22 2007-07-03 (주)케이디티 백라이트 장치용 광 여기 확산시트, 이를 이용한액정표시용 백라이트 장치
CN100412637C (zh) * 2005-01-19 2008-08-20 鸿富锦精密工业(深圳)有限公司 导光板及背光模组
JP4862274B2 (ja) * 2005-04-20 2012-01-25 パナソニック電工株式会社 発光装置の製造方法及び該発光装置を用いた発光装置ユニットの製造方法
JP4692059B2 (ja) * 2005-04-25 2011-06-01 パナソニック電工株式会社 発光装置の製造方法
JP4579065B2 (ja) * 2005-06-23 2010-11-10 セイコーインスツル株式会社 照明装置、及びこれを備える表示装置
JP4980640B2 (ja) * 2006-03-31 2012-07-18 三洋電機株式会社 照明装置
CN100529927C (zh) * 2006-09-22 2009-08-19 群康科技(深圳)有限公司 液晶显示面板及其制造方法
JP4765905B2 (ja) * 2006-11-17 2011-09-07 日亜化学工業株式会社 面状発光装置及びその製造方法
US8038497B2 (en) * 2008-05-05 2011-10-18 Cree, Inc. Methods of fabricating light emitting devices by selective deposition of light conversion materials based on measured emission characteristics
US8294168B2 (en) * 2010-06-04 2012-10-23 Samsung Electronics Co., Ltd. Light source module using quantum dots, backlight unit employing the light source module, display apparatus, and illumination apparatus
JP2012191144A (ja) * 2011-03-14 2012-10-04 Ns Materials Kk Led素子、その製造方法、及びled素子の色調補正方法
CN102748658A (zh) * 2012-06-13 2012-10-24 深圳市华星光电技术有限公司 一种背光模组和液晶显示装置
CN102759050B (zh) * 2012-07-09 2015-08-05 创维液晶器件(深圳)有限公司 背光模组及液晶显示装置
CN102929035B (zh) * 2012-11-15 2015-03-18 冠捷显示科技(武汉)有限公司 保证显示画质色彩一致性的方法、液晶显示面板及显示器
CN103091895B (zh) * 2013-01-22 2015-12-09 北京京东方光电科技有限公司 一种显示装置及制备方法
CN103090277B (zh) * 2013-01-30 2015-08-19 深圳市华星光电技术有限公司 背光模组及液晶显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883684A (en) * 1997-06-19 1999-03-16 Three-Five Systems, Inc. Diffusively reflecting shield optically, coupled to backlit lightguide, containing LED's completely surrounded by the shield
US6653778B1 (en) * 1999-09-24 2003-11-25 Fuji Electric Co., Ltd. Fluorescent color conversion film, fluorescent color conversion filter using the conversion film, and organic light-emitting device equipped with the conversion filter
CN201437941U (zh) * 2009-04-30 2010-04-14 达运精密工业(苏州)有限公司 Led背光模组及液晶显示装置
CN103115282A (zh) * 2011-11-16 2013-05-22 苏州通亮照明科技有限公司 一种背光模组及用于背光模组上的扩散构件

Also Published As

Publication number Publication date
GB201600838D0 (en) 2016-03-02
KR20160019956A (ko) 2016-02-22
KR101778900B1 (ko) 2017-09-14
JP6216065B2 (ja) 2017-10-18
GB2531202B (en) 2020-07-22
RU2016105820A (ru) 2017-08-24
GB2531202A (en) 2016-04-13
WO2015027528A1 (zh) 2015-03-05
CN103447247A (zh) 2013-12-18
CN103447247B (zh) 2015-12-23
JP2016537682A (ja) 2016-12-01

Similar Documents

Publication Publication Date Title
RU2633800C2 (ru) Способ скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки, и модуль фоновой подсветки с такой пленкой
Chen et al. Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays
CN107960116B (zh) 部分驱动型光源装置及使用其的图像显示装置
US20150369988A1 (en) Backlight module and display device
EP3617688B1 (en) Colorimetry calculation method for a display
CN101903698A (zh) 用于选择光发射器的装置和方法
US20180231830A1 (en) Array substrate and method of manufacturing the same, and display device
US20230156883A1 (en) Melanopic light system using cyan pumped white leds
TWI483045B (zh) 顯示器
CN101903699B (zh) 用于选择透射显示器的光发射器的装置和方法
CN104460109A (zh) 显示装置
CN104879681A (zh) 光源及其控制方法、背光模组和液晶显示装置
TWI397192B (zh) 白色發光二極體
CN103676220A (zh) 显示装置及其制造方法
US9025149B2 (en) Screening method of a phosphor-based optical film used in a backlight module and backlight module thereof
US8292459B2 (en) NVG compatible illumination device based on light-emitting diodes
JP2010517071A (ja) 色制御されているバックライト表示装置
JP2004245996A (ja) 色補正フィルタ及びバックライトユニット、並びに液晶表示装置
TW201243494A (en) Blue photoresist and color filter substrate and display device using the same
US20130250209A1 (en) High Color Expression Display Device and Method for Adjusting Displayed Color
CN104537954A (zh) 平面显示装置及背光产生方法
US20160252670A1 (en) Backlight module and display device
US7821195B2 (en) High color expression display device
KR100852836B1 (ko) 액정표시장치
US20170168208A1 (en) Fluorescent led backlight plate assembly