RU2630740C1 - СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi - Google Patents

СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi Download PDF

Info

Publication number
RU2630740C1
RU2630740C1 RU2016144941A RU2016144941A RU2630740C1 RU 2630740 C1 RU2630740 C1 RU 2630740C1 RU 2016144941 A RU2016144941 A RU 2016144941A RU 2016144941 A RU2016144941 A RU 2016144941A RU 2630740 C1 RU2630740 C1 RU 2630740C1
Authority
RU
Russia
Prior art keywords
powder
tini
temperature
hours
alloy
Prior art date
Application number
RU2016144941A
Other languages
English (en)
Inventor
Анатолий Владимирович Касимцев
Александр Владимирович Шуйцев
Сергей Николаевич Юдин
Original Assignee
Общество с ограниченной ответственностью "МЕТСИНТЕЗ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "МЕТСИНТЕЗ" filed Critical Общество с ограниченной ответственностью "МЕТСИНТЕЗ"
Priority to RU2016144941A priority Critical patent/RU2630740C1/ru
Application granted granted Critical
Publication of RU2630740C1 publication Critical patent/RU2630740C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Abstract

Изобретение относится к получению заготовок из сплавов на основе интерметаллида TiNi. Способ включает приготовление порошковой смеси из TiO2, Ni и/или оксида никеля и гидрида кальция, термическую обработку полученной смеси при температуре 1100-1300°С в течение не менее 6 часов с обеспечением гидридно-кальциевого синтеза порошка сплавов на основе интерметаллида TiNi. Полученный порошок сплава обрабатывают водой, а затем раствором соляной кислоты, после чего отмытый порошок сушат и классифицируют. Полученный порошок консолидируют путем прессования с формированием прессовки требуемой формы, которую спекают в вакууме при остаточном давлении не выше 104 мм рт.ст. при температуре не менее 0,95 от температуры плавления сплава в течение не менее 2 часов с формированием остаточной пористости не более 5%. Обеспечивается получение заготовок с эффектом памяти формы, минимальной пористостью, контролируемым фазовым и химическим составами, а также обеспечивается повторяемость в получаемых сплавах температур прямого и обратного мартенситных превращений. 1 з.п. ф-лы, 4 пр., 12 табл.

Description

Изобретение относится к области порошковой металлургии, а именно к технологии получения компактных заготовок (полуфабрикатов, слитков) из сплавов на основе интерметаллида TiNi, отличающихся низкой пористостью и высокой однородностью по химическому и фазовому составу, применяемых в качестве электродов для установок центробежного распыления, для дальнейшего передела методами термомеханической обработки (ТМО) в прутки, листы, проволоку и т.д., а также для получения близких по форме к конечным изделиям, детали и элементы конструкций.
Известен способ получения TiNi и сплавов на его основе, при котором порошки титана и никеля перемешивают, засыпают в тигель и нагревают в вакуумной печи до температур, на 20-40°С превышающих точку плавления интерметаллида TiNi, выдерживают при этих температурах в пределах 3 ч, после чего осуществляют направленную кристаллизацию [Описание изобретения к патенту РФ №2132415 от 27.08.1997, МПК С30В 28/00, С30В 29/52, С30В 11/02, С22С 1/02, С22С 14/00, опубл. 27.06.1999]. В результате получают слитки с малой пористостью.
Недостаток данного метода заключается в том, что сплавообразование при кристаллизации слитка осуществляется из расплавленного металла, а это приводит к химической ликвации и образованию паразитных фаз Ti2Ni и TiNi3, которые ухудшают механические и функциональные свойства сплавов на основе TiNi (см. публикации: Коллеров М.Ю., Александров А.В., Гусев Д.Е., Шаронов А.А. Влияние шихтового материала и метода выплавки на структуру и эффект запоминания формыслитков сплавов на основе никелида титана // Технология легких сплавов, 2012, №2. с. 87-93; и Коллеров М.Ю., Ильин А.А., Полькин И.С, Файнброн А.С., Гусев Д.Е., Хачин С.В. Структурные аспекты технологии производства полуфабрикатов из сплавов на основе никелида титана // Металлы, 2007, №5. с. 77-85).
Известен способ получения пористых биосовместимых материалов на основе никелида титана методом самораспространяющегося высокотемпературного синтеза (СВС), включающий приготовление экзотермической смеси порошков никеля и титана в соотношении 47-53 ат. % никель, остальное титан, и порошковых добавок, прессование из смеси заготовки, размещение ее в реакторе СВС и воспламенение поджигающим составом, причем в качестве добавки вводят экзотермическую смесь порошковых компонентов, образующих биосовместимые тугоплавкие соединения с более высокой температурой плавления, чем у никелида титана [Описание изобретения к патенту РФ №2459686 от 15.07.2010, МПК B22F 3/23, С22С 1/08, A61L 27/00, опубл. 27.12.2008].
Недостатком данного способа является необходимость введения добавок экзотермической смеси с более высокой температурой плавления, которая приводит к изменению фазового состава никелида титана и ухудшению пластических свойств.
Известен способ получения пористых материалов на основе никелида титана в режиме СВС, включающий приготовление экзотермической смеси исходных компонентов из порошков никеля, титана и, по крайней мере, одной добавки, выбранной из ряда, включающего: гидрид титана, галогениды аммония и гидроксиапатит, прессование из смеси заготовки, размещение ее в реакторе СВС, вакуумирование реактора и заполнение его аргоном до давления 0,1 МПа, предварительный нагрев заготовки до температуры 250-580°С, инициирование реакции СВС в инертной атмосфере (аргон или вакуум) с последующим выделением целевого продукта, при этом гидрид титана и галогениды аммония берут в количестве не более 4 мас. %, гидроксиапатит в количестве не более 25 мас. % [Описание изобретения к патенту РФ №2310548 от 22.02.2006, МПК B22F 3/23, С22С 1/08, опубл. 20.11.2007].
Недостатком данного способа является использование дополнительных добавок к исходной шихте, что не может не отразиться на фазовом составе, к тому же сам метод СВС не позволяет получать полностью гомогенный материал, в структуре всегда присутствуют фазы T2Ni и TiNi3 (см. Mohammad Н. Elahinia, Mahdi Hashemi, Majid Tabesh, Sarit B. Bhaduri, Manufacturing and processing of NiTi implants: A review // Progress in Materials Science, Vol. 57 (2012) 911-946).
Известен способ получения пористых порошковых материалов на основе никелида титана, включающий прессование и спекание порошка никелида титана или его смесей с биокерамикой, причем перед прессованием и спеканием порошок никелида титана или его смеси с биокерамикой подвергают механической активации в планетарной шаровой мельнице в течение 3-30 мин при факторе энергонапряженности 12-60 г. (Описание изобретения к патенту РФ №2190502 от 14.03.2000, МПК B22F 3/11, опубл. 10.10.2002).
Недостатки данного метода заключаются в использовании добавок биокерамики, а также применения механической активации. Введение биокерамики приводит к негомогенности материала. Механическая активация приводит к загрязнению сплава материалом мелющих тел.
Задача, решаемая настоящим изобретением и достигаемый технический результат заключаются в создании способа получения методом порошковой металлургии заготовок из сплавов на основе интерметаллида TiNi с эффектом памяти формы, минимальной пористостью, контролируемым фазовым и химическим составами в опытно-промышленных и промышленных объемах, а также обеспечение повторяемости (воспроизводимости) в сплавах температур прямого и обратного мартенситных превращений.
Для решения поставленной задачи и достижения заявленного технического результата в способе получения заготовок из сплавов на основе интерметаллида TiNi, включающем гидридно-кальциевый синтез порошковой смеси и ее консолидацию путем прессования и вакуумного спекания, при этом порошковую смесь готовят из TiO2, Ni и/или оксида никеля и гидрида кальция и термически обрабатывают при температуре 1100-1300°С в течение не менее 6 часов, после чего полученные продукты обрабатывают водой, а затем раствором соляной кислоты, после чего отмытый порошок сушат и классифицируют, а консолидацию порошка осуществляют путем прессования с формированием прессовки требуемой формы, которую подвергают спеканию в вакууме при остаточном давлении не выше (не хуже) 10-4 мм рт.ст. при температуре не менее 0,95 от температуры плавления сплава в течение не менее 2 часов с формированием остаточной пористоста не более 5%. При необходимости, в порошковую смесь допускается вводить оксиды и/или порошки легирующих металлов.
В общем случае способ получения компактных заготовок (полуфабрикатов) например, прутков различного сечения (круг, квадрат и т.д.), пластин, колец и др., из сплавов на основе интерметаллида TiNi включает гидридно-кальциевый синтез порошков сплавов и их консолидацию (компак-тирование) путем прессования и вакуумного спекания.
Шихту, состоящую из оксида TiO2 с добавлением Ni и оксида никеля, например, NiO, или просто оксида никеля, смешивают с гидридом кальция (СаН2) и термически обрабатывают при температуре 1100-1300°С в течение не менее 6 часов. Массовый состав шихты обеспечивает получение заготовок сплавов TiNi с заданным химическим и фазовым составом, а также с контролируемыми температурами прямого и обратного мартенситного превращения.
При необходимости получения легированного интерметаллида TiNic требуемым фазовым составом и температурным интервалом мартенситных превращений, в шихту дополнительно добавляют легирующие элементы в виде оксидов, например, Nb2O5, Fe2O3, HfO2, и др. и/или порошков металлов, например, Мо, Та, и др. После проведения термический обработки полученный продукт, состоящий из синтезированного порошка и оксида кальция, обрабатывают водой, а затем раствором соляной кислоты для удаления оксида кальция. Далее отмытый порошок сушат и классифицируют.
Консолидация порошка, на первой стадии, заключается в прессовании определенной массы соответствующего порошка, например, холодным гидростатическим прессованием, односторонним или двухсторонним прессованием и т.д. На этой стадии формируется прессовка (брикет) требуемой формы (см. выше). Затем прессованный порошок подвергают спеканию в вакууме при остаточном давлении не выше (не хуже) 10-4 мм рт.ст. при температуре 0,95 температуры плавления (в°С) сплавов на основе интерметаллида TiNi (линия солидус конкретного сплава) в течение не менее 2 часов (зависит от массы прессовки). После спекания формируется продукт требуемой геометрической формы и размеров, и уровнем остаточной пористости не более 5%.
Проанализируем существенные признаки изобретения.
Преимущественное использование в составе порошковой смеси для гидридно-кальциевого синтеза оксидов Ti и Ni является более предпочтительным, нежели использование хлоридов или фторидов этих металлов, поскольку их термическая обработка приведет к образованию паров соответствующих кислот, что требует больших затрат по соблюдению правил техники безопасности. Использование вместо NiO порошка Ni связано с тем, что при получении больших объемов термичность реакций слишком высока.
Термическая обработка при проведении гидридно-кальциевого синтеза при температуре ниже 1100°С приводит к незавершенности химической реакции, что приводит к образованию вторичных фаз (TiNi3 и Ti2Ni). Температура выше 1300°С приводит к частичному расплавлению порошка TiNi, что приводит к химической ликвации, кроме этого существенно сокращается срок службы термического оборудования (прогар стенок контейнера). Время термической обработки менее 6 часов не обеспечивает равномерный прогрев шихты опытно-промышленных (до 60 кг) и/или промышленных (до 300 кг и более) объемов.
Продукты гидридно-кальциевого синтеза подвергают гашению водой и обработке соляной кислотой с целью отделения порошка TiNi от оксида кальция. Это наиболее доступный и эффективным метод очистки порошка никелида титана TiNi. Отмытый порошок TiNi сушат, например, в типовых вакуумных сушильных шкафах, а потом классифицируют по фракционному составу, например, на типовом просевальном станке.
Консолидацию полученного порошка осуществляют путем прессования и спекания. При этом прессование ведут, например, на типовом гидростатическом прессе холодного прессования. Одновременно формируют прессовку (брикеты) требуемой формы, например, круглого, прямоугольного и др. сечения, близкого по форме к конечному изделию. Затем прессовку подвергают спеканию в вакууме при остаточном давлении не выше (не хуже) 10-4 мм рт.ст., например, в типовой вакуумной печи, что позволяет получить компактную заготовку (полуфабрикат) с требуемым химическим и фазовым составами. Остаточное давление выше (хуже) 10-4 мм рт.ст. приведет к окислению материала заготовки. Перечисленные технологические операции проводят при температуре не менее 0,95 от температуры плавления сплава, которая является индивидуальной для каждого из сплавов (TiNi или TiNi плюс легирующие добавки). Температура спекания менее 0,95 от температуры плавления приводит к увеличению пористости заготовки (компакта). Вакуумное спекание происходит в течение не менее 2 часов. Это обеспечивает равномерный прогрев заготовки, а значит, позволяет получить равномерную плотность по всему сечению. Именно соблюдение всех вышеперечисленных требований позволяет получить заявленную пористость не более 5%, поскольку большая пористость может привести к преждевременному разрушению заготовки при последующем переделе. Меньшее, чем 2 часа время спекания не обеспечивает равномерной усадки по всему сечению крупногабаритных (более 60 мм) заготовок.
Использование легирующих металлов в составе сплава интерметаллида TiNi позволяет управлять температурными интервалами прямых и обратных мартенситных превращений, сдвигая их в сторону более низких или, наоборот, в сторону высоких температур. Кроме этого, легирующие добавки в составе сплава влияют на характеристики сверхупругости.
Способ реализуют следующим образом.
Пример 1 - получение опытно-промышленного объема сплава на основе интерметаллида TiNi с содержанием 50 ат. % Ti и 50 ат. % Ni, маркируемый Ti45Ni55 (45% масс. Ti и 55% масс. Ni (аналогичный принцип маркировки применен и в последующих Примерах)).
Для получения 5 кг порошка сплава Ti45Ni55 (% масс.) смешивают 3,75 кг TiO2, 2,75 кг Ni и 4,84 кг СаН2. Полученную смесь отжигают 6 час при 1100°С и охлаждают с печью, после чего проводят гашение и выщелачивание оксида кальция соляной кислотой. Высушенный порошок сплава на основе TiNi компактируют холодным гидростатическим прессованием с усилием 200 МПа. Спекание проводят в вакууме 10-5 мм рт.ст. при температуре 1270°С в течение 3 часов. Нагрев до температуры спекания выполняют за 1 час, охлаждают с печью.
Полученный материал обладает высокой химической и фазовой однородностью - таблица 1.1 и 1.2, соответственно. Здесь и далее в Примерах определение химического состава проводили с использованием спектрального атомно-эмиссионного метода с индуктивно-связанной плазмой с применением спектрометра «Optima 4200DV», фазовый состав определяли на установке ДРОН-3 с использованием монохроматизированного Cu-Kα излучения.
Figure 00000001
Figure 00000002
Конечный полуфабрикат (компактная заготовка) характеризуется низкой пористостью (около 1,5%) и наличием только фаз постоянного состава (В2 и В19'). Критические температуры прямого и обратного мартен-ситного превращения для полученного полуфабриката (слитка) приведены в таблице 1.3. Здесь и далее в Примерах измерение температур производили на сканирующем дифференциальном калориметре DSC NETSCH STA 409.
Figure 00000003
Пример 2 - получение опытно-промышленного объема сплава интерметаллида TiNi, легированного элементом V группы таблицы Менделеева - Nb.
Ниобий вводят в качестве легирующего элемента с целью увеличения гистерезиса между прямым и обратным мартенситными превращениями.
На 7 кг порошка сплава Ti42Ni55Nb3 (% масс.) смешивают 4,91 кг TiO2, 3,85 кг Ni, 0,30 кг Nb2O5 и 6,78 кг СаН2. Полученную смесь отжигают 8 часов при 1200°С и охлаждают с печью, после чего проводят гашение и выщелачивание оксида кальция соляной кислотой. Высушенный порошок сплава Ti42Ni55Nb3 компактируют холодным изостатическим прессованием при давлении 180 МПа и выдержкой 5 минут. Спекание проводят в вакууме 10 -4 мм рт.ст. при температуре 1280°С в течение 4 часов. Нагрев до температуры спекания выполняют за 1,5 часа, охлаждают с печью.
Полученный материал обладает высокой химической и фазовой однородностью - таблица 2.1 и 2.2, соответственно.
Figure 00000004
Figure 00000005
Конечный полуфабрикат (компактная заготовка) обладает низкой пористостью, около 1%. Критические температуры мартенситных превращений приведены в таблице 2.3.
Figure 00000006
Пример 3 - получение опытно-промышленного объема сплава интерметаллида TiNi, легированного элементом IV группы таблицы Менделеева - Hf.
Легирование гафнием приводит к смещению критических точек мартенситного превращения в область повышенных температур.
На 10 кг порошка сплава Ti35Ni55H10 (% масс.) смешивают 5,00 кг TiO2, 4,30 кг Ni, 3,18 кг HfO2 и 7,86 кг СаН2. Полученную смесь отжигают 8 часов при 1250°С и охлаждают с печью, после чего проводят гашение и выщелачивание оксида кальция соляной кислотой. Высушенный порошок сплава Ti35Ni55Hf10 компактируют холодными изостатическим прессованием при давлении 180 МПа и выдержкой 5 минут. Спекание проводят в вакууме 5-10-4 мм рт.ст. при температуре 1300°С в течение 4 часов. Нагрев до температуры спекания выполняют за 1,5 часа, охлаждают с печью.
Полученный материал обладает высокой химической и фазовой однородностью - таблица 3.1 и 3.2, соответственно.
Figure 00000007
Figure 00000008
Пористость полученной заготовки составляет 3%. Критические температуры мартенситных превращений приведены в таблице 3.3.
Figure 00000009
Пример 4 - получение промышленного объема сплава TiNi.
На 100 кг порошка сплава Ti45Ni55 (% масс.) смешивают 75,10 кг TiO2, 55,00 кг Ni и 96,80 кг СаН2. Полученную смесь отжигают 12 часов при 1200°С и охлаждают с печью, после чего проводят гашение и выщелачивание оксида кальция соляной кислотой. Высушенный порошок сплава на основе TiNi компактируют холодными изостатическим прессованием при давлении 200 МПа и выдержкой 5 минут. Спекание проводят в вакууме 5⋅10-5 мм рт.ст. при температуре 1280°С в течение 4 часов. Нагрев до температуры спекания выполняют за 2 часа, охлаждают с печью.
Полученный материал обладает высокой химической и фазовой однородностью - таблица 4.1 и 4.2.
Figure 00000010
Figure 00000011
Пористость полученных заготовок не превышает 2,5%. Критические температуры прямого и обратного мартенситного превращения для полученного полуфабриката (слитка) приведены в таблице 4.3. Материал характеризуется наличием только фаз постоянного состава (В2 и В19').
Figure 00000012
Аналогичным образом получают и иные сплавы с эффектом памяти формы на основе интерметаллида TiNi, в том числе легированные иными химическими элементами, кроме упомянутых выше. Для этого требуется особый состав шихты, который подбирается под заданные требования физико-механических свойств конечного продукта (заготовки) и особые технологические параметры, которые лежат в обозначенных в настоящем изобретении пределах.
В результате использования изобретения был создан способ получения заготовок методом порошковой металлургии из сплавов на основе интерметаллида TiNi с эффектом памяти формы, минимальной пористостью, контролируемым фазовым и химическим составами в опытно-промышленных и промышленных объемах, а также обеспечилась повторяемость (воспроизводимость) в получаемых сплавах температур прямого и обратного мартенситных превращений.

Claims (2)

1. Способ получения заготовок из сплавов на основе интерметаллида TiNi, включающий консолидацию порошка сплавов на основе интерметаллида TiNi путем прессования и вакуумного спекания, отличающийся тем, что готовят порошковую смесь из TiO2, Ni и/или оксида никеля и гидрида кальция и проводят ее термическую обработку при температуре 1100-1300°C в течение не менее 6 часов с обеспечением гидридно-кальциевого синтеза порошка сплавов на основе интерметаллида TiNi, полученный порошок обрабатывают водой, затем раствором соляной кислоты, после чего отмытый порошок сушат и классифицируют, при этом консолидацию порошка сплавов на основе интерметаллида TiNi осуществляют путем прессования с формированием прессовки требуемой формы, которую подвергают спеканию в вакууме при остаточном давлении не выше 10-4 мм рт.ст. при температуре не менее 0,95 от температуры плавления сплава в течение не менее 2 часов с формированием остаточной пористости не более 5%.
2. Способ по п. 1, отличающийся тем, что в порошковую смесь дополнительно вводят оксиды и/или порошки легирующих металлов.
RU2016144941A 2016-11-15 2016-11-15 СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi RU2630740C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016144941A RU2630740C1 (ru) 2016-11-15 2016-11-15 СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016144941A RU2630740C1 (ru) 2016-11-15 2016-11-15 СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi

Publications (1)

Publication Number Publication Date
RU2630740C1 true RU2630740C1 (ru) 2017-09-12

Family

ID=59893839

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016144941A RU2630740C1 (ru) 2016-11-15 2016-11-15 СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi

Country Status (1)

Country Link
RU (1) RU2630740C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705487C1 (ru) * 2019-05-29 2019-11-07 Общество с ограниченной ответственностью "МЕТСИНТЕЗ" СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ TiHfNi
CN112935275A (zh) * 2021-01-21 2021-06-11 哈尔滨工业大学 一种梯度TiNi形状记忆合金的电子束熔丝增材制造方法
CN115383114A (zh) * 2022-09-19 2022-11-25 西北有色金属研究院 一种高孔隙率富Al相多孔Ni-Al金属间化合物的制备方法
RU2792355C1 (ru) * 2022-05-26 2023-03-21 Общество с ограниченной ответственностью "МЕТСИНТЕЗ" Способ получения заготовок сверхупругих титановых сплавов медицинского назначения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1090497A1 (ru) * 1982-10-01 1984-05-07 Институт Оптики Атмосферы Со Ан Ссср Способ получени спеченных твердых сплавов,содержащих нитрид и никелид титана
WO2002058866A2 (en) * 2001-01-24 2002-08-01 Scimed Life Systems, Inc. Processing particulate ni-ti shape memory alloys
RU2190502C2 (ru) * 2000-03-14 2002-10-10 Томский научный центр СО РАН Способ получения пористого материала на основе никелида титана для медицины
RU2465016C1 (ru) * 2011-05-04 2012-10-27 Виктор Эдуардович Гюнтер Способ изготовления композитного материала из сплавов на основе никелида титана

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1090497A1 (ru) * 1982-10-01 1984-05-07 Институт Оптики Атмосферы Со Ан Ссср Способ получени спеченных твердых сплавов,содержащих нитрид и никелид титана
RU2190502C2 (ru) * 2000-03-14 2002-10-10 Томский научный центр СО РАН Способ получения пористого материала на основе никелида титана для медицины
WO2002058866A2 (en) * 2001-01-24 2002-08-01 Scimed Life Systems, Inc. Processing particulate ni-ti shape memory alloys
RU2465016C1 (ru) * 2011-05-04 2012-10-27 Виктор Эдуардович Гюнтер Способ изготовления композитного материала из сплавов на основе никелида титана

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2705487C1 (ru) * 2019-05-29 2019-11-07 Общество с ограниченной ответственностью "МЕТСИНТЕЗ" СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ TiHfNi
CN112935275A (zh) * 2021-01-21 2021-06-11 哈尔滨工业大学 一种梯度TiNi形状记忆合金的电子束熔丝增材制造方法
CN112935275B (zh) * 2021-01-21 2022-06-28 哈尔滨工业大学 一种梯度TiNi形状记忆合金的电子束熔丝增材制造方法
RU2794190C1 (ru) * 2022-02-09 2023-04-12 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук Способ очистки порошков титана и его сплавов от примеси кислорода
RU2792355C1 (ru) * 2022-05-26 2023-03-21 Общество с ограниченной ответственностью "МЕТСИНТЕЗ" Способ получения заготовок сверхупругих титановых сплавов медицинского назначения
RU2804402C1 (ru) * 2022-08-16 2023-09-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Способ получения сплавов на основе интерметаллидов
CN115383114A (zh) * 2022-09-19 2022-11-25 西北有色金属研究院 一种高孔隙率富Al相多孔Ni-Al金属间化合物的制备方法
CN115383114B (zh) * 2022-09-19 2024-01-19 西北有色金属研究院 一种高孔隙率富Al相多孔Ni-Al金属间化合物的制备方法

Similar Documents

Publication Publication Date Title
Biswas Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure
US7767138B2 (en) Process for the production of a molybdenum alloy
RU2630740C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА TiNi
US20130183188A1 (en) MIXTURE OF POWDERS FOR PREPARING A SINTERED NICKEL-TITANIUM-RARE EARTH METAL (Ni-Ti-RE) ALLOY
RU2618038C2 (ru) Способ получения жаропрочного сплава на основе ниобия
XIAO et al. Microstructure and mechanical properties of TiAl-based alloy prepared by double mechanical milling and spark plasma sintering
Farvizi Challenges of using elemental nickel and titanium powders for the fabrication of monolithic NiTi parts
EA018035B1 (ru) Способ получения изделий из титановых сплавов
RU2632047C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СПЛАВА TiNi С ВЫСОКИМ УРОВНЕМ МЕХАНИЧЕСКИХ СВОЙСТВ
Okazaki Electro-discharge consolidation applied to nanocrystalline and RSP/MA powders
XU et al. Microstructure and mechanical properties of Ti–43Al–9V alloy fabricated by spark plasma sintering
RU2705487C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК СПЛАВОВ TiHfNi
RU2647424C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЖАРОПРОЧНЫХ СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Nb3Al (Варианты)
RU2624562C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЗАГОТОВОК ИЗ СПЛАВОВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДОВ СИСТЕМЫ Nb-Al
RU2569446C1 (ru) Шихта для композиционного катода и способ его изготовления
RU2393060C1 (ru) Способ получения композиционного материала
RU2792355C1 (ru) Способ получения заготовок сверхупругих титановых сплавов медицинского назначения
US9919362B2 (en) Procedure for the mechanical alloying of metals
Gülsoy et al. Injection molding of mechanical alloyed Ti–Fe–Zr powder
Abakumov et al. High performance titanium powder metallurgy components produced from hydrogenated titanium powder by low cost blended elemental approach
MXPA04007104A (es) Productos laminados de pulvimetalurgia de metal refractario de tamano de grano estabilizado.
Guo et al. The powder sintering and isothermal forging of Ti-10V-2Fe-3Al
WO2020032235A1 (ja) Ni基合金からなる窒化物分散型成形体
Saghafi Yazdi et al. Mechano-chemical activation of MoO3-CuO/C powder mixture to synthesis nano crystalline Mo-Cu alloy
RU2595084C1 (ru) Способ получения жаропрочного сплава на основе ниобиевой матрицы с интерметаллидным упрочнением