RU2629771C1 - Способ получения вторичных аминов - Google Patents

Способ получения вторичных аминов Download PDF

Info

Publication number
RU2629771C1
RU2629771C1 RU2016128669A RU2016128669A RU2629771C1 RU 2629771 C1 RU2629771 C1 RU 2629771C1 RU 2016128669 A RU2016128669 A RU 2016128669A RU 2016128669 A RU2016128669 A RU 2016128669A RU 2629771 C1 RU2629771 C1 RU 2629771C1
Authority
RU
Russia
Prior art keywords
catalyst
hydrogen
cat
amine
flow rate
Prior art date
Application number
RU2016128669A
Other languages
English (en)
Inventor
Юрий Васильевич Попов
Владимир Михайлович Мохов
Снежана Евгеньевна Латышова
Александр Олегович Панов
Петрос Мисакович Ширханян
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2016128669A priority Critical patent/RU2629771C1/ru
Application granted granted Critical
Publication of RU2629771C1 publication Critical patent/RU2629771C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/08Monoamines containing alkyl groups having a different number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • C07C211/48N-alkylated amines

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к улучшенному способу получения вторичных аминов, в частности к способу получения вторичных насыщенных аминов, восстановительным аминированием нитрилов при нагревании. Полученные амины находят применение как полупродукты в органическом синтезе и для получения фармакологических препаратов. Способ заключается в том, что амин, выбранный из ряда анилин, циклогексиламин, октиламин, подвергают взаимодействию с бутиронитрилом или валеронитрилом и молекулярным водородом в присутствии наночастиц никеля при температуре 120-200°С. В качестве катализатора используют наночастицы никеля, иммобилизованные на активированном угле, при этом реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 6000 л/(кгкат⋅ч), второй - смесь нитрила и амина, взятые в мольном соотношении 1:1-2, подаваемый с расходом 3,6 л/(кгкат⋅ч). Способ позволяет повысить селективность процесса до 87-95%, увеличить выход продукта и упростить процесс за счет возможности его непрерывного осуществления в реакторе вытеснения и рецикла непрореагировавших исходных соединений. 5 пр.

Description

Изобретение относится к способу получения вторичных аминов, в частности к новому способу получения вторичных аминов восстановительным аминированием нитрилов, и позволяет получать насыщенные амины, которые находят применение как полупродукты в органическом синтезе и для получения фармакологических препаратов.
Известен способ получения вторичных аминов восстановительным аминированием нитрилов в присутствии медного катализатора, получаемого in situ восстановлением Cu(OTf)2 при температуре 45°C в течение 20 ч воде с использованием диметиламин-борана в качестве восстановителя. Выходы продуктов составляют 47-60% при конверсии нитрилов 76-78% [Copper-catalysed reductive amination of nitriles and organic-group reductions using dimethylamine borane / D. van der Waals, A. Pettman, J.M.J. Williams // RSC Adv., 2014, v. 4, p. 51845-51849]. Недостатком данного метода является длительность процесса.
Известен способ получения вторичных аминов восстановительным аминированием нитрилов в присутствии Pt/C в проточном реакторе при температуре 105°C и избыточном давлении 6 атм с использованием толуола в качестве растворителя и водорода в качестве восстановителя. Выходы продуктов составляют 67-81% при конверсии нитрилов 32-99% [Pt/C catalyzed direct reductive amination of nitriles with primary amines in a continuous flow multichannel microreactor / S.K. Sharma, J. Lynch, A.M. Sobolewska, P. Plucinski, R.J. Watson, J.M.J. Williams // Catal. Sci. Technol., 2013, v. 3, p. 85-88]. Недостатком данного метода является применение растворителя и повышенного давления.
Наиболее близким аналогом предлагаемого изобретения является способ получения алкиламинов восстановительным аминированием нитрилов в присутствии катализатора, в качестве которого используют наночастицы никеля, получаемые восстановлением хлорида никеля (II) боргидридом натрия in situ при 60-70°С в растворе изо-пропанола, 1-бутанола или трет-бутанола в течение 10-16 ч. Выходы продуктов составляют 16-64% [Коллоидные и наноразмерные катализаторы в органическом синтезе. XIV. Восстановительное аминирование и амидирование карбонитрилов при катализе наночастицами никеля / В.М. Мохов, Ю.В. Попов, К.В. Щербакова // Журнал общей химии. - 2016. - Т. 86, №4. - С. 609-616]. Недостатками данного метода являются длительность и периодическое осуществление процесса, невозможность регенерации катализатора, а также образование наряду с целевыми аминами значительных количеств побочных продуктов (47-70%) что затрудняет выделение продукта.
Задачей заявляемого способа является разработка технологичного способа получения вторичных аминов с использованием доступных реагентов.
Техническим результатом является упрощение способа получения вторичных аминов и повышение выхода целевых продуктов.
Поставленный результат достигается в новом способе получения вторичных аминов, заключающемся во взаимодействии амина, выбранного из ряда анилин, циклогексиламин, октиламин, с бутиронитрилом или валеронитрилом и молекулярным водородом в присутствии наночастиц никеля при нагревании, при этом в качестве катализатора используют наночастицы никеля, иммобилизованные на активированном угле, реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 6000 л/(кгкат⋅ч), второй - смесь нитрила и амина, взятые в мольном соотношении 1:1-2, подаваемые с расходом 3,6 л/(кгкат⋅ч), а реакцию ведут при температуре 120-200°С.
Figure 00000001
R=CH3(CH2)2-, СН3(СН2)3-;
R1=фенил, циклогексил; СН3(СН2)7-;
Сущностью метода является реакция восстановительного аминирования нитрилов первичными аминами в присутствии иммобилизованного никелевого нанокатализатора и водорода в качестве восстановителя. Достоинствами предлагаемого изобретения являются высокая селективность процесса (87-95%), возможность непрерывного проведения процесса в реакторе вытеснения и осуществления рецикла непрореагировавших исходных веществ, что позволяет упростить способ, а также увеличить выход целевых продуктов.
Способ осуществляется следующим образом.
Катализатор получают путем пропитки активированного угля водным раствором гексагидрата хлорида никеля(II), фильтрования и промывки дистиллированной водой с последующим восстановлением никеля тетрагидроборатом натрия в воде. Сканирующая электронная микроскопия показала, что никель хаотично распределяется в порах угля, образуя наноструктурированные агрегаты с размером составляющих их частиц около 40 нм. Катализатор загружают в реактор, представляющий собой реактор вытеснения, во влажном виде, осушают от воды в токе водорода непосредственно перед реакцией.
Наиболее эффективным является осуществление при эквимольном соотношении нитрил:амин. При увеличении избытка первичных аминов по отношению к нитрилам наблюдается образование побочных симметричных ди- и триалкиламинов - продуктов диспропорционирования исходных первичных аминов, образующихся при гидрировании нитрилов первичных аминов. Оптимальным расходом смеси амина и нитрила является 3,6 л/ч на 1 кг катализатора, увеличение расхода приводит к уменьшению конверсии исходных веществ, уменьшение - к уменьшению производительности реактора. Оптимальным расходом водорода является 6000 л/ч на 1 кг катализатора (≈15-20-кратный мольный избыток), так как использование меньшего количества водорода приводит к росту выхода побочных симметричных диалкиламинов, дальнейшее увеличение избытка водорода нецелесообразно, так как приводит к уменьшению конверсии исходных веществ.
Изобретение иллюстрируется следующими примерами.
Пример 1. Катализатор получают путем пропитки активированного угля (0,5 г) водным раствором гексагидрата хлорида никеля(II) (0,2 г NiCl2⋅6H2O в 2,5 мл воды) в течение 24 ч. Затем пропитанный уголь отфильтровывают и промывают дистиллированной водой и восстанавливают адсорбированный на угле хлорид никеля тетрагидроборатом натрия (0,2 г) в воде при 20-25°C в течение 20-30 мин. Катализатор загружают в реактор во влажном виде, осушают от воды в токе водорода при 100-120°C непосредственно перед реакцией.
Пример 2. N-бутиланилин. Удельная скорость подачи водорода 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь бутиронитрила (1,3 моль/(кгкат⋅ч)) и анилина (2,6 моль/(кгкат⋅ч)). Температура составляет 200°C. Конверсия бутиронитрила - 57,06%. Селективность синтеза составляет 95,43%. Выход продукта - 54,45%. Масс-спектр (ЭУ, 70 эВ), m/e (Iотн, %): 150.0 (7) [М+1], 149.0 (25) [М], 107.0 (8), 106.0 (100), 77 (21), 51.0 (9).
Пример 3. N-бутилциклогексиламин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь бутиронитрила (1,8 моль/(кгкат⋅ч)) и циклогексиламина (1,8 моль/(кгкат⋅ч)). Температура синтеза составляет 150°C. Конверсия бутиронитрила - 58,71%. Селективность - 92,81%. Выход продукта - 54,49%. Масс-спектр (ЭУ, 70 эВ), m/e (Iотн, %): 156.8 (4) [М+2], 155.9 (33) [М+1], 154.8 (3) [М], 111.9 (100), 83.0 (2), 70.2 (6), 57 (3), 56.1 (15), 41.1 (10).
Пример 4. N-бутилоктиламин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь бутиронитрила (1,4 моль/(кгкат⋅ч)) и октиламина (1,4 моль/(кгкат⋅ч)). Температура синтеза составляет 120°C. Конверсия бутиронитрила - 60,45%. Селективность - 87,36%. Выход продукта - 52,81%. Масс-спектр (ЭУ, 70 эВ), m/e (Iотн, %): 198.0 (2), 184.0 (3), 170.0 (4), 130.9 (9), 130.0 (100), 128.2 (6), 100.0 (4), 44.0 (10).
Пример 5. N-пентиланилин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь валеронитрила (1,3 моль/(кгкат⋅ч)) и анилина (2,6 моль/(кгкат⋅ч)). Температура синтеза составляет 200°C. Конверсия валеронитрила - 83,13%. Селективность - 94,86%. Выход продукта - 78,86%. Масс-спектр (ЭУ, 70 эВ), m/e (Iотн, %): 163.8 (11) [М+1], 162.8 (25) [М], 107.0 (7), 106.0 (100), 77 (11), 51.0 (6).
Таким образом, способ получения вторичных аминов, при котором взаимодействие первичного амина с нитрилом и молекулярным водородом ведут в присутствии наночастиц никеля при нагревании, иммобилизованных на активированном угле, обеспечивая подачу смесь нитрила и амина, взятых в мольном соотношении 1:1-2, с расходом 3,6 л/(кгкат⋅ч), а подачу водорода с расходом 6000 л/(кгкат⋅ч), является простым и позволяет увеличить выход целевых продуктов.

Claims (1)

  1. Способ получения вторичных аминов, заключающийся во взаимодействии амина, выбранного из ряда анилин, циклогексиламин, октиламин, с бутиронитрилом или валеронитрилом и молекулярным водородом в присутствии наночастиц никеля при нагревании, отличающийся тем, что в качестве катализатора используют наночастицы никеля, иммобилизованные на активированном угле, реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 6000 л/(кгкат⋅ч), второй - смесь нитрила и амина, взятые в мольном соотношении 1:1-2, подаваемый с расходом 3,6 л/(кгкат⋅ч), а реакцию ведут при температуре 120-200°С.
RU2016128669A 2016-07-13 2016-07-13 Способ получения вторичных аминов RU2629771C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016128669A RU2629771C1 (ru) 2016-07-13 2016-07-13 Способ получения вторичных аминов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016128669A RU2629771C1 (ru) 2016-07-13 2016-07-13 Способ получения вторичных аминов

Publications (1)

Publication Number Publication Date
RU2629771C1 true RU2629771C1 (ru) 2017-09-04

Family

ID=59797907

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016128669A RU2629771C1 (ru) 2016-07-13 2016-07-13 Способ получения вторичных аминов

Country Status (1)

Country Link
RU (1) RU2629771C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028537A (zh) * 2022-05-26 2022-09-09 万华化学集团股份有限公司 一种氨丙基脂环仲胺的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
МОХОВ В.М. и др. КОЛЛОИДНЫЕ И НАНОРАЗМЕРНЫЕ КАТАЛИЗАТОРЫ В ОРГАНИЧЕСКОМ СИНТЕЗЕ. XIV. ВОССТАНОВИТЕЛЬНОЕ АМИНИРОВАНИЕ И АМИДИРОВАНИЕ КАРБОНИТРИЛОВ ПРИ КАТАЛИЗЕ НАНОЧАСТИЦАМИ НИКЕЛЯ, ЖУРНАЛ ОБЩЕЙ ХИМИИ, 2016, т. 86. *
Ю. В. ПОПОВ и др. СИНТЕЗ СИММЕТРИЧНЫХ И НЕСИММЕТРИЧНЫХ ДИАЛКИЛАМИНОВ ПРИ ГИДРИРОВАНИИ КАРБОНИТРИЛОВ ПРИ КАТАЛИЗЕ КОЛЛОИДНЫМ НИКЕЛЕМ, Известия ВОЛГОГРАДСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, 2015, 4 (159), с. 38-44. *
Ю. В. ПОПОВ и др. СИНТЕЗ СИММЕТРИЧНЫХ И НЕСИММЕТРИЧНЫХ ДИАЛКИЛАМИНОВ ПРИ ГИДРИРОВАНИИ КАРБОНИТРИЛОВ ПРИ КАТАЛИЗЕ КОЛЛОИДНЫМ НИКЕЛЕМ, Известия ВОЛГОГРАДСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, 2015, 4 (159), с. 38-44. МОХОВ В.М. и др. КОЛЛОИДНЫЕ И НАНОРАЗМЕРНЫЕ КАТАЛИЗАТОРЫ В ОРГАНИЧЕСКОМ СИНТЕЗЕ. XIV. ВОССТАНОВИТЕЛЬНОЕ АМИНИРОВАНИЕ И АМИДИРОВАНИЕ КАРБОНИТРИЛОВ ПРИ КАТАЛИЗЕ НАНОЧАСТИЦАМИ НИКЕЛЯ, ЖУРНАЛ ОБЩЕЙ ХИМИИ, 2016, т. 86. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028537A (zh) * 2022-05-26 2022-09-09 万华化学集团股份有限公司 一种氨丙基脂环仲胺的制备方法
CN115028537B (zh) * 2022-05-26 2023-08-11 万华化学集团股份有限公司 一种氨丙基脂环仲胺的制备方法

Similar Documents

Publication Publication Date Title
Cantillo et al. In situ generated iron oxide nanocrystals as efficient and selective catalysts for the reduction of nitroarenes using a continuous flow method
Artiukha et al. One-pot reductive amination of aldehydes with nitroarenes over an Au/Al 2 O 3 catalyst in a continuous flow reactor
JP5264824B2 (ja) ニトリルを水素化することによって第一アミンを製造する方法
JP6704896B2 (ja) 芳香族第一級ジアミンの製造方法
JP6594389B2 (ja) N−(5−クロロ−2−イソプロピルベンジル)シクロプロパンアミンの製造方法
RU2456262C1 (ru) Способ получения производных норборнана
RU2629771C1 (ru) Способ получения вторичных аминов
EP2358659B1 (en) Process for preparing cinacalcet
CZ447799A3 (cs) Způsob výroby 4-aminodifenylaminu
Qin et al. An efficient method for the production of cyclohexylamine from cyclohexanone and ammonia over Cu-Cr-La/γ-Al2O3
RU2622296C1 (ru) Способ N-алкилирования циклических аминов
Ghosh et al. Hybrid cobalt doped-cerium oxide as a multifunctional nanocatalyst for various organic transformations
JP4938125B2 (ja) 3級アミンの製造方法
JP5380051B2 (ja) 1,3−ジアルキル−2−イミダゾリジノン類の製造方法
FR2894958A1 (fr) Procede de preparation de difluoroethanol
RU2654066C1 (ru) Способ получения вторичных аминов
Popov et al. Colloid and nanosized catalysts in organic synthesis: XVII. Reductive amination of carbonitriles in the presence of supported nickel nanoparticles
CN109748817B (zh) 一种由脂肪醛合成脂肪腈的方法
US6403833B1 (en) Single step hydrogenation of nitrobenzene to p-aminophenol
JP2006248972A (ja) マイクロリアクターを用いた接触水素化方法
RU2697710C1 (ru) Способ получения тетрагидрофурфурилового спирта
RU2807189C1 (ru) Способ получения эндо-тетрагидродициклопентадиена
JP5658508B2 (ja) 第三級アミンの製造方法
JP3145804B2 (ja) シクロヘキシルアミンおよびジシクロヘキシルアミンの混合物の製造方法
CN102816071A (zh) 一种n-乙基乙二胺的合成方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180714