RU2629364C1 - Суперконденсатор на основе кмоп-технологии - Google Patents
Суперконденсатор на основе кмоп-технологии Download PDFInfo
- Publication number
- RU2629364C1 RU2629364C1 RU2016147871A RU2016147871A RU2629364C1 RU 2629364 C1 RU2629364 C1 RU 2629364C1 RU 2016147871 A RU2016147871 A RU 2016147871A RU 2016147871 A RU2016147871 A RU 2016147871A RU 2629364 C1 RU2629364 C1 RU 2629364C1
- Authority
- RU
- Russia
- Prior art keywords
- supercapacitor
- dielectric layer
- dielectric
- lower electrode
- electrodes
- Prior art date
Links
- 238000005516 engineering process Methods 0.000 title description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010936 titanium Substances 0.000 abstract description 5
- 229910052719 titanium Inorganic materials 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005329 nanolithography Methods 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
Изобретение относится к твердотельному суперконденсатору и может быть использовано в устройствах хранения энергии разнообразных интегральных микросхем. Суперконденсатор содержит два электрода, размещенный между ними диэлектрический слой, конформно расположенный на нижнем электроде, при этом верхний электрод конформно расположен на диэлектрическом слое, нижний электрод сформирован на профильно-структурированном основании из пористого оксида алюминия или титана. Увеличение плотности энергии суперконденсатора, повышение воспроизводимости формирования структуры с регулируемыми значениями емкости и плотности запасенной энергии является техническим результатом изобретения. 2 з.п. ф-лы, 5 ил.
Description
Изобретение относится к области изделий твердотельной микро- и наноэлектроники на основе КМОП-технологии и применяемых в ней материалов, а именно к твердотельным суперконденсаторам, и может быть использовано в качестве устройств для хранения энергии и электропитания разнообразных интегральных микросхем (ИМС), микроэлектронных устройств и приборов на основе микроэлектромеханических систем (МЭМС-приборов), к которым предъявляются высокие требования по циклическому ресурсу и готовности к работе.
В настоящее время большие перспективы в области промышленного энергосбережения открывают суперконденсаторы, или, как их принято называть, ионисторы, которые позволяют хранить в сотни раз больше энергии, чем традиционные емкостные элементы, причем делать это на протяжении долгого времени без утечки заряда.
Рассмотрим несколько аналогов предлагаемого суперконденсатора. Коллектив авторов (Carу L. Pint и др.) анализирует суперконденсатор на основе вертикально ориентированных углеродных нанотрубок (УНТ), формирование которых выходит за рамки КМОП-технологии [1]. Кроме того, выбранные в качестве нижнего электрода УНТ вследствие хаотичного формирования на поверхности не обеспечивают однородность по площади плотности накопленного заряда. И, таким образом, не обеспечивается точное воспроизведение номинала емкости с единицы площади суперконденсатора, необходимого для функционирования в составе ИМС.
Известен накопительный конденсатор элемента памяти интегральных схем, содержащий первую и вторую обкладки и разделительную диэлектрическую область между ними [2]. Причем первая обкладка углублена в подложку и ее поверхность выполнена рельефной за счет формирования выступов из материала обкладки, а нижняя поверхность второй обкладки повторяет рельеф первой. При этом разделительная область выполнена из диэлектрического материала, а обкладки выполнены из легированного поликремния (Si*). Недостатком данного устройства является выбор в качестве материала обкладок легированного поликремния, который по сравнению с металлом обладает меньшей проводимостью и большой величиной зерна, что не позволяет минимизировать толщину обкладки и получить высокую плотность заряда по площади. Кроме того, формирование рельефа первой обкладки производится с применением трудоемкой и прецизионной операции - фотолитографии и использованием дорогого фотошаблона.
Наиболее близким, по сути, к изобретению, является твердотельный суперконденсатор, содержащий два электрода и размещенный между ними диэлектрический слой, при этом нижний электрод выполнен из материала с большой удельной площадью поверхности, диэлектрический слой конформно и однородно расположен на нижнем электроде, верхний электрод конформно и однородно расположен на диэлектрическом слое и выполнен из оксида цинка, легированного алюминием, отличающийся тем, что материалом диэлектрического слоя является многокомпонентный оксид, содержащий смесь по меньшей мере двух оксидов из ряда TiO2, HfO2, ZrO2, Аl2O3, Та2O5, Nb2O5, Y2O3, (lantanoid)2O3, причем материал диэлектрического слоя имеет диэлектрическую проницаемость слоя в интервале 10-30 [3].
К недостаткам прототипа можно отнести материалы нижнего и верхнего электрода. Нижний электрод состоит из углеродных нанотрубок (УНТ), которые, как отмечено выше, обладают плохой воспроизводимостью плотности заряда по площади и, кроме того, не сочетаются с процессами КМОП-технологии. Верхний электрод состоит из оксида цинка, легированного алюминием. Как известно, цинк легко диффундирует в прилегающий материал, что повышает вероятность деградации структуры; ограничивает диапазон использования микроэлектронных приборов.
Задачей настоящего изобретения является реализация суперконденсатора на традиционных процессах КМОП-технологии с целью снижения себестоимости и повышения воспроизводимости формирования структуры с регулируемыми значениями емкости и плотности запасенной энергии.
Поставленная задача решается тем, что формируют твердотельный суперконденсатор, содержащий два электрода и размещенный между ними диэлектрический слой, конформно расположенный на нижнем электроде, при этом верхний электрод конформно расположен на диэлектрическом слое, нижний электрод сформирован на профильно-структурированном основании из пористого оксида алюминия или титана.
Технологическая особенность формирования удаляемого и основного слоев пористого анодного оксида алюминия (Аl2O3) заключается в потенциостатическом режиме операции, при этом непрерывно по линейному закону изменяют температуру зоны реакции с изменением в ходе анодного окисления плотности электрического тока. Разработанные процессы позволяют регулировать диаметр пор в диапазоне (10-200) нм, а период их расположения - в диапазоне (30-600) нм [4].
Особенность изготовления пористого анодного оксида титана (TiO2) заключается в том, что после формирования слоя проводят электрохимический процесс его отделения. Отделение проводится в слабом водном растворе неорганической кислоты путем катодной поляризации титанового образца в потенциостатическом режиме. Затем формируют вторичный слой пористого анодного оксида титана путем анодного окисления титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом формирование слоев пористого анодного оксида титана проводят при термостабилизации зоны протекания электрохимической реакции [5].
Такие структуры пористых анодных оксидов алюминия и титана используются в качестве подслоя для нижней обкладки конденсатора. Далее методом атомно-слоевого осаждения формируют первый электрод (нижняя обкладка конденсатора), диэлектрик и второй электрод из металлов, используемых в КМОП-технологии. В качестве диэлектрика в конструкции могут применяться различные материалы с высокой диэлектрической проницаемостью.
С целью увеличения плотности энергии суперконденсатора изготавливается и другой конструктивный вариант за счет переноса профильно-структурированных на субстананометровом уровне размеров основания в полупроводниковую подложку путем анизотропного ионно-плазменного травления последней через маску пористого оксида алюминия или титана.
Таким образом, изготовление суперконденсатора не требует применения сложного и прецизионного оборудования проекционной оптической нанолитографии и дорогостоящих фотошаблонов, что значительно уменьшает себестоимость устройства.
Примеры конкретного изготовления суперконденсаторов.
Обкладки из металлов, обладают высокой проводимостью. Метод атомно-слоевого осаждения позволяет использовать в технологии рельеф микронных и субмикронных размеров с высоким аспектным отношением. Применение метода атомно-слоевого осаждения для формирования обкладок и диэлектрика в одном технологическом цикле позволяет получить высокие значения напряжения пробоя и малые токи утечки при высокой поверхностной плотности энергии конденсатора.
Величина удельной емкости прямо пропорциональна площади электродов S, и обратно пропорциональна толщине диэлектрика d. Основной вклад в величины емкости вносят протяженные вертикальные участки основания высотой h, которые сохраняют угол около 90° к поверхности.
На фиг. 1 представлен вид структуры пористого Аl2O3. На фиг. 2 показан вид структуры пористого TiO2.
На фиг. 3, 4 и 5 представлен макет суперконденсатора с контролируемыми параметрами, где а - диаметр дна пор, h - высота пор, t - период пор, 1 - верхний электрод, 2 - диэлектрический слой, 3 - нижний электрод, 4 - оксид кремния, 5 - полупроводниковая подложка, 6 - пористый оксид алюминия
На фиг. 3 представлена конструкция суперконденсатора на диэлектрической поверхности. Углубления в структуре оксида алюминия сформированы с периодом t в виде круглых цилиндров высотой h и диаметром а. Величина удельной емкости прямо пропорциональна площади электродов S и обратно пропорциональна толщине диэлектрика d.
При h=2 мкм, а=70 нм, t=150 нм в качестве диэлектрика применен оксид титана толщиной 10 (нм) с диэлектрической проницаемостью ε=40.
Площадь такого цилиндра составит 3.14⋅а⋅h, т.е. 4.39⋅10-9 см2. Емкость одной поры 1.63×10-14 (Ф). Удельная емкость на 1 см2 площади составит7.27×10-5 (Ф/см2)
На фиг. 4 представлена конструкция суперконденсатора в приповерхностном объеме кремния. Цилиндрические углубления в кремнии сформированы реактивным ионно-плазменным травлением в режиме Bosh-процесса через маску оксида алюминия с периодом t с высотой h и диаметром а.
При h=7 мкм, а=140 нм, t=250 нм с диэлектриком из оксида титана толщиной 10 (нм) с диэлектрической проницаемостью ε=40 площадь такого цилиндра составит 3.14⋅а⋅h, т.е. 3.07⋅10-8 см2. Емкость одной поры 1.11×10-13 (Ф). Удельная емкость на 1 см2 площади составит 1.77×10-4 (Ф/см2).
На фиг. 4 маска оксида алюминия после травления кремния удалена. Но возможно и сохранение маски и использование суммарной емкости двух суперконденсаторов. Выбор определяется схемотехническим применением.
На фиг. 5 представлена конструкция суперконденсатора в кремниевой пластине, предварительно протравленной насквозь (высота h равна толщине пластины) реактивным ионно-плазменным травлением в режиме Bosh-процесса через маску оксида алюминия с периодом t и диаметром а. После удаления маски из оксида алюминия и термического окисления пластины с помощью атомно-слоевого осаждения первый электрод суперконденсатора наносится с обратной стороны пластины. Затем пластина переворачивается и диэлектрик, и второй электрод осаждаются с лицевой стороны пластины. В такой конструкции можно достичь максимальной глубины отверстий, а следовательно, и максимальной удельной емкости суперконденсатора, а также упростить разводку электродов, которые будут выходить на разные стороны кремниевой пластины.
Источники информации
1. Carу L. Pint et al.. Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon, v. 49, p. 4890-4897, (2011).
2. Патент РФ 2030813. Накопительный конденсатор элемента памяти интегральных схем, (1991).
3. Патент РФ 2528010. Твердотельный суперконденсатор на основе многокомпонентных оксидов. Маркеев A.M., Черникова А.Г., (2014) – прототип.
4. А.Н. Белов, С.А. Гаврилов, В.И. Шевяков. Особенности получения наноструктурированного анодного оксида алюминия. Российские нанотехнологии, т. 1, №1, 2, 2006, с. 223-227.
5. А.Н. Белов, А.А. Дронов, И.Ю. Орлов. Особенности электрохимического формирования слоев оксида титана с заданными геометрическими параметрами структуры. Известия вузов. Электроника. 2009, №1, с. 16-21.
Claims (3)
1. Твердотельный суперконденсатор, содержащий два электрода и размещенный между ними диэлектрический слой, конформно расположенный на нижнем электроде, при этом верхний электрод конформно расположен на диэлектрическом слое, отличающийся тем, что нижний электрод сформирован на профильно-структурированном основании из пористого оксида алюминия или титана.
2. Твердотельный суперконденсатор по п. 1, отличающийся тем, что рельефно-структурированное основание сформировано в полупроводниковой подложке.
3. Твердотельный суперконденсатор по п. 2, отличающийся тем, что рельефно-структурированное основание в полупроводниковой подложке является сквозным, а электроды суперконденсатора формируются с разных сторон полупроводниковой подложки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016147871A RU2629364C1 (ru) | 2016-12-07 | 2016-12-07 | Суперконденсатор на основе кмоп-технологии |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016147871A RU2629364C1 (ru) | 2016-12-07 | 2016-12-07 | Суперконденсатор на основе кмоп-технологии |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2629364C1 true RU2629364C1 (ru) | 2017-08-29 |
Family
ID=59797639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016147871A RU2629364C1 (ru) | 2016-12-07 | 2016-12-07 | Суперконденсатор на основе кмоп-технологии |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2629364C1 (ru) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2030813C1 (ru) * | 1991-06-24 | 1995-03-10 | Конструкторско-технологическое бюро "Белмикросистемы" Научно-производственного объединения "Интеграл" | Накопительный конденсатор элемента памяти интегральных схем |
RU2528010C2 (ru) * | 2012-07-18 | 2014-09-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Московский Физико-Технический Институт (Государственный Университет)" | Твердотельный суперконденсатор на основе многокомпонентных оксидов |
US20150235776A1 (en) * | 2012-07-11 | 2015-08-20 | Jme, Inc. | Conductive material with charge-storage material in voids |
CN105262127A (zh) * | 2015-12-18 | 2016-01-20 | 许昌学院 | 一种光伏发电混合储能系统的功率自适应控制方法 |
CN105355448A (zh) * | 2015-11-25 | 2016-02-24 | 太原理工大学 | 一种基于高介电常数薄膜的mems超级电容器及其制备方法 |
CN105470001A (zh) * | 2015-12-08 | 2016-04-06 | 武汉理工大学 | MoS2纳米薄片双栅场效应晶体管/超级电容器复合器件及其制备方法 |
CN105706234A (zh) * | 2013-10-29 | 2016-06-22 | Ipdia公司 | 具有改进型电容器的结构 |
-
2016
- 2016-12-07 RU RU2016147871A patent/RU2629364C1/ru active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2030813C1 (ru) * | 1991-06-24 | 1995-03-10 | Конструкторско-технологическое бюро "Белмикросистемы" Научно-производственного объединения "Интеграл" | Накопительный конденсатор элемента памяти интегральных схем |
US20150235776A1 (en) * | 2012-07-11 | 2015-08-20 | Jme, Inc. | Conductive material with charge-storage material in voids |
RU2528010C2 (ru) * | 2012-07-18 | 2014-09-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Московский Физико-Технический Институт (Государственный Университет)" | Твердотельный суперконденсатор на основе многокомпонентных оксидов |
CN105706234A (zh) * | 2013-10-29 | 2016-06-22 | Ipdia公司 | 具有改进型电容器的结构 |
CN105355448A (zh) * | 2015-11-25 | 2016-02-24 | 太原理工大学 | 一种基于高介电常数薄膜的mems超级电容器及其制备方法 |
CN105470001A (zh) * | 2015-12-08 | 2016-04-06 | 武汉理工大学 | MoS2纳米薄片双栅场效应晶体管/超级电容器复合器件及其制备方法 |
CN105262127A (zh) * | 2015-12-18 | 2016-01-20 | 许昌学院 | 一种光伏发电混合储能系统的功率自适应控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2553981C2 (ru) | Устройство накопления заряда, способ его изготовления, способ изготовления электропроводящей структуры для устройства, мобильное электронное устройство, использующее устройство, и микроэлектронное устройство, содержащее устройство | |
US8912522B2 (en) | Nanodevice arrays for electrical energy storage, capture and management and method for their formation | |
US10032569B2 (en) | Nanodevice arrays for electrical energy storage, capture and management and method for their formation | |
TWI497547B (zh) | 用於偽電容能量儲存的奈米結構電極 | |
US9928966B2 (en) | Nanostructured electrolytic energy storage devices | |
US8378333B2 (en) | Lateral two-terminal nanotube devices and method for their formation | |
Gao et al. | Highly flexible and transferable supercapacitors with ordered three-dimensional MnO 2/Au/MnO 2 nanospike arrays | |
TW201423789A (zh) | 用於多孔性電化學電容器的奈米加工結構 | |
CN1925184A (zh) | 非易失存储器件及其制造方法 | |
US20210074477A1 (en) | Integrated energy storage component | |
US10269504B2 (en) | Supercapacitor having holes formed in carbonaceous electrodes for increasing the frequency of operation | |
BR112015000651B1 (pt) | Estrutura, método para construção de um dispositivo de armazenamento de energia, dispositivo de armazenamento de energia e dispositivo | |
RU2629364C1 (ru) | Суперконденсатор на основе кмоп-технологии | |
US20240112867A1 (en) | Supercapacitors, and methods of their manufacture | |
TWI467611B (zh) | 能量儲存裝置及其形成方法 | |
Semenova et al. | Forming porous structures on silicon with a ferroelectric for capacitive microelectronic and microsystems engineering elements | |
RU2523425C2 (ru) | Суперконденсатор | |
TWI505534B (zh) | 蓄電裝置、其製造方法、為其製造導電結構之方法、使用其之行動電子裝置、與含其之微電子裝置 | |
Mineo et al. | Engineering of Nanostructured WO3 Powders for Asymmetric Supercapacitors. Nanomaterials 2022, 12, 4168 | |
Hourdakis et al. | Electronic devices using porous anodic aluminum oxide | |
RU2645731C1 (ru) | Планарный конденсатор | |
Wen et al. | Preparation and characterization of three-dimensional micro-electrode for micro-supercapacitor based on inductively coupled plasma reactive etching technology | |
Hourdakis et al. | Recent advances in high density MIM capacitors using anodic aluminum oxide nanolayers | |
Mozalev et al. | Porous-Anodic-Alumina-Templated Ta-Nb-Alloy/Oxide Coatings Via the Magnetron-Sputtering/Anodizing as Novel 3d Nanostructured Electrodes for Energy-Storage Applications | |
Cornaglia | Toward CMOS compatible on-chip micro-supercapacitors: Design, Fabrication and Analysis |