RU2627428C1 - Способ получения карбида кремния - Google Patents

Способ получения карбида кремния Download PDF

Info

Publication number
RU2627428C1
RU2627428C1 RU2016142981A RU2016142981A RU2627428C1 RU 2627428 C1 RU2627428 C1 RU 2627428C1 RU 2016142981 A RU2016142981 A RU 2016142981A RU 2016142981 A RU2016142981 A RU 2016142981A RU 2627428 C1 RU2627428 C1 RU 2627428C1
Authority
RU
Russia
Prior art keywords
fraction
silica
quartz sand
quartzite
less
Prior art date
Application number
RU2016142981A
Other languages
English (en)
Inventor
Дмитрий Константинович Ёлкин
Сергей Петрович Яковлев
Константин Сергеевич Ёлкин
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to RU2016142981A priority Critical patent/RU2627428C1/ru
Application granted granted Critical
Publication of RU2627428C1 publication Critical patent/RU2627428C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к неорганической химии и касается технологии получения карбида кремния восстановлением в электрических печах сопротивления. Способ включает дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение восстановительной плавки, при этом вначале вокруг керна загружают слой шихты, содержащей кварцит фракцией 6-10 мм, затем следующим слоем загружают шихту, содержащую кварцевый песок и/или кварцит фракцией 0,3-6,0 мм, после чего в верхнюю часть печи и на периферию загружают слой шихты, содержащий кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем фракцией менее 0,22 мм, при следующем соотношении компонентов кремнеземсодержащего сырья, мас. %: кварцит фракцией 6,0-10 мм - 20-30, кварцевый песок (кварцит) фракцией 0,3-6,0 мм - 50-70, кварцевый песок фракцией менее 0,3 мм - 5-8, мелкодисперсный кремнезем фракцией менее 0,22 мм - 5-15. Кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем перед загрузкой шихты предварительно могут быть смешаны с кварцевым песком фракцией 0,3-6 мм. Технический результат изобретения состоит в увеличении производительности процесса при использовании дешевых кремнеземсодержащих материалов. 1 з.п. ф-лы, 9 пр.

Description

Изобретение относится к неорганической химии и касается способа получения карбида кремния, который может быть использован для получения керамики, абразивного инструмента, высокотемпературных нагревательных элементов.
Карбид кремния получают карботермическим восстановлением диоксида кремния в электрических печах сопротивления. В качестве сырьевых материалов используются кремнеземсодержащие материалы и углеродистые восстановители.
В электрических печах образование карбида кремния проходит в две стадии, в том числе с образованием газообразного монооксида кремния (SiO):
Figure 00000001
Figure 00000002
Удельная поверхность является сильным активирующим газификацию кремнезема фактором. Другим фактором, определяющим скорость газификации кремнезема, является температура. Фазовый анализ продуктов взаимодействия показал, что отношение количества непрореагировавшего крумнезема к количеству остаточного углерода с ростом удельной поверхности кварцита и температуры уменьшается, стремясь к нулю. Для выравнивания скоростей процессов газификации кремнезема и образования карбида кремния необходимо применять реагенты с различной удельной поверхностью (Зельберг Б.И., Черных А.Е., Ёлкин К.С. Шихта для электротермического производства кремния. Челябинск, Металл, 1994, С. 192-195).
Известен способ получения карбида кремния (патент SU 1699917, C01B 31/36, опубл. 23.12.1991) в виде нитевидных кристаллов и мелкодисперсного порошка, включающий термообработку продукта кислотной обработки рисовой шелухи в инертной атмосфере, а для сокращения длительности процесса в качестве исходного продукта используют гидролизный лигнин, полученный после выделения из рисовой шелухи фурфурола и кормовых дрожжей, на который перед термообработкой осаждают гидроокись железа в качестве катализатора. Недостатком данного способа является длительный синтез карбида кремния и низкая производительность установки.
Известен способ получения карбида кремния (патент RU 1730035, C01B 31/36, опубл. 30.04.1992), включающий приготовление шихты из мелкозернистого буроугольного полукокса и аморфной ультрадисперсной пыли сухой газоочистки производства ферросилиция при их массовом соотношении 0,55-0,60, гранулирование полученной шихты в присутствии 15-25 мас. % связующего, в качестве которого используют водный раствор концентрата лигносульфонатов или жидкого стекла при концентрации последних в растворе 5-50 мас. %. Гранулированную шихту подвергают термообработке в электропечах. Недостатком способа является сложное аппаратурное оформление и высокий уровень нежелательных примесей, переходящих в карбид кремния из пыли газоочисток производства ферросилиция.
Известен способ получения металлургического карбида кремния (патент RU 2004493, С01B 31/36, опубл. 15.12.1993). Сущность изобретения: в шахтную печь подают смесь из кремнезема и углеродсодержащего вещества. Печь включает вертикальную шахту, средства для загрузки шихты и выгрузки готового продукта, электроды, установленные соосно горизонтально в нижней части печи с возможностью перемещения навстречу друг другу с торцами, скошенными вверх, а также подвижный в горизонтальной плоскости перпендикулярно движению электродов под, представляющий собой два бункера, сообщающиеся с шахтой поочередно и снабженные днищем в форме короба с перфорированной крышкой и патрубком для подачи газа, установленные с возможностью вертикального перемещения. Шихта прогревается при движении по шахте сверху вниз за счет тепла реакционных газов. Шихту прокаливают и одновременно уплотняют пропусканием электрического тока через электроды. Прокаленный продукт периодически выгружают на перфорированную крышку короба при разведении электродов и опускании днища с одновременным охлаждением газом, поступающим через патрубок короба. Недостатком данного способа является использование достаточно сложного оборудования для его осуществления.
Известен способ получения карбида кремния (патент RU 2163563, C01B 31/36, опубл. 27.02.2001), включающий электронагрев, со скоростью 200-300°C/ч, природной горной породы - шунгита, содержащей кремнезем и углерод, при 1600-1800°C, отличающийся тем, что нагрев шунгита ведут в вакуумной печи при остаточном давлении в рабочем пространстве 0,25-1,3 кПа. Недостатком данного способа является необходимость использования сложного оборудования для создания вакуума в рабочем пространстве печи.
Известен способ получения карбида кремния восстановлением кварцевого песка нефтяным коксом в высокотемпературных печах сопротивления. При этом гранулометрический состав кварцевого песка имеет ограничения по фракционному составу: содержанию и крупных (+6 мм не более 10%), и мелких (менее 0,3 мм не более 10%, в том числе менее 0,22 мм не более 2%) фракций. В электрическую печь сопротивления на подсыпку из кварцевого песка загружают керн из нефтяного кокса, затем дозируют и загружают шихту из кварцевого песка и нефтяного кокса в расчетном стехиометрическом соотношении SiO2+3C (SiO2 - 62,5%, C - 37,5%) и ведут восстановительную плавку карбида кремния. По окончании выделения газов из печи, что соответствует окончанию восстановления карбида кремния, печь отключают, охлаждают, проводят извлечение продуктов плавки, отбор карбида кремния и отделение промежуточных продуктов (Парада А.Н., Гасик М.И. Электротермия неорганических материалов. М., Металлургия, 1990, с. 152-154). Переход кремнезема в карбид кремния составляет 63-65% от массы загруженного с шихтой кремнезема.
По технической сущности, по наличию общих признаков данное техническое решение принято в качестве ближайшего аналога.
Недостатком данного способа получения карбида кремния является невысокая степень перехода кремнезема в карбид кремния, что сдерживает производительность печей.
В основу изобретения положена задача, направленная на увеличение производительности печей сопротивления на выпуске карбида кремния.
При этом техническим результатом является повышение степени использования кремнеземсодержащих материалов, используемых в восстановительной плавке карбида кремния.
Поставленная цель достигается тем, что в способе получения карбида кремния, включающем в себя дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение восстановительной плавки, вначале, вокруг керна, загружают слой шихты, содержащей кварцит фракцией 6-10 мм, затем следующим слоем загружают шихту, содержащую кварцевый песок и/или кварцит, фракцией 0,3-6,0 мм, после чего в верхнюю часть печи и на периферию загружают слой шихты, содержащий кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем, фракцией менее 0,22 мм, при следующем соотношении компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 20-30
кварцевый песок (кварцит) фракцией 0,3-6,0 мм 50-70
кварцевый песок фракцией менее 0,3 мм 5-8
мелкодисперсный кремнезем фракцией менее 0,22 мм 5-15
Кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем перед загрузкой шихты могут предварительно смешивать с кварцевым песком фракцией 0,3-6 мм.
При загрузке печи в разные зоны печи загружается шихта из восстановителя (нефтяного кокса) и кремнеземсодержащего материала разного гранулометрического состава.
Способ осуществляется следующим образом: вокруг углеродистого керна из нефтяного кокса проводят загрузку шихты стехиометрического состава, в состав которой входит углеродистый восстановитель и кварцит фракцией 6-10 мм, затем загружают шихту с кварцевым песком и/или кварцитом фракцией 0,3-6 мм. Затем в верхние горизонты печи, загружают шихту, содержащую кремнезем фракцией менее 0,3 мм и мелкодисперсный кремнезем фракцией менее 0,22 мм, предварительно смешанный с фракцией 0,3-6 мм. Загрузка в высокотемпературную зону печи, к керну, кремнезема крупной фракции, а мелкодисперсного кремнезема в менее теплонапряженную зону усредняет газификацию кремнезема, в зависимости от удельной поверхности загруженного кремнезема, увеличивает количество образовавшегося монооксида кремния, приводит к увеличению количества карбида кремния, повышает производительность печи и степень использования шихтовых материалов, загруженных в печь.
Ведение плавки карбида кремния с использованием в шихте кремнезема различного гранулометрического состава, загружаемого в различные зоны печи, является новизной технического решения и отвечает критерию существенное отличие.
В лабораторной печи сопротивления проводили плавки получения карбида кремния с различным соотношением кремнеземсодержащих материалов в зависимости от гранулометрического состава.
Пример 1. Вокруг углеродистого керна проводилась загрузка шихты из углеродистого восстановителя и кварцита фракцией 6-10 мм, затем загружалась шихта, содержащая кварцевый песок (кварцит) фракцией 0,3-6,0 мм, и в верхней части печи и на периферии загруженная шихта содержала мелкодисперсный кремнезем, фракция менее 0,22 мм, предварительно смешанный с кремнеземом фракцией 0,3-6 мм, при следующем соотношении компонентов кремнеземсодержащего сырья (типовая шихта), мас. %:
кварцит фракцией 6,0-10 мм 10
кварцевый песок фракцией 0,3-6,0 мм 80
кварцевый песок фракцией менее 0,3 мм 8
мелкодисперсный кремнезем 2
Выход товарного карбида кремния составил - 65%, в пересчете на количество загруженного в печь кремнезема.
Пример 2. Затем проводилась загрузка шихты, как и в предыдущем, при следующем соотношении компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 10
кварцевый песок фракцией 0,3-6,0 мм 85
кварцевый песок фракцией менее 0,3 мм 3
мелкодисперсный кремнезем 2
Выход товарного карбида кремния составил - 68%, в пересчете на количество загруженного в печь кремнезема.
Пример 3. При следующем испытании соотношение компонентов кремнеземсодержащего сырья было следующим, мас. %:
кварцит фракцией 6,0-10 мм 20
кварцевый песок фракцией 0,3-6,0 мм 75
кварцевый песок фракцией менее 0,3 мм 3
мелкодисперсный кремнезем 2
Выход товарного карбида кремния составил - 67%, в пересчете на количество загруженного в печь кремния.
Пример 4. Соотношение компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 20
кварцевый песок фракцией 0,3-6,0 мм 70
кварцевый песок фракцией менее 0,3 мм 5
мелкодисперсный кремнезем 5
Выход товарного карбида кремния составил - 70%, в пересчете на количество загруженного в печь кремнезема.
Пример 5. Соотношение компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 25
кварцевый песок фракцией 0,3-6,0 мм 60
кварцевый песок фракцией менее 0,3 мм 8
мелкодисперсный кремнезем 7
Выход товарного карбида кремния составил - 72%, в пересчете на количество загруженного в печь кремнезема.
Пример 6. Соотношение компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 30
кварцевый песок фракцией 0,3-6,0 мм 50
кварцевый песок фракцией менее 0,3 мм 8
мелкодисперсный кремнезем 12
Выход товарного карбида кремния составил - 75%, в пересчете на количество загруженного в печь кремнезема.
Пример 7. Соотношение компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 30
кварцевый песок фракцией 0,3-6,0 мм 50
кварцевый песок фракцией менее 0,3 мм 5
мелкодисперсный кремнезем 15
Выход товарного карбида кремния составил - 76%, в пересчете на количество загруженного в печь кремнезема.
Пример 8. Соотношение компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 35
кварцевый песок фракцией 0,3-6,0 мм 45
кварцевый песок фракцией менее 0,3 мм 5
мелкодисперсный кремнезем 15
Выход товарного карбида кремния составил - 68%, в пересчете на количество загруженного в печь кремнезема.
Пример 9. Соотношение компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 30
кварцевый песок фракцией 0,3-6,0 мм 50
кварцевый песок фракцией менее 0,3 мм 10
мелкодисперсный кремнезем 10
Выход товарного карбида кремния составил - 70%, в пересчете на количество загруженного в печь кремнезема.
Проведенные испытания показали, что при предлагаемом способе получения карбида кремния наибольший выход карбида кремния (%) отмечается при следующем соотношении компонентов кремнеземсодержащего сырья (примеры 3, 4, 5, 6), мас. %:
кварцит фракцией 6,0-10 мм 20-30
кварцевый песок (кварцит) фракцией 0,3-6,0 мм 50-70
кварцевый песок фракцией менее 0,3 мм 5-8
мелкодисперсный кремнезем фракцией менее 0,22 мм 5-15

Claims (3)

1. Способ получения карбида кремния, включающий в себя дозирование кремнеземсодержащих материалов и углеродистых восстановителей, загрузку их в электрическую печь сопротивления и ведение восстановительной плавки, отличающийся тем, что вначале, вокруг керна, загружают слой шихты, содержащей кварцит фракцией 6-10 мм, затем следующим слоем загружают шихту, содержащую кварцевый песок и/или кварцит фракцией 0,3-6,0 мм, после чего в верхнюю часть печи и на периферию загружают слой шихты, содержащий кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем фракцией менее 0,22 мм, при следующем соотношении компонентов кремнеземсодержащего сырья, мас. %:
кварцит фракцией 6,0-10 мм 20-30 кварцевый песок (кварцит) фракцией 0,3-6,0 мм 50-70 кварцевый песок фракцией менее 0,3 мм 5-8 мелкодисперсный кремнезем фракцией менее 0,22 мм 5-15
2. Способ по п. 1, отличающийся тем, что кварцевый песок фракцией менее 0,3 мм и мелкодисперсный кремнезем перед загрузкой шихты предварительно смешивают с кварцевым песком фракцией 0,3-6 мм.
RU2016142981A 2016-10-31 2016-10-31 Способ получения карбида кремния RU2627428C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016142981A RU2627428C1 (ru) 2016-10-31 2016-10-31 Способ получения карбида кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016142981A RU2627428C1 (ru) 2016-10-31 2016-10-31 Способ получения карбида кремния

Publications (1)

Publication Number Publication Date
RU2627428C1 true RU2627428C1 (ru) 2017-08-08

Family

ID=59632450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016142981A RU2627428C1 (ru) 2016-10-31 2016-10-31 Способ получения карбида кремния

Country Status (1)

Country Link
RU (1) RU2627428C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673821C1 (ru) * 2018-08-29 2018-11-30 Константин Сергеевич Ёлкин Шихта для получения карбида кремния
RU2689586C1 (ru) * 2018-12-27 2019-05-28 Константин Сергеевич Ёлкин Способ получения карбида кремния
RU2747988C1 (ru) * 2020-02-17 2021-05-18 Константин Сергеевич Ёлкин Способ получения карбида кремния
RU2791964C1 (ru) * 2022-05-26 2023-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ получения порошка карбида кремния

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860609A (ja) * 1981-09-30 1983-04-11 Showa Denko Kk 高純度SiCの製造法
RU1777312C (ru) * 1988-07-12 1994-09-30 Институт структурной макрокинетики РАН Способ получения карбида кремния

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860609A (ja) * 1981-09-30 1983-04-11 Showa Denko Kk 高純度SiCの製造法
RU1777312C (ru) * 1988-07-12 1994-09-30 Институт структурной макрокинетики РАН Способ получения карбида кремния

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗАКОЖУРНИКОВА Г.С. Повышение энергетической эффективности производства карбида кремния на основе моделирования плавильного процесса. Диссертация на соискание ученой степени кандидата технических наук. Москва, 2015, стр.18-22. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673821C1 (ru) * 2018-08-29 2018-11-30 Константин Сергеевич Ёлкин Шихта для получения карбида кремния
RU2689586C1 (ru) * 2018-12-27 2019-05-28 Константин Сергеевич Ёлкин Способ получения карбида кремния
RU2747988C1 (ru) * 2020-02-17 2021-05-18 Константин Сергеевич Ёлкин Способ получения карбида кремния
RU2791964C1 (ru) * 2022-05-26 2023-03-14 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Способ получения порошка карбида кремния

Similar Documents

Publication Publication Date Title
RU2627428C1 (ru) Способ получения карбида кремния
JP5999715B2 (ja) 炭化珪素粉末の製造方法
CN103030415A (zh) 一种高性能镁橄榄石耐火原料及其制备方法
CS225844B2 (en) The production of semi-products used for the production of the silicon and/or of the silicon xarbide
CN103011870B (zh) 一种镁橄榄石耐火原料及其制备方法
CN109455733A (zh) 一种煤矸石电热法制备高品质莫来石的方法
CA1252278A (en) Process for the production of silicon or ferrosilicon in an electric low shaft furnace, and rawmaterial mouldings suitable for the process
RU2673821C1 (ru) Шихта для получения карбида кремния
CN102442670A (zh) 一种金属硅冶炼还原剂的制备方法
CN102303867A (zh) 一种利用硅藻土制备多孔碳化硅的方法
CN109293373B (zh) 一种环保型硅基添加物的制备及在耐火材料中的应用方法
CN107487785A (zh) 一种四氯化锆的制备工艺
RU2715828C1 (ru) Шихта для получения карбида кремния для металлургического производства
JP5011956B2 (ja) フェロコークスおよび焼結鉱の製造方法
JP2007246786A (ja) フェロコークスおよび焼結鉱の製造方法
RU2570153C1 (ru) Способ выплавки технического кремния
SE461647B (sv) Foerfarande foer framstaellning av kisel
CN103979981A (zh) 一种大规格半石墨质碳化硅碳砖及其生产工艺
CN108218393B (zh) 一种利用煤矸石制备Al2O3-SiC-C系炮泥耐火材料的方法
CN112236392B (zh) 用于生产工业硅的方法
RU2383493C1 (ru) Способ карботермического восстановления кремния
CN107601512B (zh) 一种混合料及四氯化硅的生产方法
RU2747988C1 (ru) Способ получения карбида кремния
SU1309915A3 (ru) Способ получени алюмини
KR100554732B1 (ko) 용탕 승온용 실리콘-카본계 발열제

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191101

NF4A Reinstatement of patent

Effective date: 20210902