RU2624012C1 - Способ изготовления водородного электрода для кислородно-водородных топливных элементов - Google Patents

Способ изготовления водородного электрода для кислородно-водородных топливных элементов Download PDF

Info

Publication number
RU2624012C1
RU2624012C1 RU2016111512A RU2016111512A RU2624012C1 RU 2624012 C1 RU2624012 C1 RU 2624012C1 RU 2016111512 A RU2016111512 A RU 2016111512A RU 2016111512 A RU2016111512 A RU 2016111512A RU 2624012 C1 RU2624012 C1 RU 2624012C1
Authority
RU
Russia
Prior art keywords
hydrogen
electrode
palladium
membrane
oxygen
Prior art date
Application number
RU2016111512A
Other languages
English (en)
Inventor
Владимир Юрьевич Фролов
Сергей Николаевич Болотин
Лариса Владимировна Ломакина
Михаил Геннадьевич Барышев
Илья Сергеевич Петриев
Original Assignee
Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН)
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН), Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") filed Critical Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН)
Priority to RU2016111512A priority Critical patent/RU2624012C1/ru
Application granted granted Critical
Publication of RU2624012C1 publication Critical patent/RU2624012C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/94Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Изобретение относится к области электрохимии, а именно к способу изготовления водородного электрода для кислородно-водородного топливного элемента, и может найти применение в низкотемпературных топливных элементах, работающих с рабочей температурой окружающей среды. Водородный электрод для кислородно-водородного топливного элемента изготавливают путем закрепления палладиевой мембраны толщиной 1-30 мкм, с двух сторон покрытой слоем мелкодисперсной палладиевой черни, на пористой металлической основе методом контактной точечной сварки. Предлагаемый способ обеспечивает повышение удельной мощности и улучшение вольт-амперных характеристик ннзкотемпературного топливного элемента. 2 ил.

Description

Заявляемое техническое решение относится к области электрохимии, а именно к изготовлению конструкционных элементов водородных насосов и топливных элементов, конкретно к изготовлению водородных электродов.
Актуальной задачей развития альтернативной энергетики является разработка кислородо-водородного топливного элемента с цельнометаллическим палладийсодержащим водородопроницаемым водородным электродом, работающего при низких (20-100°C) температурах. Это позволит использовать в топливном элементе жидкий электролит и приведет (за счет изменения трехфазной границы газ - металл токоотвода - электролит на двухфазную палладиевый сплав - электролит) к улучшению вольтамперных характеристик элемента, снижению поляризации, уменьшению внутреннего сопротивления и увеличению удельной мощности. Кроме того палладий является катализатором электродного процесса по всей двухфазной границе, поэтому не требуется дополнительного нанесения катализатора. Также возможно применение водородного электрода в составе двухэлектродной ячейки с протоносодержащим электролитом в составе водородного насоса или компрессора [К.А. Джусь, И.Г. Штатный, С.А. Григорьев / Наноструктурные электрокатализаторы для водородного компрессора с твердым полимерным электролитом // Вестник МИТХТ Химия и технология неорганических материалов», 2009, т.4, №6 (90)]
Палладий и его сплавы применяют для получения мембран, способных пропускать газообразный водород [Rothenberger K.S., Cugini A.V., Howard В.Н., Killmeyer R.P., Ciocco M.V., Morreale B.D. // Journal of Membrane Science. 2004. V. 244. P. 55-68]. Такие мембраны имеют рабочие температуры в интервале 200-800°C, так как в первую очередь предназначены для разделения высокотемпературных водородных смесей, получаемых пирогенетическими методами из органических водородосодержащих топлив. Из-за их высокой проницаемости и селективности по сравнению с другими материалами металлические водородопроводящие мембраны при высоких температурах остаются предметом интенсивных исследований. Легирование палладия влияет на диффузию водорода внутри мембраны, на скорость растворения и выделения атомов водорода, на рекомбинацию и диссоциацию молекул и, в меньшей степени, на адсорбцию и десорбцию.
Основными характеристиками палладиевых мембран для выделения водорода из газовых смесей являются скорость проникновения водорода через мембрану, ее прочность и стойкость при эксплуатации. Для мембраны же, выполняющей роль диффузионного электрода, добавляется важная характеристика - скорость электроэкстракции растворенного водорода на границе мембрана/электролит.
Процесс водородопроницаемости палладия и его сплавов состоит из трех основных стадий [Байчток Ю.К., Соколинский Ю.А., Айзенбуд М.Б. О лимитирующей стадии проницаемости водорода через мембраны из палладиевых сплавов. // Журнал физической химии. 1976. Т. 50. N 6. С. 1543-1546]:
- диссоциация водорода на входной поверхности мембраны, протекающая со скоростью νi,
- диффузия атомарного водорода через мембрану, протекающая со скоростью νД,
- рекомбинация атомов водорода в молекулы на выходной стороне мембраны, протекающая со скоростью vo.
Лимитирование той или иной стадии является предметом многочисленных исследований и зависит от многих факторов, например в случае особо чистого водорода лимитирующей является стадия диффузии, а в случае незначительных примесей серы, углеводородов и т.д. лимитирующими становятся стадии диссоциации на газовой стороне мембраны и(или) электроэкстракции на электролитной стороне. Последний случай является наиболее вероятным для патентуемого мембранного электрода, так как он будет работать не на чистом водороде. В таких условиях повысить скорость переноса водорода через мембрану можно модификацией поверхности палладиевой мембраны специальными «водородными переносчиками», повышающими скорости диффузии водорода на газовой стороне мембранного электрода и электроэкстракции на электролитной стороне.
Уровень техники мембранных металлических электродов представлен рядом американских патентов: US Patents №7,955,491; 9044715; 8778058; 8119205; 7611565; 7255721; 7022165; 9246176; RU №74242; 2256981; 2334310, 1840848.
Наиболее близким техническим решением к заявляемому является патент [RU №1840848 Водородный электрод из тонкой палладиевой пленки]. Согласно прототипу заявлен способ изготовлении водородного электрода для кислородно-водородного топливного элемента путем нанесения активной массы на пористую металлическую, например никелевую, основу в виде тонкой палладиевой пленки толщиной 15-25 микрон.
Основными недостатками описанного электрода являются низкие скорости переноса водорода при температурах окружающей среды и, как следствие, низкие удельные электрические характеристики устройств (низкотемпературного топливного элемента) на их основе.
Технической задачей является создание способа изготовления водородного электрода для кислородно-водородных топливных элементов, позволяющего создать топливные элементы с электрод-электролитными блоками с повышенными удельными электрическими характеристиками и рабочей температурой окружающей среды, т.е. с расширенными функциональными возможностями.
Для решения технической задачи предлагается изготавливать водородный электрод для кислородно-водородного топливного элемента, путем закрепления тонкой палладиевой мембраны на пористую металлическую, например никелевую, основу. При этом мембрану изготавливают в виде пленки толщиной 1-30 мкм из палладия, сплава палладия или металлического композита, содержащего на поверхности палладий или его сплав. Затем покрывают ее с двух сторон слоем мелкодисперсного металла и закрепляют покрытую таким образом мембрану на пористой металлической основе методом контактной точечной сварки. Мембрану можно изготавливать методами пластической деформации, термическим или магнетронным распылением, химическим или электрохимическим осаждением из водных или неводных растворов солей, покрытие дисперсным металлом осуществлять химическим восстановлением из водных растворов солей; электролитическим осаждением из водных растворов солей; магнетронным напылением пленки сплава Ренея с последующим диффузионным спеканием полученного «сэндвича» и вытравливанием неактивного компонента из поверхности пленки, а в качестве мелкодисперсного металла покрытия мембраны использовать металл группы «переносчиков водорода», т.е. из ряда металлов 4d, 5d, 6d элементов периодической системы Менделеева.
На фиг. 1 изображен водородный электрод из тонкой модифицированной металлической пленки, изготовленный предлагаемым способом, на фиг. 2 изображен водородный насос из двух водородных электродов фильтр-прессной сборки.
Электрод, изготовляемый заявленным способом (фиг. 1), включает палладийсодержащую мембрану 1, выполненную в виде фольги толщиной 1-30 мкм. На обе стороны мембраны 1 нанесен слой мелкодисперсного (наноразмерного) металлического порошка 2, например палладиевой черни. Палладийсодержащая фольга 1, с одной стороны, методом контактной точечной сварки - точки 3 закреплена на поверхности пористой металлической основы 4. Основа 4 металлически и электрически контактирует с металлической газораспределительной плитой 5. В объеме и на поверхности плиты 5 со стороны мембраны 1 сформирована система газораспределительных (продувочных) каналов 6, оканчивающаяся концевыми газовыми штуцерами 7 с кранами. Водородный насос (фиг 2) составлен из двух водородных электродов (фиг 1), соединенных в конструкцию четырьмя металлическими шпильками 8 при помощи гаек 9. 10 - матричный электролит, разделяющий водородные электроды (фиг. 1).
Пример изготовления заявляемого электрода.
Палладиевую заготовку прокатывали в механических валках в фольгу толщиной 20-30 мкм, затем отжигали при температуре 850°C в вакууме, отбеливали в отбеливающей смеси на основе 30% серной кислоты и помещали в раствор электрохимического палладирования, где фольгу с двух сторон электрохимически покрывали мелкодисперсной палладиевой чернью. Затем покрытую и высушенную на воздухе фольгу накладывали одной стороной на пористую металлическую основу, например никелевую, после чего сваривали их по поверхности точечной контактной сваркой во многих точках.
Изделие на основе вышеприведенного электрода водородного насоса (топливного элемента) изготавливается так. Два водородных электрода, представленных на фиг. 1, приводятся в контакт друг с другом со стороны, противоположной металлическим плитам 5, в процессе механической стяжки фильтрпрессной конструкции водородного насоса или топливного элемента при помощи четырех шпилек 8 и гаек 9. При этом слои мелкодисперсного (наноразмерного) металлического порошка 2 контактируют через матричный электролит 10, представляющий собой слой асбестовой бумаги, пропитанной 33% раствором электролита, например NaOH, таким образом, чтобы мелкодисперсное покрытие на электролитной стороне служило электрокатализатором электродного процесса окисления и восстановления водорода. Путем открытия кранов на концевых газовых штуцерах 7 осуществляется продувка системы газораспределительных каналов 6 и пор пористых никелевых пластин 4 водородом.
Через определенное время, когда в системе газораспределительных каналов 6 и порах пористой никелевой пластины остается чистый водород, один из кранов выходного штуцера 7 левого электрода (фиг. 2) закрывается и система переходит в рабочий режим. Водород, поступающий через поры пористой никелевой пластины 4, расположенной слева, подается к газовой поверхности левой палладийсодержащей мембраны 1, покрытой мелкодисперсным металлом, который хемосорбирует водород на поверхности своих частиц и ускоряет его поступление в объем палладийсодержащей мембраны - абсорбцию.
Далее абсорбированный водород диффундирует через фазу палладийсодержащего сплава и на электролитной поверхности, покрытой мелкодисперсным металлом, переходит в адсорбированную атомную фазу. Затем адсорбированный водород вступает в электродную реакцию на границе пористый металл/электролит с образованием протонсодержащих частиц в электролите 10 и отдачей электронов во внешнюю цепь на нагрузку через металлическую плиту 5, которая также является токоотводом. С правой стороны процессы симметрично электрохимически обращаются и их конечным результатом является образование в системе газораспределительных каналов 6 правого электрода избыточного водорода, который может накапливаться до определенных давлений (водородный компрессор) или использоваться потребителем в более чистом виде (водородный насос). Кислородо(воздушно)-водородный топливный элемент может быть сконструирован аналогично, путем замены правого водородного электрода на кислородный (воздушный) электрод.
Двустороннее покрытие поверхности мембраны слоем мелкодисперсного (наноразмерного) металлического порошка позволяет за счет уменьшения энергии активации лимитирующей стадии хемосорбции на газовой стороне и увеличения скорости электроэкстракции на электролитной стороне увеличить общую скорость процесса переноса водорода и как следствие электрические характеристики предлагаемого водородного электрода топливного кислородо-водородного элемента и(или) водородного насоса, например удельную мощность при температурах окружающей среды, что позволяет создать топливные элементы с электрод-электролитными блоками с повышенными удельными электрическими характеристиками и рабочей температурой окружающей среды, т.е. с расширенными функциональными возможностями.

Claims (1)

  1. Способ изготовления водородного электрода для кислородно-водородного топливного элемента, включающий закрепление тонкой палладиевой мембраны на пористую металлическую никелевую основу, отличающийся тем, что мембрану из палладия изготавливают толщиной 1-30 мкм, затем покрывают с двух сторон слоем мелкодисперсной палладиевой черни и закрепляют на основе методом контактной точечной сварки.
RU2016111512A 2016-03-28 2016-03-28 Способ изготовления водородного электрода для кислородно-водородных топливных элементов RU2624012C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016111512A RU2624012C1 (ru) 2016-03-28 2016-03-28 Способ изготовления водородного электрода для кислородно-водородных топливных элементов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016111512A RU2624012C1 (ru) 2016-03-28 2016-03-28 Способ изготовления водородного электрода для кислородно-водородных топливных элементов

Publications (1)

Publication Number Publication Date
RU2624012C1 true RU2624012C1 (ru) 2017-06-30

Family

ID=59312274

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016111512A RU2624012C1 (ru) 2016-03-28 2016-03-28 Способ изготовления водородного электрода для кислородно-водородных топливных элементов

Country Status (1)

Country Link
RU (1) RU2624012C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674748C1 (ru) * 2017-09-20 2018-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов
RU2694431C1 (ru) * 2018-09-05 2019-07-15 Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН) Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188737A1 (en) * 2002-04-03 2006-08-24 Colorado School Of Mines Process for Preparing Palladium Alloy Composite Membranes for Use in Hydrogen Separation, Palladium Alloy Composite Membranes and Products Incorporating or Made from the Membranes
RU74242U1 (ru) * 2007-12-26 2008-06-20 Николай Георгиевич Седельников Газодиффузионный электрод для электрохимического устройства
KR20080082383A (ko) * 2007-03-08 2008-09-11 삼성테크윈 주식회사 반도체 기판의 제조방법
JP2009166005A (ja) * 2008-01-21 2009-07-30 Tanaka Kikinzoku Kogyo Kk 水素透過膜の製造方法
US7611565B1 (en) * 2005-10-20 2009-11-03 Los Alamos National Security, Llc Device for hydrogen separation and method
JP2010269226A (ja) * 2009-05-20 2010-12-02 Dainippon Printing Co Ltd 水素選択透過膜およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060188737A1 (en) * 2002-04-03 2006-08-24 Colorado School Of Mines Process for Preparing Palladium Alloy Composite Membranes for Use in Hydrogen Separation, Palladium Alloy Composite Membranes and Products Incorporating or Made from the Membranes
US7611565B1 (en) * 2005-10-20 2009-11-03 Los Alamos National Security, Llc Device for hydrogen separation and method
KR20080082383A (ko) * 2007-03-08 2008-09-11 삼성테크윈 주식회사 반도체 기판의 제조방법
RU74242U1 (ru) * 2007-12-26 2008-06-20 Николай Георгиевич Седельников Газодиффузионный электрод для электрохимического устройства
JP2009166005A (ja) * 2008-01-21 2009-07-30 Tanaka Kikinzoku Kogyo Kk 水素透過膜の製造方法
JP2010269226A (ja) * 2009-05-20 2010-12-02 Dainippon Printing Co Ltd 水素選択透過膜およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674748C1 (ru) * 2017-09-20 2018-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов
RU2694431C1 (ru) * 2018-09-05 2019-07-15 Федеральное государственное бюджетное учреждение науки Южный научный центр Российской академии наук (ЮНЦ РАН) Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов

Similar Documents

Publication Publication Date Title
Lim et al. A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis
Kang et al. Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells
Liu et al. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection
RU168869U1 (ru) Водородный электрод из тонкой модифицированной палладиевой пленки
Prabhuram et al. Pd and Pd-Cu alloy deposited nafion membranes for reduction of methanol crossover in direct methanol fuel cells
CA2560385C (en) Electrolyte layer for fuel cell, fuel cell, and method of manufacturing electrolyte layer for fuel cell
WO2017130903A1 (ja) 固体酸化物型燃料電池
Ayers et al. PEM electrolysis, a forerunner for clean hydrogen
Yamashita et al. Durability of Pt catalysts supported on graphitized carbon-black during gas-exchange start-up operation similar to that used for fuel cell vehicles
RU2624012C1 (ru) Способ изготовления водородного электрода для кислородно-водородных топливных элементов
Sumi et al. Effect of anode thickness on polarization resistance for metal-supported microtubular solid oxide fuel cells
US20160233523A1 (en) Fuel cell separator, fuel cell, and manufacturing method of fuel cell separator
WO2018144729A1 (en) Methods and systems for hydrogen gas production through water electrolysis, and related electrolysis cells
RU2674748C1 (ru) Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов
JP3793801B2 (ja) 小型燃料電池
US20090035640A1 (en) Catalyst-loaded support used for forming electrode for fuel cell, and method of producing the same
RU2724609C1 (ru) Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов, модифицированного наноструктурированным палладием
RU2694431C1 (ru) Способ изготовления композитного водородного электрода для кислородно-водородных топливных элементов
Watanabe et al. Development and Analysis of an Innovative Flat-Metal Separator Integrating the GDL with Gas-Flow Channels as PEFC Components
RU178293U1 (ru) Водородный электрод из композитной модифицированной пленки
RU187061U1 (ru) Водородный электрод из тонкой модифицированной палладиевой пленки
Dowd et al. A hydrogen-vanadium reversible fuel cell crossover study
Wan et al. Novel composite anode with CO “Filter” layers for PEFC
JP5271067B2 (ja) 積層形燃料電池
Hibino et al. Intermediate-temperature alkaline fuel cells with non-platinum electrodes