RU2622948C1 - Способ конденсации паров нефтепродуктов - Google Patents

Способ конденсации паров нефтепродуктов Download PDF

Info

Publication number
RU2622948C1
RU2622948C1 RU2016136785A RU2016136785A RU2622948C1 RU 2622948 C1 RU2622948 C1 RU 2622948C1 RU 2016136785 A RU2016136785 A RU 2016136785A RU 2016136785 A RU2016136785 A RU 2016136785A RU 2622948 C1 RU2622948 C1 RU 2622948C1
Authority
RU
Russia
Prior art keywords
water
condenser
heat
condensation
evaporator
Prior art date
Application number
RU2016136785A
Other languages
English (en)
Inventor
Сергей Александрович Шевцов
Дмитрий Валентинович Каргашилов
Александр Михайлович Гаврилов
Александр Николаевич Шуткин
Илья Альбертович Быков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский институт Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (ФГБОУ ВО Воронежский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский институт Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (ФГБОУ ВО Воронежский filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский институт Государственной противопожарной службы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (ФГБОУ ВО Воронежский
Priority to RU2016136785A priority Critical patent/RU2622948C1/ru
Application granted granted Critical
Publication of RU2622948C1 publication Critical patent/RU2622948C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Изобретение относится к способам конденсации смеси паров, содержащей пары нефтепродуктов и воды, и может быть использовано в системах очистки парогазовых потоков с выделением из них паров воды и рекуперации легколетучих фракций нефтепродуктов на объектах, связанных с их добычей, переработкой и хранением. Способ конденсации паров нефтепродуктов предусматривает отвод паров углеводородов из резервуара для хранения нефтепродуктов, их охлаждение и конденсацию, сбор образовавшегося конденсата в промежуточном сборнике, отделение воды от жидких углеводородов, возврат жидких углеводородов в резервуар для хранения. При осуществлении способа используют парокомпрессионный тепловой насос, включающий компрессор, конденсатор, терморегулирующий вентиль и двухсекционный испаритель, рабочая и резервная секции которого попеременно работают соответственно в режимах конденсации и регенерации. Пары углеводорода из резервуара для хранения отводят в секцию испарителя, работающую в режиме конденсации, конденсируют содержащуюся в них воду на теплообменной поверхности в виде ледяной корки посредством рекуперативного теплообмена с кипящим хладагентом, а отделившиеся от воды сконденсированный жидкий нефтепродукт отводят в промежуточный сборник с возвратом в резервуар для хранения нефтепродуктов. Теплоту конденсации хладагента в конденсаторе теплового насоса используют для нагрева промежуточного теплоносителя посредством рекуперативного теплообмена, при этом нагретый в конденсаторе промежуточный теплоноситель разделяют на два потока, один из которых подают в секцию испарителя, работающую в режиме регенерации, для оттайки ледяной корки, а второй поток - в теплообменник-утилизатор; объединяют потоки отработанного промежуточного теплоносителя после секции испарителя, работающей в режиме регенерации, и теплообменника-утилизатора и возвращают в конденсатор в режиме замкнутого цикла. Образовавшуюся воду при оттайке ледяной корки вместе с водой, содержащей следы углеводородов, из промежуточного сборника предварительно нагревают в теплообменнике-утилизаторе и направляют на стадию биологической очистки. Технический результат: повышение энергетической эффективности процесса непрерывной конденсации смеси паров, содержащей пары нефтепродуктов и воды, создание взрывопожаробезопасной, экологически чистой и экономически выгодной технологии хранения нефтепродуктов. 1 ил.

Description

Изобретение относится к способам конденсации смеси паров, содержащей пары нефтепродуктов и воды, и может быть использовано в системах очистки парогазовых потоков с выделением из них паров воды и рекуперации легколетучих фракций нефтепродуктов на объектах, связанных с их добычей, переработкой и хранением.
Известен способ конденсации смеси паров (РФ №2283160, МПК B01D 5/00, B65D 90/30), включающий полную конденсацию парогазовой смеси, содержащей пары нефтепродуктов и воды, сбор и расслоение продуктов конденсации.
Однако в известном способе отсутствует информация о получении энергоносителей для конденсации смеси паров, содержащей пары нефтепродуктов и воды. Как следствие, не реализованы основные принципы энергосбережения, связанные с организацией замкнутых термодинамических циклов по материальным и энергетическим потокам с возможностью рекуперации и утилизации вторичных энергоресурсов, что не позволяет рассматривать известный способ как энергосберегающий и экологически безопасный; не предусмотрено использование теплового насоса, что не создает реальных перспектив в энергоэффективной очистке парогазовых потоков; отсутствует возможность использования низких температур при кипении хладагента в испарителе теплового насоса, обеспечивающих полную конденсацию смеси паров, содержащих пары нефтепродуктов и воды, что исключает формирование взрывоопасных концентраций и снижает уровень взрывопожароопасности; не позволяет использовать теплоту конденсации хладагента в конденсаторе теплового насоса как для нагревания промежуточного теплоносителя с его подачей на размораживание испарителя, так и для нагревания воды, образовавшейся при размораживании испарителя до температуры, необходимой для ее дальнейшей биологической очистки.
Технической задачей изобретения является повышение энергетической эффективности процесса непрерывной конденсации смеси паров, содержащей пары нефтепродуктов и воды, создание взрывопожаробезопасной, экологически чистой и экономически выгодной технологии хранения нефтепродуктов.
Поставленная задача достигается тем, что в способе конденсации паров нефтепродуктов, предусматривающем отвод паров углеводородов из резервуара для хранения нефтепродуктов, их охлаждение и конденсацию, сбор образовавшегося конденсата в промежуточном сборнике, отделение воды от жидких углеводородов, возврат жидких углеводородов в резервуар для хранения, новым является то, что используют парокомпрессионный тепловой насос, включающий компрессор, конденсатор, терморегулирующий вентиль и двухсекционный испаритель, рабочая и резервная секции которого попеременно работают соответственно в режимах конденсации и регенерации; причем пары углеводорода из резервуара для хранения отводят в секцию испарителя, работающую в режиме конденсации, конденсируют содержащуюся в них воду на теплообменной поверхности в виде ледяной корки посредством рекуперативного теплообмена с кипящим хладагентом, а отделившийся от воды сконденсированный жидкий нефтепродукт отводят в промежуточный сборник с возвратом в резервуар для хранения нефтепродуктов; теплоту конденсации хладагента в конденсаторе теплового насоса используют для нагрева промежуточного теплоносителя, посредством рекуперативного теплообмена; при этом нагретый в конденсаторе промежуточный теплоноситель разделяют на два потока, один из которых подают в секцию испарителя, работающую в режиме регенерации, для оттайки ледяной корки, а второй поток - в теплообменник-утилизатор; объединяют потоки отработанного промежуточного теплоносителя после секции испарителя, работающей в режиме регенерации, и теплообменника-утилизатора и возвращают в конденсатор в режиме замкнутого цикла; образовавшуюся воду при оттайке ледяной корки вместе с водой, содержащей следы углеводородов, из промежуточного сборника предварительно нагревают в теплообменнике-утилизаторе и направляют на стадию биологической очистки.
Технический результат изобретения заключается в повышении энергетической эффективности процесса непрерывной конденсации смеси паров, содержащей пары нефтепродуктов и воды; создании взрывопожаробезопасной, экологически чистой и экономически выгодной технологии хранения нефтепродуктов за счет предотвращения их выброса в окружающую среду.
На чертеже представлена схема, реализующая предлагаемый способ конденсации паров нефтепродуктов.
Схема содержит резервуар с нефтепродуктом 1; тепловой насос, включающий компрессор 2, конденсатор 3, секции двухсекционного испарителя 4 и 5; терморегулирующий вентиль 6, работающие по замкнутому термодинамическому циклу; промежуточный сборник 7; теплообменник-утилизатор 8; насосы 9, 10, 11; линии подачи: 0.1 - исходный нефтепродукт, 1.0 - пары углеводородов, 2.0 - сконденсированный нефтепродукт, 2.1 - нефтепродукт, отделившийся от остатков воды, 3.0 - талая вода со следами углеводородов; 4.0- хладагент; 5.0 - промежуточный теплоноситель.
Способ осуществляется следующим образом.
Исходный нефтепродукт по линии 0.1 поступает в резервуар 1 на хранение. Пары нефтепродукта, образующиеся при больших и малых дыханиях резервуара, по линии 1.0 направляют в рабочую секцию двухсекционного испарителя 4, работающую в режиме конденсации, где происходит конденсация паров нефтепродукта посредством рекуперативного теплообмена с кипящим хладагентом. Процесс конденсации нефтепродуктов сопровождается образованием ледяной корки на теплообменной поверхности рабочей секции испарителя из замерзающей воды, содержащейся в парах нефтепродукта; а пары нефтепродуктов достигают температуры «точки росы» и сконденсированные жидкие углеводороды, освободившиеся от значительной части влаги, по линии 2.0 отводят в промежуточный сборник 7, где происходит отделение остатков воды от нефтепродукта при отстаивании с последующим его возвратом по линии 2.1 с помощью насоса 10 в резервуар 1.
Для реализации способа используют парокомпрессионный тепловой насос, включающий компрессор 2, конденсатор 3, терморегулирующий вентиль 6 и двухсекционной испаритель с рабочей 4 и резервной 5 секциями, которые попеременно работают в режимах конденсации и регенерации.
Парокомпрессионный тепловой насос работает по следующему термодинамическому циклу.
Хладагент, в качестве которого, например, используют Хладон 13В1 CF3Br с температурой кипения -57,8°С и критической температурой 66,9°С, сжимается в компрессоре 2 до давления конденсации и по линии 4.0 направляется в конденсатор 3. Конденсируясь, он отдает теплоту промежуточному теплоносителю, например тосолу. Затем хладагент направляется в терморегулирующий вентиль 6, где дросселируется до заданного давления. С этим давлением хладагент поступает в секцию испарителя 4, работающую в режиме конденсации, где он кипит с выделением холода, который посредством рекуперативного теплообмена используется для конденсации паров нефтепродукта. При снижении интенсивности процесса конденсации смеси паров, содержащей пары нефтепродуктов и воды, рабочая секция 4 отключается из контура рециркуляции хладагента теплового насоса 4.0 на режим регенерации, а резервная секция 5 переключается на режим конденсации, выполняя функции рабочей секции. Такая организация переключения секций позволяет обеспечить непрерывность и максимальную эффективность процесса конденсации паров нефтепродукта. Пары хладагента после рабочей секции по замкнутому циклу 4.0 направляются в компрессор 2, сжимаются до давления конденсации и термодинамический цикл повторяется.
В способе предусмотрена подготовка промежуточного теплоносителя, в качестве которого, например, используют Тосол А40. Причем тосол нагревают в конденсаторе 3 теплового насоса за счет теплоты конденсации хладагента. С помощью насоса 9 нагретый тосол отводят из конденсатора по двум потокам 5.0, один из которых подают на размораживание секции испарителя 5, работающей в режиме регенерации, а второй направляют в теплообменник-утилизатор 8 для предварительного нагрева воды. При этом поток воды, образовавшейся при оттайке ледяной корки на теплообменной поверхности резервной секции испарителя, и поток воды со следами углеводорода, образовавшейся при осаждении в промежуточном сборнике 7, объединяют и с помощью насоса 11 отводят через теплообменник-утилизатор 8 на стадию биологической очистки. Потоки отработанного промежуточного теплоносителя после резервной секции испарителя и теплообменника-утилизатора объединяют и возвращают в конденсатор 3 теплового насоса с образованием замкнутого цикла.
Предлагаемый способ конденсации паров нефтепродуктов по сравнению с имеющимися аналогами позволяет:
- повысить энергетическую эффективность за счет рационального подключения к схеме энергоснабжения парокомпрессионного теплового насоса, позволяющего обеспечить рекуперацию и утилизацию энергии теплоносителей, и как следствие, снизить удельные энергозатраты на реализацию способа;
- повысить пожарную безопасность, исключив образование взрывопожароопасных концентраций паров нефтепродукта с воздухом за счет их полной конденсации;
- повысить качество нефтепродукта, возвращаемого в резервуар для хранения, за счет удаления из него максимального количества воды;
- обеспечить экологическую безопасность за счет организации замкнутых рециркуляционных схем по материальным и энергетическим потокам, исключающих выброс вредных веществ в атмосферу.

Claims (1)

  1. Способ конденсации паров нефтепродуктов, предусматривающий отвод паров углеводородов из резервуара для хранения нефтепродуктов, их охлаждение и конденсацию, сбор образовавшегося конденсата в промежуточном сборнике, отделение воды от жидких углеводородов, возврат жидких углеводородов в резервуар для хранения, отличающийся тем, что используют парокомпрессионный тепловой насос, включающий компрессор, конденсатор, терморегулирующий вентиль и двухсекционный испаритель, рабочая и резервная секции которого попеременно работают соответственно в режимах конденсации и регенерации; причем пары углеводорода из резервуара для хранения отводят в секцию испарителя, работающую в режиме конденсации, конденсируют содержащуюся в них воду на теплообменной поверхности в виде ледяной корки посредством рекуперативного теплообмена с кипящим хладагентом, а отделившийся от воды сконденсированный жидкий нефтепродукт отводят в промежуточный сборник с возвратом в резервуар для хранения нефтепродуктов; теплоту конденсации хладагента в конденсаторе теплового насоса используют для нагрева промежуточного теплоносителя посредством рекуперативного теплообмена, при этом нагретый в конденсаторе промежуточный теплоноситель разделяют на два потока, один из которых подают в секцию испарителя, работающую в режиме регенерации, для оттайки ледяной корки, а второй поток - в теплообменник-утилизатор; объединяют потоки отработанного промежуточного теплоносителя после секции испарителя, работающей в режиме регенерации, и теплообменника-утилизатора и возвращают в конденсатор в режиме замкнутого цикла; образовавшуюся воду при оттайке ледяной корки вместе с водой, содержащей следы углеводородов, из промежуточного сборника предварительно нагревают в теплообменнике-утилизаторе и направляют на стадию биологической очистки.
RU2016136785A 2016-09-13 2016-09-13 Способ конденсации паров нефтепродуктов RU2622948C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016136785A RU2622948C1 (ru) 2016-09-13 2016-09-13 Способ конденсации паров нефтепродуктов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016136785A RU2622948C1 (ru) 2016-09-13 2016-09-13 Способ конденсации паров нефтепродуктов

Publications (1)

Publication Number Publication Date
RU2622948C1 true RU2622948C1 (ru) 2017-06-21

Family

ID=59241330

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016136785A RU2622948C1 (ru) 2016-09-13 2016-09-13 Способ конденсации паров нефтепродуктов

Country Status (1)

Country Link
RU (1) RU2622948C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111530117A (zh) * 2020-05-18 2020-08-14 山东冰轮海卓氢能技术研究院有限公司 用于冷凝法油气回收装置的油气融霜系统及方法
CN111569471A (zh) * 2020-04-16 2020-08-25 浙江农林大学暨阳学院 一种汽油蒸汽回收装置
RU222037U1 (ru) * 2023-10-11 2023-12-07 Андрей Анатольевич Иванов Модуль конденсации системы термохимической конверсии

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU575107A1 (ru) * 1976-05-17 1977-10-05 Предприятие П/Я Р-6518 Способ конденсации смеси паров
SU874139A1 (ru) * 1979-04-17 1981-10-23 Предприятие П/Я Р-6518 Способ конденсации смеси паров
US5671612A (en) * 1994-02-04 1997-09-30 Jordan Holding Company Process and apparatus for recovering vapor
RU2283160C1 (ru) * 2005-04-05 2006-09-10 Красноярский государственный технический университет (КГТУ) Способ конденсации смеси паров
EP2054685A2 (en) * 2006-08-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Method and apparatus for treating a hydrocarbon stream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU575107A1 (ru) * 1976-05-17 1977-10-05 Предприятие П/Я Р-6518 Способ конденсации смеси паров
SU874139A1 (ru) * 1979-04-17 1981-10-23 Предприятие П/Я Р-6518 Способ конденсации смеси паров
US5671612A (en) * 1994-02-04 1997-09-30 Jordan Holding Company Process and apparatus for recovering vapor
RU2283160C1 (ru) * 2005-04-05 2006-09-10 Красноярский государственный технический университет (КГТУ) Способ конденсации смеси паров
EP2054685A2 (en) * 2006-08-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Method and apparatus for treating a hydrocarbon stream

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569471A (zh) * 2020-04-16 2020-08-25 浙江农林大学暨阳学院 一种汽油蒸汽回收装置
CN111530117A (zh) * 2020-05-18 2020-08-14 山东冰轮海卓氢能技术研究院有限公司 用于冷凝法油气回收装置的油气融霜系统及方法
RU222037U1 (ru) * 2023-10-11 2023-12-07 Андрей Анатольевич Иванов Модуль конденсации системы термохимической конверсии

Similar Documents

Publication Publication Date Title
CN102179129B (zh) 吸附冷凝废气处理工艺
CN103203157B (zh) 一种二氯甲烷废气处理方法及其系统
CN104479734B (zh) 催化裂化分馏和吸收稳定系统及节能方法
CN108138599A (zh) 基于卡林那循环的气体加工装置废热至电力的转换
CN108138053A (zh) 热电联合的延迟焦化装置
CN103245130B (zh) 一种热泵工质循环回收干燥尾气热量和水的方法及其装置
CN208975200U (zh) 一种多级冷凝油气回收装置
RU2622948C1 (ru) Способ конденсации паров нефтепродуктов
CN110755869A (zh) 一种精馏系统低品位余热回收装置及工艺
CN108043064A (zh) 一种VOCs回收工艺及系统
WO1999022186A1 (en) Method of refrigeration purification and power generation of industrial waste gas and apparatus therefor
CN104857810A (zh) 气体冷凝工艺及设备
CN104864734A (zh) 冷凝器及冷凝方法
CN108096999A (zh) 一种再沸器法负压粗苯蒸馏工艺
CN212549576U (zh) 一种废活性炭再生设备
CN202105454U (zh) 一种废气深冷系统
CN204710058U (zh) 一种工业挥发性有机物气体回收装置
CN103446774A (zh) 一种基于热泵技术的蒸馏冷凝节能工艺
CN210521790U (zh) 一种基于二氧化碳热泵技术的中药浓缩装置
CN105439224A (zh) 一种压汽式毛细驱动海水淡化系统
CN202246576U (zh) 一种油气低温冷凝吸收回收装置
CN109126181B (zh) 一种甲醇气回收装置
CN104874199B (zh) 运用低温冷凝法进行voc去除的装置系统
CN204767539U (zh) 运用低温冷凝法进行voc去除的装置系统
CN108479312A (zh) 节能型脱硫溶剂再生系统及工艺

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180914