RU2619420C1 - Способ термообработки протяжек с плоскими гранями - Google Patents

Способ термообработки протяжек с плоскими гранями Download PDF

Info

Publication number
RU2619420C1
RU2619420C1 RU2016114862A RU2016114862A RU2619420C1 RU 2619420 C1 RU2619420 C1 RU 2619420C1 RU 2016114862 A RU2016114862 A RU 2016114862A RU 2016114862 A RU2016114862 A RU 2016114862A RU 2619420 C1 RU2619420 C1 RU 2619420C1
Authority
RU
Russia
Prior art keywords
broach
temperature
stage
deflection
broaches
Prior art date
Application number
RU2016114862A
Other languages
English (en)
Inventor
Геннадий Викторович Зайцев
Дмитрий Сергеевич Головкин
Елена Анатольевна Зайцева
Галина Владимировна Киселева
Сергей Валентинович Ермошин
Наталия Дмитриевна Гунько
Павел Николаевич Рудаков
Original Assignee
Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют") filed Critical Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО "НПЦ газотурбостроения "Салют")
Priority to RU2016114862A priority Critical patent/RU2619420C1/ru
Application granted granted Critical
Publication of RU2619420C1 publication Critical patent/RU2619420C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/46Salt baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/22Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for drills; for milling cutters; for machine cutting tools

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области металлургии и может быть использовано при термической обработке режущих инструментов. Для повышения надежности и долговечности протяжек с плоскими гранями её подвергают трехступенчатому нагреву, при этом на первой ступени нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени - в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на третьей ступени - в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, проводят охлаждение на воздухе до 980-1020°С, а затем в минеральном масле в течение 45-60 с до 590-610°С, определяют величину и направление продольного прогиба протяжки, укладывают горячую протяжку выпуклой гранью на поверочную плиту и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки. 3 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области металлургии и, в частности, может быть использовано при термической обработке режущих инструментов, склонных в процессе такой обработки к деформации. Преимущественно, способ может быть применен при термообработке таких режущих инструментов с плоскими гранями, как, например, плоские протяжки из быстрорежущих сталей, предназначенные для потягивания пазов в дисках турбомашин, и других, аналогичных по геометрии инструментов.
Известен способ термообработки режущих инструментов, заключающийся в том, что протяжку из быстрорежущей стали сначала нагревают (в вертикальном положении) до температуры 600-650°С, после чего - до 800-850°С, а затем до температуры окончательного нагрева 1160-1270°С. После выдержки протяжки в вертикальном положении охлаждают в масле до 250-200°С и подвергают правке в горячем состоянии под прессом с последующим охлаждением на воздухе. Затем протяжку отпускают. См. публикацию: http://www.tehnoinfa.ru/tehnologijaobrobotki/82.html - HTML версия интернет-страницы от 08.01.2016.
Недостатком такого способа термообработки является то, что после охлаждения в масле значительное число протяжек с плоскими гранями имеют продольный изгиб из-за асимметричности их поперечного сечения. Для устранения указанного продольного изгиба в известном способе применяют правку в горячем состоянии под прессом. При такой правке из-за недостаточной пластичности быстрорежущих сталей высока вероятность возникновения повреждений материала протяжки, типа «микротрещина», что снижает в дальнейшем надежность и долговечность протяжек.
Изобретение решает задачу создания способа термообработки протяжек, исключающего необходимость их механической правки под прессом в горячем состоянии.
При использовании изобретения достигается результат, заключающийся в уменьшении возникающего в процессе термообработки продольного изгиба протяжек при одновременном уменьшении вероятности повреждения материала протяжки, приводящего к снижению ее надежности и долговечности.
Указанный результат достигается тем, что в способе термообработки протяжек с плоскими гранями, заключающемся в том, что протяжку подвергают трехступенчатому нагреву с повышающейся от ступени к ступени величиной температуры, а после выдержки в вертикальном положении охлаждают в масле с последующим охлаждением на воздухе и отпуском, на первой ступени протяжку нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С, на второй ступени нагрев производят в соляном расплаве с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на последней ступени инструмент нагревают в соляном расплаве с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, по окончании нагрева протяжку охлаждают на воздухе до температуры 980-1020°С, после чего производят закалку путем охлаждения в минеральном масле в течение 45-60 с до температуры 590-610°С, затем определяют величину и направление продольного прогиба протяжки, обеспечивают тепловой контакт выпуклой грани протяжки с поверочной плитой и совершают перемещения протяжки по поверочной плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки.
Указанный результат достигается также тем, что трехступенчатый нагрев протяжки осуществляют при ее вертикальном положении.
Указанный результат достигается также тем, что направление продольного прогиба протяжки после закалки определяют с помощью измерительного щупа на поверочной плите. При этом одновременно повышается точность определения величины прогиба.
Указанный результат достигается также тем, что перемещения протяжки выполняют по поверхности плиты, покрытой слоем минерального масла, нанесенного из расчета 200-300 граммов на 1 м2 поверхности. При этом, одновременно, уменьшается время, необходимое для уменьшения прогиба до заданной величины.
Осуществление заявленного способа рассмотрим на примере процесса термообработки протяжки с плоскими гранями, изготовленной из быстрорежущей стали типа Р18, Р12Ф2К5М3-МП, Р9М4К8-МП, ASP260, S290 или REX121. Протяжки из быстрорежущей стали с плоскими гранями, предназначенные для протягивания пазов в дисках турбомашин, имеют, преимущественно, форму прямоугольного параллелепипеда, на одной грани которого сформированы зубьями с режущими кромками, а остальные грани - плоские.
На фигуре 1 показан чертеж фрагмента протяжки с плоскими гранями (в ее поперечном сечении), включающий только два зуба. Полная протяжка может быть длиной до 800 мм и иметь до 90 зубьев.
На чертеже использованы следующие обозначения: 1 - корпус протяжки, т.е. ее часть, на которой отсутствуют зубья; 2 - видимая на чертеже плоская грань корпуса протяжки; 3 - противолежащая ей не видимая на чертеже плоская грань корпуса протяжки; 4 – не видимая на чертеже плоская грань корпуса протяжки, пересекающаяся с гранями 2 и 3; 5 - зубья протяжки. Штриховыми линиями показаны отсутствующие на чертеже и невидимые линии протяжки с плоскими гранями.
Заготовка протяжки имеет, как правило, форму правильного прямоугольного параллелепипеда с четырьмя удлиненными боковыми гранями (длиной до 800 мм) и двумя более короткими - торцевыми. Торцевые грани в рамках настоящей заявки не рассматриваются и поэтому далее по тексту заявки под плоскими гранями протяжки понимают только ее боковые грани 2, 3 и 4. Буквой Н на чертеже обозначена ширина корпуса 1 протяжки с плоскими гранями, т.е. расстояние между ее боковыми гранями 2 и 3. Буквой L обозначена длина протяжки.
После нарезания зубьев на одной из граней заготовки протяжки производят термообработку протяжки, которая заключается в следующем.
Первоначально производят трехступенчатый нагрев протяжки, преимущественно в ее вертикальном положении (в подвешенном состоянии).
На первой ступени протяжку нагревают не менее 1 часа в камерной печи с температурой менее 600°С, но превышающей 560°С. На второй ступени нагрев производят в соляном расплаве (например, в расплаве NaCl) с температурой свыше 850°С, но не превышающей 900°С, в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины Н корпуса протяжки. На последней ступени инструмент нагревают в соляном расплаве (например, в расплаве BaCl2) с температурой ниже 1270°С, но не менее 1160°С, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины Н корпуса протяжки. В процессе нагрева быстрорежущей стали под закалку в структуре металла происходит превращение перлита в аустенит. По окончании нагрева протяжку охлаждают на воздухе до температуры 980-1020°С, которая соответствует цвету каления протяжки «лимонно-желтый», и затем производят закалку путем охлаждения в минеральном масле (например, марки И-20) в течение 45-60 секунд (из расчета скорости охлаждения не менее 7°С в сек) до температуры 590-610°С, которая соответствует цвету каления протяжки «среднеспелая вишня». При этом металл протяжки имеет еще аустенитную структуру.
Ассиметричная в поперечном сечении форма плоских протяжек вызывает усиленное их коробление, выражающееся в продольном прогибе. Прогиб, как правило, происходит таким образом, что грань протяжки с нарезанными зубьями становится вогнутой (т.к. она охлаждается быстрее остальных граней), а противолежащая ей грань при этом приобретает выпуклую форму. Иногда изгиб протяжки происходит в сторону двух других (боковых) граней. Изгиба протяжки в сторону грани с нарезанными зубьями, как правило, не наблюдается.
Определяют, например, с помощью измерительного щупа (предпочтительно, плоского) на чугунной или стальной поверочной плите, какая из граней горячей протяжки приобрела выпуклую форму и какова величина продольного прогиба (т.е. прогиба в направлении длины L протяжки).
Затем для уменьшения выявленного продольного прогиба до допустимых размеров горячую протяжку выпуклой гранью укладывают на поверочную плиту, имеющую температуру окружающей среды. Сохраняя тепловой контакт выпуклой грани протяжки с плитой, совершают линейные, круговые, спиралевидные или зигзагообразные по форме траектории перемещения протяжки по поверхности поверочной плиты, периодически проверяя щупом зазор между приподнятыми над плитой частями протяжки и плитой.
Для улучшения теплового контакта протяжки с поверочной плитой на плиту предварительно наносят тонкий слой минерального масла из расчета 200-300 г на 1 м2. Поверочная плита благодаря ее массивности (массу плиты выбирают большей массы протяжки не менее чем в 100 раз) представляет собой мощный теплоотвод. Поэтому выпуклая сторона протяжки, имеющая хороший тепловой контакт с плитой, охлаждается быстрее остальных ее частей. При этом скорость охлаждения тонких зубьев и массивного основания протяжки выравнивается. В результате прогиб протяжки начинает уменьшаться, что фиксируют, периодически контролируя его с помощью щупа.
Такие же операции осуществляют при наличии выпуклостей других граней протяжки. Как только щуп покажет уменьшение прогиба протяжки до заданной величины, ее подвешивают в вертикальном положении для остывания до температуры, при которой происходит мартенситное превращение в структуре металла протяжки. Такое превращение в металле начинается при температуре обычно ниже 250-200°С. Учитывая то, что аустенит парамагнитен, а мартенсит ферромагнитен, и то, что для большинства инструментальных сталей при температурах ниже 200°С в структуре металла протяжки начинает присутствовать мартенсит (сталь приобретает сильные магнитные свойства), начало мартенситного превращения может быть определено с помощью постоянного магнита по началу появления у металла протяжки магнитных свойств. В процессе перестройки микроструктуры сталей из одной фазы в другую (аустенит превращается в мартенсит) металл обладает повышенной пластичностью. Поэтому с этого момента для правки протяжки (в случае возникновения дополнительного коробления) может применяться правка в прессе. После полного охлаждения до температуры окружающей среды структура быстрорежущих сталей состоит из мартенсита и аустенита.
Таким образом, предлагаемый способ термообработки протяжки с плоскими гранями, исключающий необходимость ее механической правки в прессе в горячем состоянии, т.е. до начала мартенситного превращения, позволяет снизить повреждаемость металла режущего инструмента, приводящую к снижению надежности и долговечности инструмента.

Claims (4)

1. Способ термообработки протяжек с плоскими гранями, включающий ступенчатый нагрев протяжки, её охлаждение в вертикальном положении, определение прогиба протяжки, правку и отпуск, отличающийся тем, что на первой ступени протяжку нагревают не менее 1 часа в камерной печи с температурой от более 560 до менее 600°C, на второй ступени нагрев производят в соляном расплаве с температурой от более 850 до не более 900°C , в течение времени, определяемого из соотношения 15-25 секунд на миллиметр ширины корпуса протяжки, на последней ступени инструмент нагревают в соляном расплаве с температурой от не менее 1160 до менее 1270°C, но, в течение времени, определяемого из соотношения 10-15 секунд на миллиметр ширины корпуса протяжки, по окончании нагрева протяжку охлаждают на воздухе до температуры 980-1020°C, после чего производят охлаждение в минеральном масле в течение 45-60 с до температуры 590-610°C, затем определяют величину и направление продольного прогиба протяжки, укладывают протяжку выпуклой гранью на поверочную плиту и перемещают протяжку по плите до снижения ее прогиба до заданной величины, затем протяжку охлаждают в подвешенном положении до температуры мартенситного превращения металла протяжки.
2. Способ по п. 1, отличающийся тем, что трехступенчатый нагрев протяжки осуществляют при ее вертикальном положении.
3. Способ по п. 1, отличающийся тем, что направление прогиба протяжки определяют с помощью измерительного щупа на поверочной плите.
4. Способ по п. 1, отличающийся тем, что перемещение протяжки выполняют по поверхности плиты, покрытой слоем минерального масла, нанесенного из расчета 200-300 граммов на 1 м2 поверхности.
RU2016114862A 2016-04-18 2016-04-18 Способ термообработки протяжек с плоскими гранями RU2619420C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016114862A RU2619420C1 (ru) 2016-04-18 2016-04-18 Способ термообработки протяжек с плоскими гранями

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016114862A RU2619420C1 (ru) 2016-04-18 2016-04-18 Способ термообработки протяжек с плоскими гранями

Publications (1)

Publication Number Publication Date
RU2619420C1 true RU2619420C1 (ru) 2017-05-15

Family

ID=58715911

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114862A RU2619420C1 (ru) 2016-04-18 2016-04-18 Способ термообработки протяжек с плоскими гранями

Country Status (1)

Country Link
RU (1) RU2619420C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422170A1 (pl) * 2017-07-10 2019-01-14 Politechnika Wrocławska Sposób obróbki cieplnej złącza spawanego blach ze stali martenzytycznej o podwyższonej odporności na zużywanie ścierne
CN112795736A (zh) * 2020-12-26 2021-05-14 安徽省阜锋刀具有限公司 一种纺织刀的加工工艺及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU235063A1 (ru) * М. И. Симашев , А. И. Симашев Способ закалки и правки плоских деталей
SU773103A1 (ru) * 1978-09-18 1980-10-23 Предприятие П/Я В-8312 Способ термической обработки длинномерного инструмента из быстрорежущих сталей
RU2194080C2 (ru) * 2000-10-17 2002-12-10 Открытое акционерное общество Раменское приборостроительное конструкторское бюро Способ термической обработки инструментальных сталей
US20090229417A1 (en) * 2007-03-23 2009-09-17 Dayton Progress Corporation Methods of thermo-mechanically processing tool steel and tools made from thermo-mechanically processed tool steels
RU2543027C2 (ru) * 2013-07-03 2015-02-27 Открытое акционерное общество "Завод им. В.А. Дегтярева" Способ термической обработки режущего инструмента из быстрорежущих сталей

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU235063A1 (ru) * М. И. Симашев , А. И. Симашев Способ закалки и правки плоских деталей
SU773103A1 (ru) * 1978-09-18 1980-10-23 Предприятие П/Я В-8312 Способ термической обработки длинномерного инструмента из быстрорежущих сталей
RU2194080C2 (ru) * 2000-10-17 2002-12-10 Открытое акционерное общество Раменское приборостроительное конструкторское бюро Способ термической обработки инструментальных сталей
US20090229417A1 (en) * 2007-03-23 2009-09-17 Dayton Progress Corporation Methods of thermo-mechanically processing tool steel and tools made from thermo-mechanically processed tool steels
RU2543027C2 (ru) * 2013-07-03 2015-02-27 Открытое акционерное общество "Завод им. В.А. Дегтярева" Способ термической обработки режущего инструмента из быстрорежущих сталей

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422170A1 (pl) * 2017-07-10 2019-01-14 Politechnika Wrocławska Sposób obróbki cieplnej złącza spawanego blach ze stali martenzytycznej o podwyższonej odporności na zużywanie ścierne
CN112795736A (zh) * 2020-12-26 2021-05-14 安徽省阜锋刀具有限公司 一种纺织刀的加工工艺及其方法

Similar Documents

Publication Publication Date Title
TWI606124B (zh) 冷間加工用機械構造用鋼及其製造方法
RU2619420C1 (ru) Способ термообработки протяжек с плоскими гранями
RU2015122868A (ru) Сталь для поверхностно упрочняемых механических деталей с высокими механическими свойствами, механические детали из указанной стали и способ их изготовления
JP7043958B2 (ja) 鋼板部材及びその製造方法
JP2008509280A5 (ru)
Verhoeven et al. Damascus steel, part III: the Wadsworth-Sherby mechanism
CA2873761C (en) Method for producing objects from iron-cobalt-molybdenum/tungsten-nitrogen alloys
JP2006342377A (ja) 大物金型の焼入れ方法
JP3159372B2 (ja) 金型およびその焼入れ方法
JP6388193B2 (ja) 金型の焼入方法および金型の製造方法
JP2010172947A (ja) 超高温熱間鍛造方法
EP3470537B1 (en) Steel plate member and method of producing the steel plate member
JPH0270884A (ja) 応力亀裂腐食安定な管状体の製造方法、特にオーステナイト鋼から成る非磁気化しうるドリルカラー及びこの方法に従って製造されたビレット
JP5969516B2 (ja) エンコーダ用磁気基板の製造方法
Castro Cerda Third generation advanced high strength steels via ultrafast heating
JP6455602B2 (ja) 鋼材を焼入れする際の冷却時間の導出方法、鋼材の焼入れ方法および鋼材の焼入れ焼戻し方法
JP6416735B2 (ja) 窒化部品の製造方法及び窒化部品
Sukhanov et al. Morphology of excess carbides Damascus steel
JP3283513B2 (ja) スキーエッジを製造するための方法
JP2001294935A (ja) 靱性に優れた工具鋼の製造方法
Luo et al. Mechanism of decrease in impact toughness in a low-carbon MnCrMoNiCu plate steel with increasing austenitizing temperature
US20180258504A1 (en) Method of producing a tool steel
JP7264090B2 (ja) プレス用鋼板の製造方法、プレス部品の製造方法、及び伸びフランジ成形性の評価方法
Krobath et al. A new experimental setup for the simulation of surface crack formation in the continuous casting process
JP2008031530A (ja) 合金鋼の製造方法

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20190821