RU2618865C1 - Гидродинамический смеситель - Google Patents
Гидродинамический смеситель Download PDFInfo
- Publication number
- RU2618865C1 RU2618865C1 RU2016117700A RU2016117700A RU2618865C1 RU 2618865 C1 RU2618865 C1 RU 2618865C1 RU 2016117700 A RU2016117700 A RU 2016117700A RU 2016117700 A RU2016117700 A RU 2016117700A RU 2618865 C1 RU2618865 C1 RU 2618865C1
- Authority
- RU
- Russia
- Prior art keywords
- conical
- cylindrical
- insert
- nozzle
- mixing element
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
Landscapes
- Accessories For Mixers (AREA)
Abstract
Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость - жидкость". Смеситель содержит корпус с осевым патрубком, имеющим возможность возвратно-поступательного перемещения и выполненным в виде коническо-цилиндрического сопла, и радиальным патрубком ввода компонентов. Смесительный элемент состоит из конической вставки, на поверхности которой выполнены кольцевые канавки. Вставка находится в конической части корпуса смесительного элемента. Корпус смесительного элемента имеет сквозные каналы, расположенные по концентрическим окружностям. На торце конической вставки напротив коническо-цилиндрического сопла выполнена выступающая цилиндрическая ступень. В цилиндрической ступени и конической вставке выполнено глухое осевое отверстие, соединенное расположенными в несколько рядов радиальными каналами с первой смесительной камерой и с кольцевыми проточками. На торце цилиндрической ступени конической вставки установлена жестко закрепленная по периметру упругая пластина. Технический результат изобретения - интенсификация гидродинамических, физико-химических и тепломассообменных процессов. 1 ил.
Description
Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость - жидкость".
Известен смеситель кавитационного типа (RU 2158627, МПК B01F 5/08, опубл. 10.11.2000), содержащий цилиндрическую рабочую камеру с соосным подводящим в виде диффузора патрубком, смесительные элементы и патрубок добавочного компонента смеси, причем смесительные элементы выполнены в виде многоструйного сопла. Смешивание осуществляется за счет гидродинамической кавитации.
Недостатком смесителя является отсутствие акустических колебаний определенной частоты и значительной амплитуды, т.к. акустическое излучение, вызываемое кавитацией, незначительно и имеет сплошной спектр от сотен Гц до десятков кГЦ (Ультразвук. Маленькая энциклопедия / Глав. ред. И.П. Галямина - Советская энциклопедия. 1979, с. 161).
Наиболее близким по технической сущности и достигаемым результатам является гидродинамический смеситель (RU 2553861, МПК B01F 3/04, 3/08, 5/06, опубл 20.06.2015), содержащий корпус с осевым патрубком, выполненным в виде конусно-цилиндрического сопла с возможностью возвратно-поступательного перемещения. Смесительный элемент состоит из конической вставки, на поверхности которой выполнены кольцевые проточки. Вставка находится в конической части корпуса смесительного элемента. На торце вставки напротив коническо-цилиндрического сопла выполнен отражатель в виде лунки. Корпус смесительного элемента имеет сквозные каналы, расположенные по концентрическим окружностям. Кольцевые проточки соединены с первой смесительной камерой. Интенсификация технологических процессов достигается одновременным воздействием звуковых колебаний, которые излучает пульсирующая кавитационная полость, турбулентных пульсаций, сдвиговых напряжений.
Недостатком смесителя является недостаточная интенсивность акустических колебаний определенной частоты, что снижает эффективность технологических процессов.
Техническая задача изобретения - интенсификация гидродинамических, физико-химических и тепломассообменных процессов.
Поставленная техническая задача достигается тем, что в гидродинамическом смесителе, содержащем корпус с осевым патрубком, имеющим возможность возвратно-поступательного перемещения и выполненным в виде коническо-цилиндрического сопла, и радиальным патрубком ввода компонентов, смесительный элемент, состоящий из конической вставки, на поверхности которой выполнены кольцевые проточки, находящейся в конической части корпуса смесительного элемента, имеющего в торцовой перегородке сквозные каналы, расположенные по концентрическим окружностям, на торце конической вставки напротив коническо-цилиндрического сопла выполнена выступающая цилиндрическая ступень, причем в цилиндрической ступени и конической вставке выполнено глухое осевое отверстие, соединенное расположенными в несколько рядов радиальными каналами с первой смесительной камерой и с кольцевыми проточками, а на торце цилиндрической ступени конической вставки установлена жестко закрепленная по периметру упругая пластина.
На чертеже схематически изображен гидродинамический смеситель, продольный разрез.
Гидродинамический смеситель содержит корпус 1 с радиальным патрубком 2 входа дополнительного компонента, крышку 3 с патрубком осевого входа основного компонента 4, распорную втулку 5, смесительный элемент 6, состоящий из корпуса 7 с внутренней конической поверхностью и сквозными каналами 8, закрепленной в нем конической вставкой 9 с кольцевыми проточками 10, кольцевыми выступами 11 и цилиндрической ступенью 12, упругой пластины 13, жестко закрепленной на торце цилиндрической ступени 12 крышкой 14, глухого отверстия 15, соединенного радиальными каналами 16 с проточками 10 и радиальными каналами 17 с первой смесительной камерой 18, образованной крышкой 3, распорной втулкой 5 и торцом конической вставки 9, кольцевой радиальный зазор 19, образованный конической наружной поверхностью кольцевых выступов 11 и внутренней конической поверхностью корпуса смесительного элемента 6, второй смесительной камеры 20, распложенной в корпусе смесительного элемента 6, третьей смесительной камерой 21, образованной торцом корпуса смесительного элемента 6, крышкой 22 и выходным патрубком 23.
Гидродинамический смеситель работает следующим образом: основной компонент под давлением поступает через входной осевой патрубок 4 в первую смесительную камеру 18 и попадает на упругую пластину 13, одновременно в камеру 18 подается под давлением через радиальный патрубок 2 второй компонент, затем предварительно смешанные компоненты через радиальный зазор 19 и, частично, через радиальные каналы 17, глухое отверстие 15, радиальные каналы 16, кольцевые проточки 10 поступает во вторую смесительную камеру 20. Затем обрабатываемая среда через каналы 8 проходит в третью смесительную камеру 21 и выводится из выходного патрубка 23.
Основной компонент жидкой среды, проходя через коническо-цилиндрическое сопло входного патрубка, увеличивает свою скорость движения и, попадая на упругую пластину, жестко закрепленную на торцовой поверхности цилиндрической ступени смесительного элемента, вызывает колебания. Действие использованного гидродинамическсого излучателя основано на эффекте Бернулли. Струя периодически меняет давление в зоне сопло - пластина, вызывает колебания пластины. При этом в жидкости возникают низкочастотные звуковые колебания (Ультразвук. Маленькая энциклопедия / Глав. ред. И.П. Галямина - Советская энциклопедия. 1979, с. 81).
Таким образом, в первой смесительной камере возникают звуковые колебания, которые при определенных амплитудах колебаний пластины, зависящих, в конечном итоге, от ее размеров, расхода и скорости истечения среды из сопла, могут вызвать возникновение кавитации. Начало возникновения кавитации зависит от нескольких факторов, одним из которых является частота генерируемых колебаний, причем чем она ниже, тем быстрее возникают кавитационные явления. Этот фактор использован в предлагаемой конструкции. Собственную частоту колебаний пластины, т.е. ее основной тон, можно определить по известным зависимостям для защемленной по краям круглой пластины (Л.Ф. Лепендин. Акустика. - М.: Высш. школа, 1978, с. 149-151). В результате расчетов для реальных размеров пластин получено, что основной тон может изменяться от сотен Гц до нескольких десятков кГц. Частота звуковых колебаний регулируется также изменением расстояния между выходом коническо-цилиндрического сопла и упругой пластиной.
Одновременно в первую смесительную камеру подается второй компонент через радиальный патрубок. Таким образом, в смесительной камере обрабатываемая среда подвергается интенсивному звуковому и кавитационному воздействию.
Дальнейшая обработка осуществляется в смесительном элементе. Проходя через радиальный зазор, основная часть обрабатываемой среды подвергается значительным сдвиговым напряжениям. Кольцевой радиальный зазор в продольных сечениях представляет собой ряд последовательных резких сужений и расширений, вызывающих интенсивное вихреобразование в кольцевых проточках. Для устранения застоя завихренной жидкости в кольцевых проточках, в них подается через каналы 16 предварительно озвученная жидкость в глухом отверстии 15. В глухое отверстие среда попадает через каналы 17, где подвергается дополнительному воздействию колебаний, генерируемых упругой пластиной.
Площадь поперечного сечения кольцевого радиального зазора по направлению движения обрабатываемой среды уменьшается, при этом возрастает скорость течения и, следовательно, возрастает эффективность воздействия на обрабатываемую среду.
Дальнейшее воздействие на жидкость происходит во второй и третьей смесительных камерах, в которых при резком расширении возникают вихревые течения, которые способствуют дополнительному воздействию на обрабатываемую среду. В третьей смесительной камере струи жидкости, выходящие из каналов 8, веерообразно расходятся, что приводит к взаимному их столкновению и интенсивному перемешиванию.
В предлагаемой конструкции вследствие воздействия на среду кавитации, турбулентных пульсаций, сдвиговых напряжений, ударных эффектов происходит значительное повышение эффективности технологических процессов.
Для подтверждения эффективности предлагаемого устройства по сравнению с прототипом проведен ряд экспериментов на примере получения смазочно-охлаждающей жидкости. Методика и аппаратура аналогична использованной при испытаниях прототипа. В результате установлено, что результат по времени расслаивания несмешивающихся сред - воды и масла - в предлагаемом смесителе по сравнению с лучшим результатом прототипа выше на 15..30%.
Проведенные эксперименты подтвердили высокую эффективность конструкции гидродинамического смесителя.
Claims (1)
- Гидродинамический смеситель, содержащий корпус с осевым патрубком, имеющим возможность возвратно-поступательного перемещения и выполненным в виде коническо-цилиндрического сопла, и радиальным патрубком ввода компонентов, смесительный элемент, состоящий из конической вставки, на поверхности которой выполнены кольцевые проточки, находящейся в конической части корпуса смесительного элемента, имеющего в торцовой перегородке сквозные каналы, расположенные по концентрическим окружностям, отличающийся тем, что на торце конической вставки напротив коническо-цилиндрического сопла выполнена выступающая цилиндрическая ступень, причем в цилиндрической ступени и конической вставке выполнено глухое осевое отверстие, соединенное расположенными в несколько рядов радиальными каналами с первой смесительной камерой и с кольцевыми проточками, а на торце цилиндрической ступени конической вставки установлена жестко закрепленная по периметру упругая пластина.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016117700A RU2618865C1 (ru) | 2016-05-04 | 2016-05-04 | Гидродинамический смеситель |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016117700A RU2618865C1 (ru) | 2016-05-04 | 2016-05-04 | Гидродинамический смеситель |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2618865C1 true RU2618865C1 (ru) | 2017-05-11 |
Family
ID=58715854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016117700A RU2618865C1 (ru) | 2016-05-04 | 2016-05-04 | Гидродинамический смеситель |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2618865C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU225999U1 (ru) * | 2023-12-19 | 2024-05-16 | Атаманов Константин Аполлонович | Генератор кавитации |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1889886A (en) * | 1931-04-16 | 1932-12-06 | Triple Xxx Company | Carbonating device |
SU1162469A1 (ru) * | 1984-02-20 | 1985-06-23 | Хмельницкий Технологический Институт Бытового Обслуживания | Статический смеситель |
RU2158627C1 (ru) * | 1999-03-23 | 2000-11-10 | Южно-Уральский государственный университет | Смеситель кавитационного типа |
US20120033524A1 (en) * | 2009-03-06 | 2012-02-09 | Ehrfeld Mikrotechnik Bts Gmbh | Coaxial compact static mixer and use thereof |
US8141353B2 (en) * | 2008-04-25 | 2012-03-27 | Tenneco Automotive Operating Company Inc. | Exhaust gas additive/treatment system and mixer for use therein |
CN202983543U (zh) * | 2012-12-28 | 2013-06-12 | 江苏科行环境工程技术有限公司 | 一种sncr脱硝用还原剂稀释混合装置 |
RU2553861C1 (ru) * | 2014-03-12 | 2015-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ | Гидродинамический смеситель |
-
2016
- 2016-05-04 RU RU2016117700A patent/RU2618865C1/ru not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1889886A (en) * | 1931-04-16 | 1932-12-06 | Triple Xxx Company | Carbonating device |
SU1162469A1 (ru) * | 1984-02-20 | 1985-06-23 | Хмельницкий Технологический Институт Бытового Обслуживания | Статический смеситель |
RU2158627C1 (ru) * | 1999-03-23 | 2000-11-10 | Южно-Уральский государственный университет | Смеситель кавитационного типа |
US8141353B2 (en) * | 2008-04-25 | 2012-03-27 | Tenneco Automotive Operating Company Inc. | Exhaust gas additive/treatment system and mixer for use therein |
US20120033524A1 (en) * | 2009-03-06 | 2012-02-09 | Ehrfeld Mikrotechnik Bts Gmbh | Coaxial compact static mixer and use thereof |
CN202983543U (zh) * | 2012-12-28 | 2013-06-12 | 江苏科行环境工程技术有限公司 | 一种sncr脱硝用还原剂稀释混合装置 |
RU2553861C1 (ru) * | 2014-03-12 | 2015-06-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ | Гидродинамический смеситель |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU225999U1 (ru) * | 2023-12-19 | 2024-05-16 | Атаманов Константин Аполлонович | Генератор кавитации |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2553861C1 (ru) | Гидродинамический смеситель | |
US5492654A (en) | Method of obtaining free disperse system and device for effecting same | |
US8042989B2 (en) | Multi-stage cavitation device | |
US7762715B2 (en) | Cavitation generator | |
US8480859B2 (en) | Method and apparatus for treatment of crude oil or bitumen under the conditions of auto-oscillations | |
RU2376193C1 (ru) | Способ гидродинамической очистки поверхностей объектов под водой и устройство для его осуществления | |
RU2618865C1 (ru) | Гидродинамический смеситель | |
RU2618078C1 (ru) | Гидродинамический смеситель | |
RU2600998C1 (ru) | Струйный гидравлический смеситель | |
RU2625874C1 (ru) | Гидродинамический смеситель | |
RU2336123C1 (ru) | Пластинчатый многоканальный кавитационный реактор | |
RU54816U1 (ru) | Устройство приготовления водно-мазутной эмульсии | |
RU2359763C1 (ru) | Гидравлическое кавитационное устройство | |
RU2587182C1 (ru) | Устройство для физико-химической обработки жидкой среды | |
JP4901923B2 (ja) | 微細化混合装置 | |
RU2618883C1 (ru) | Гидродинамический смеситель | |
RU2650269C1 (ru) | Устройство для обработки пищевых жидких сред | |
RU2248251C1 (ru) | Универсальный гидродинамический гомогенизирующий диспергатор | |
RU2424047C2 (ru) | Роторный аппарат | |
RU2783097C1 (ru) | Способ эмульгирования и вихревое устройство для его осуществления | |
RU85838U1 (ru) | Эжектор с газоструйными ультразвуковыми генераторами | |
RU2775588C1 (ru) | Модульный статический смеситель-активатор | |
RU159457U1 (ru) | Роторный импульсный аппарат | |
RU32005U1 (ru) | Ультразвуковое устройство для обработки жидкости | |
RU147138U1 (ru) | Роторный импульсный аппарат |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180505 |