RU2617443C2 - Коллиматор с изменяемым углом - Google Patents

Коллиматор с изменяемым углом Download PDF

Info

Publication number
RU2617443C2
RU2617443C2 RU2015103673A RU2015103673A RU2617443C2 RU 2617443 C2 RU2617443 C2 RU 2617443C2 RU 2015103673 A RU2015103673 A RU 2015103673A RU 2015103673 A RU2015103673 A RU 2015103673A RU 2617443 C2 RU2617443 C2 RU 2617443C2
Authority
RU
Russia
Prior art keywords
collimator
hole
radiation
hyperbolic paraboloid
component
Prior art date
Application number
RU2015103673A
Other languages
English (en)
Other versions
RU2015103673A (ru
Inventor
Мартин РОММЕЛ
Original Assignee
Америкен Сайнс Энд Энджиниринг, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Америкен Сайнс Энд Энджиниринг, Инк. filed Critical Америкен Сайнс Энд Энджиниринг, Инк.
Publication of RU2015103673A publication Critical patent/RU2015103673A/ru
Application granted granted Critical
Publication of RU2617443C2 publication Critical patent/RU2617443C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)
  • X-Ray Techniques (AREA)

Abstract

Изобретение относится к системе для создания управляемого излучающего пучка. Заявленная система имеет электронное управление и не содержит части, которые должны перемещаться относительно друг друга во время работы при формировании указанного пучка. Направление и поперечное сечение излучающего пучка могут иметь электронное управление при помощи управления электронным пучком. В заявленном изобретении предусмотрены различные варианты выполнения коллиматора для рентгеновского излучения, который позволяет получать сканирующий пучок рентгеновских лучей требуемого размера и интенсивности независимо от толщины материала и без необходимого перемещения отверстия или физических компонентов, образующих отверстие коллиматора. Согласно некоторым вариантам осуществления предусмотрен коллиматор для рентгеновского излучения, выполненный с возможностью создания сканирующего пучка рентгеновских лучей требуемого размера и интенсивности независимо от угла наклона пучка. Техническим результатом является оптимизация управления коллимированного излучающего пучка без необходимости физического манипулирования каким-либо физическим элементом коллиматора. 3 н. и 17 з.п. ф-лы, 7 ил., 32 пр.

Description

Перекрестная ссылка на родственные заявки
[0001] Настоящая патентная заявка испрашивает приоритет по предварительной заявке США №61/668,268, поданной 5 июля 2012 г., название которой "Коллиматор с изменяемым углом", а в качестве автора которой указан Мартин Роммель (Martin Rommel) [файл 1945/В62], содержание которой полностью включено в настоящее описание посредством ссылки.
Область техники, к которой относится изобретение
[0002] Настоящее изобретение относится к источникам рентгеновского излучения, а более конкретно - к коллиматорам.
Уровень техники
[0003] Формирование изображения посредством обратного рассеяния рентгеновского излучения основано на сканировании объекта хорошо коллимированным пучком, часто называемым "игольчатым пучком". В прошлом эти пучки также широко использовали для рентгеновской трансмиссионного формирования изображения, однако в настоящее время в методах трансмиссионного формирования изображения доминируют веерообразные и конусообразные пучки в сочетании с мозаичными детекторами.
[0004] Существует два традиционно используемых подхода для формирования коллимированного сканирующего пучка. Оба подхода основаны на применении стационарного источника рентгеновского излучения и перемещаемой диафрагмы. В обоих случаях излучение от стационарного источника рентгеновского излучения вначале коллимируется в веерообразный пучок при помощи стационарного коллиматора. Затем подвижная часть с отверстием образует сканирующий пучок. Подвижная часть представляет собой вращающийся диск с радиальными щелями, либо колесо с отверстиями по периметру. Вращающийся диск перекрывает веерообразный пучок с образованием сканирующего пучка из излучения, проходящего через щели, которые расположены перпендикулярно длине отверстия для веерообразного пучка. Такой подход использован, например, в патенте США 3,780,291, авторов Стейн и Свифт (Stein и Swift), 1973, см. фиг. 1А. Согласно другому подходу подвижный элемент образован колесом с радиальными отверстиями, вращающимся вокруг источника рентгеновского излучения. Если источник расположен в центре колеса, сканирующий пучок распространяется в радиальном направлении с угловой скоростью колеса.
[0005] Предложены также другие подходы для получения коллимированного пучка от стационарного источника рентгеновского излучения, например, с использованием вращающегося цилиндра со спиральной канавкой, согласно патенту США 5,493,596, 1996, автора Аннис (Annis).
[0006] Предлагаются и другие конфигурации систем с перемещающимися источниками рентгеновского излучения. Перемещение источника рентгеновского излучения обычно обеспечено не за счет перемещения рентгеновской трубки, а в результате перемещения (сканирования) электронного пучка вдоль увеличенного анода. Это создает перемещаемую фокусную точку источника рентгеновского излучения (фокальное пятно электронного пучка), положением которой возможно управлять с использованием электронных средств. Перемещаемая фокусная точка источника рентгеновского излучения, позволяет получать сканирующий рентгеновский луч посредством простой стационарной диафрагмы (с точечным отверстием) на некотором расстоянии от этой точки. Когда фокусная точка источника рентгеновского излучения перемещается от одного конца траектории сканирования к другому, сканирующий пучок рентгеновских лучей, выходящий из диафрагмы, перекрывает угловой диапазон. Вариантом осуществления этой конфигурации является, например, часть системы, описанной в патенте США 4,045,672, автора Ватанабе (Watanabe) 1977, см. также фиг. 1В.
[0007] Когда пучок рентгеновских лучей перекрывает угловой диапазон, площадь поперечного сечения пучка изменяется в соответствии с косинусом угла между пучком и нормалью к плоскости диафрагмы. Если угловой диапазон мал, изменение пучка ограничено, и им можно пренебречь. Однако, если требуется большой угловой диапазон, этот эффект становится значительным. Так, например, для углового диапазона 120° угол по краям относительно нормали, равный 60°, приводит к уменьшению размера пучка и переносимой им интенсивности по меньшей мере на 50%, поскольку косинус 60° равен одной второй.
[0008] В действительности изменение пучка является еще большим, поскольку материал с точечным отверстием имеет конечную толщину, что приводит к дополнительному уменьшению площади поперечного сечения пучка при увеличении угла. Эта проблема является более серьезной в случае рентгеновского излучения с высокой энергией, которая требует увеличения толщины экранирующего материала для материала диафрагмы с точечным отверстием.
[0009] Чтобы обеспечить применение экранирующего материала с высокой толщиной и исключить угловые изменения, было предложено заменить диафрагму с точечным отверстием на вращающийся цилиндр, который имеет отверстие, перпендикулярное оси, как описано в патенте США 6356620, 2002, авторов Ротшильд (Rothschild) и Гродзинс (Grodzins), см.также фиг. 1С. Такой цилиндр выполнен с обеспечением вращения синхронно со сканирующим электронным пучком, чтобы перемещаемая фокусная точка источника рентгеновского излучения в любой момент времени совмещалась с отверстием. Этот подход решает обе проблемы конструкции простой диафрагмы с точечным отверстием: он позволяет получать пучок постоянного размера независимо от угла пучка и не ограничивает толщину материала диафрагмы. Однако такое активное решение приводит к значительному повышению стоимости и сложности по сравнению с пассивной диафрагмой с точечным отверстием. Оно также в большой степени исключает значительные эксплуатационные возможности, которые обеспечивают возможность электронного управления электронным пучком.
Раскрытие изобретения
[0010] Коллиматор с изменяемым углом позволяет создавать хорошо управляемый коллимированный излучающий пучок без необходимости физического манипулирования каким-либо компонентом коллиматора. Угол коллимированного пучка может иметь полностью электронное управление посредством управления электронным пучком, падающим на анод.
[0011] В первом варианте осуществления система для создания управляемого излучающего пучка содержит источник излучения, выполненный с возможностью создания излучения, направленного под углом к коллиматору, а также с возможностью электронного управления величиной указанного угла; и коллиматор, содержащий материал, непроницаемый для излучения, создаваемого источником излучения, а также отверстие для приема излучения от источника излучения под множеством углов падения, и выполненный с возможностью пропускания части излучения через коллиматор под каждым из множества углов падения для получения коллимированного излучающего пучка имеющего некоторое поперечное сечение, при этом коллиматор и источник излучения выполнены и установлены так, чтобы оставаться неподвижными по отношению друг к другу при создании управляемого излучающего пучка.
[0012] Источник излучения может содержать источник электронов и анод, выполненные и установленные таким образом, что источник электронов облучает анод пучком электронов, имеющим электронное управление для создания перемещаемой фокусной точки источника излучения.
[0013] Отверстие и, следовательно, поперечное сечение полученного излучающего пучка может иметь любую из множества форм, в частности, ромбическую, квадратную и прямоугольную форму. В некоторых вариантах осуществления форма отверстия диафрагмы (и, следовательно, поперечного сечения полученного пучка) может изменяться как функция угла падения излучения относительно отверстия диафрагмы.
[0014] Различные варианты осуществления коллиматора представляют собой множество конструкций. Так, например, в одном варианте осуществления коллиматор имеет несколько поверхностей, при этом отверстие представляет собой сложное отверстие, полученное благодаря совместному действию первого отверстия на первой поверхности коллиматора и второго отверстия на второй поверхности коллиматора.
Например, первая поверхность может представлять собой поверхность первой пластины, а вторая поверхность - поверхность второй пластины, расположенной параллельно первой пластине.
[0015] Еще в одном варианте осуществления коллиматор включает первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и второй компонент, имеющий вторую поверхность, которая также представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента так, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием в коллиматоре сквозного отверстия. В некоторых вариантах осуществления коллиматор представляет собой цилиндр со спиральным вырезом.
[0016] Способ облучения мишени коллимированным излучающим пучком, согласно которому берут управляемый источник излучения, выполненный и установленный с возможностью облучения коллиматора, берут коллиматор, содержащий гиперболическое параболоидное отверстие, имеющее вход и выход, и расположенный неподвижно относительно управляемого источника излучения, получают коллимированный излучающий пучок с множеством углов выхода путем облучения входа гиперболического параболоидного отверстия диафрагмы облучающим излучением под первым углом облучения, так что часть облучающего излучения проходит через коллиматор и выходит из коллиматора под первым углом выхода, и облучения входа гиперболического параболоидного отверстия диафрагмы облучающим излучением под вторым углом облучения, отличным от первого угла облучения, так, что часть облучающего излучения проходит через коллиматор и выходит из коллиматора под вторым углом выхода, отличным от первого угла выхода с обеспечением возможности облучения мишени излучением, выходящим из коллиматора под первым углом выхода и под вторым углом выхода.
[0017] В качестве коллиматора может быть взят коллиматор, содержащий входную пластину, которая имеет первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, и выходную пластину, которая имеет третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны, так, что проекция первого удлиненного отверстия пересекает второе удлиненное отверстие под углом, не равным нулю, а пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образует ромбическое отверстие, выполненное с возможностью обеспечения прохождения излучения через него без контакта с входной пластиной и без контакта с выходной пластиной.
[0018] В качестве коллиматора может также быть взят коллиматор, содержащий первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и второй компонент, имеющий вторую поверхность, которая также представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, при этом первый элемент расположен относительно второго компонента так, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием в коллиматоре сквозного гиперболического параболоидного отверстия.
[0019] В некоторых вариантах осуществления получение коллимированного пучка под первым углом включает получение коллимированного пучка, имеющего первую форму в поперечном сечении, а получение коллимированного пучка под вторым углом включает получение коллимированного пучка, имеющего вторую форму в поперечном сечении, при этом вторая форма является отличной от первой формы.
[0020] Еще в одном варианте осуществления система для получения управляемого излучающего пучка содержит средства источника излучения для получения точечного источника с электронным управлением и коллимирующие средства, содержащие отверстие, которое предназначено для пропускания части облучающего излучения, падающего на указанные коллимирующие средства, при этом средства источника излучения расположены относительно коллимирующих средств с обеспечением их неподвижности относительно коллимирующих средств и облучения отверстия падающим излучением от управляемого точечного источника излучения, при этом отверстие создает управляемый излучающий пучок.
[0021] Коллимирующие средства могут включать первый компонент, имеющий первую гиперболическую параболоидную поверхность, и второй компонент, имеющий вторую гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента с обеспечением расположения первой гиперболической параболоидной поверхности напротив второй гиперболической параболоидной поверхности, а также с обеспечением отделения первой гиперболической параболоидной поверхности от второй гиперболической параболоидной поверхности промежутком, при этом первый компонент и второй компонент образуют отверстие, пересекающее указанный промежуток.
[0022] Коллимирующие средства могут также включать первый компонент, имеющий первую модифицированную гиперболическую параболоидную поверхность, и второй компонент, имеющий вторую модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента с обеспечением возможности расположения первой модифицированной гиперболической параболоидной поверхности напротив второй модифицированной гиперболической параболоидной поверхности, и отделения первой модифицированной гиперболической параболоидной поверхности от второй модифицированной гиперболической параболоидной поверхности промежутком, при этом указанный промежуток является непостоянным, а первый компонент и второй компонент образуют отверстие, пересекающее указанный промежуток.
Краткое описание чертежей
[0023] Вышеуказанные характеристики вариантов осуществления более понятны из следующего подробного описания со ссылками на прилагаемые чертежи, на которых показаны:
[0024] на фиг. 1А-1С схематично изображены коллиматоры, известные из уровня техники;
[0025] на фиг. 2A-2I схематично изображен коллиматор согласно одному варианту осуществления;
[0026] на фиг. 2J-2K схематично изображен коллиматор согласно еще одному варианту осуществления;
[0027] на фиг. 2L схематично изображено поперечное сечение коллимированного пучка, имеющего форму дельтоида;
[0028] на фиг. 3А-С схематично изображена виртуальная гиперболическая параболоидная поверхность;
[0029] на фиг. 4А-С схематично изображен коллиматор согласно еще одному варианту осуществления;
[0030] на фиг. 5А-5Е схематично изображен коллиматор в виде цилиндра со спиральным вырезом согласно еще одному варианту осуществления;
[0031] на фиг. 6А-С схематично изображен коллиматор согласно еще одному варианту осуществления;
[0032] На фиг. 7 схематично изображен вариант осуществления коллиматорного блока с модифицированной гиперболической параболоидной поверхностью и второй пластиной.
Осуществление изобретения
[0033] Согласно различным вариантам осуществления изобретения предложен коллиматор для рентгеновского излучения, который позволяет получать пучок сканирующих рентгеновских лучей требуемого размера и интенсивности независимо от толщины материала отверстия без необходимости перемещения отверстия или физических компонентов, которые образуют отверстие. Согласно некоторым вариантам осуществления изобретения предложен коллиматор для рентгеновского излучения, обеспечивающий получение пучка сканирующих рентгеновских лучей требуемого размера и интенсивности независимо от угла пучка.
[0034] В различных вариантах осуществления коллиматор из стационарных частей создает пучок (например, игольчатый пучок) от квазиточечного источника излучения, при этом площадь поперечного сечения игольчатого пучка изменяется заданным образом в зависимости от угла падения. В частности, некоторые варианты осуществления позволяют получать игольчатые пучки, площадь поперечного сечения которых не зависит от угла падения. В некоторых вариантах осуществления коллиматор с изменяемым углом содержит материалы, ослабляющие излучение, неподвижно установленные таким образом, чтобы эффективно коллимировать излучение квазиточечного источника в пучок (например, в игольчатый пучок) для определенного диапазона углов падения, и при этом поперечное сечение пучка является функцией угла падения.
[0035] Например, угол пучка возможно установить путем управления положением фокальной точки источника электронного пучка, падающего на анод. Такой электронный пучок допустимо характеризовать как "управляемый". Источник электронного пучка вместе с анодом, можно описать как источник излучения, выполненный с возможностью создания излучения, направленного под углом относительно коллиматора, при этом указанный угол выполнен с возможностью управления электронными средствами.
[0036] Фокальная точка становится источником рентгеновского излучения. При этом управляемое перемещение электронного пучка обеспечивает управление фокальной точкой и, следовательно, обеспечивает управление положением источника рентгеновского излучения. Управление положением источника рентгеновского излучения, в свою очередь, обеспечивает управление углом, под которым рентгеновские лучи падают на коллиматор, и, следовательно, обеспечивает управление направлением пучка рентгеновских лучей в направлении от коллиматора. Эти особенности позволяют, например, производить пошаговое сканирование созданного пучка рентгеновских лучей и/или изменять скорость сканирования и/или изменять угловой диапазон сканирования. Такой источник рентгеновского излучения возможно характеризовать как "регулируемый" или "управляемый", поскольку его положением (например, на аноде и/или относительно отверстия в коллиматоре) возможно управлять электронными средствами.
[0037] Коллиматор согласно первому варианту осуществления 200 схематически показан на фиг. 2А-2Н и содержит первую пластину 210 и вторую пластину 220. Первая пластина 210 имеет первую сторону 210А и вторую сторону 210В и является непроницаемой для того типа излучения, для которого предназначен коллиматор 200.
Например, если коллиматор 200 предназначен для коллимирования рентгеновских лучей, то первая пластина 210 является непроницаемой для рентгеновских лучей.
[0038] Первая пластина 210 имеет удлиненное отверстие 211, которое проходит насквозь между первой стороной 210А и второй стороной 210В с целью пропускания излучения, для которого остальная часть первой пластины 210 является непроницаемой. В этом варианте осуществления удлиненное отверстие 211 имеет прямоугольную форму, однако возможно использование и других форм в различных вариантах осуществления.
[0039] Кроме того, коллиматор 200 содержит также вторую пластину 220, которая имеет первую сторону 220С и вторую сторону 220D, а также имеет удлиненное отверстие 221, которое проходит насквозь между первой стороной 220С и второй стороной 220D с целью пропускания излучения, для которого остальная часть второй пластины 220 является непроницаемой. В этом варианте осуществления удлиненное отверстие 221 имеет прямоугольную форму, однако возможно использование и других форм в различных вариантах осуществления. Как показано на фиг. 2А и 2В, отверстия 211 и 221 расположены под разными углами.
[0040] В коллиматоре 200 первая пластина 210 и вторая пластина 220 расположены параллельно друг другу и отделены друг от друга промежутком "d" 240, как схематически показано на фиг. 2С. Пластины 210, 220 установлены таким образом, чтобы удлиненные отверстия были расположены под углом относительно друг друга, например так, что проекция удлиненного отверстия 211 на удлиненное отверстие 221 образует X-образную форму. В некоторых вариантах осуществления удлиненное отверстие 211 расположено таким образом, что его проекция на удлиненное отверстие 221 пересекает отверстие 221 под прямыми углами (т.е. с образованием формы "+").
[0041] В таких конфигурациях первая пластина 210 и вторая пластина 220 блокируют почти все излучение (254) от анода 250, за исключением того, что первое отверстие 211 и второе отверстие 221, действуя совместно, образуют ромбическое отверстие, через которое некоторая часть излучения может проходить без контакта с первой пластиной 210 (которую также называют входной пластиной) и без контакта со второй пластиной 220 (которую называют выходной пластиной). Более конкретно, проекция первого удлиненного отверстия 211 пересекает второе удлиненное отверстие 221 под углом, не равным нулю, при этом пересечение проекции первого удлиненного отверстия 211 и второго удлиненного отверстия 221 образует ромбическое отверстие, через которое излучение может проходить без контакта с входной пластиной 210 и без контакта с выходной пластиной 220. Таким образом, все излучение, падающее на входную пластину 210, блокируется, за исключением той части падающего излучения, которая проходит сквозь первое удлиненное отверстие 211. Все это излучение, в свою очередь, блокируется второй пластиной 220, за исключением той части излучения, которая проходит сквозь второе удлиненное отверстие 221. Иными словами, все падающее излучение блокируется коллиматором 200 за исключением той части излучения, которая достигает коллиматора 200 под углом, обеспечивающим совмещение направления к первому удлиненному отверстию 211 и второму удлиненному отверстию 221. Таким образом, первое удлиненное отверстие 211 и второе удлиненное отверстие 221 могут быть описаны как образующие комбинированное отверстие 270.
[0042] Автор изобретения установил, что коллиматор 200 имеет полезную функцию, в соответствии с которой комбинированное отверстие 270, образованное в результате совместного действия первого отверстия 211 и второго отверстия 221, оказывает действие на излучение, падающее под множеством углов. Иными словами, коллиматор 200 предоставляет комбинированное отверстие (т.е. для прохождения сквозь коллиматор 200) для излучения, подходящего к коллиматору 200 из множества направлений, без какой-либо необходимости перемещения первой пластины 210 и/или второй пластины 220 или манипулирования ими. Таким образом, коллимированный пучок излучения 260 выходит из коллиматора 200, и направление этого коллимированного пучка изменяется в зависимости от местоположения источника излучения.
[0043] Более конкретно, источник 251 (который упомянут как "точечный источник") излучения облучает коллиматор 200 из одной из нескольких позиций. Так, например, на фиг. 2С источником 251 излучения является фокальная точка электронного пучка на аноде 250. Излучение 254 выходит из этой точки 251 под множеством углов, однако, только часть этого излучения, в данном примере - излучение вдоль вектора 255А, достигает коллиматор 200 в направлении, которое обеспечивает прохождение излучения, как через первое отверстие 211, так и через второе отверстие 221, с образованием коллимированного излучающего пучка 260А.
[0044] Наглядные примеры комбинированного отверстия 270,образованного в результате совместного действия отверстий 211 и 221, схематически показаны на фиг. 2D-2Н. На каждом чертеже коллимированный пучок рентгеновских лучей образован падающим излучением, проходящим через пересекающуюся ромбическую проекцию двух отверстий 211, 221 (которые также называют прорезями), если смотреть со стороны точечного источника (251) излучения. На фиг. 2F угол пучка является нормальным к пластинам 210, 220 коллиматора (т.е. угол α между вектором падающего излучения (например, 255В) и вектором, нормальным к поверхности 210А пластины 210, равен нулю), при этом комбинированное отверстие 270 (и, следовательно, пучок, например 260В) имеет квадратную форму. Для сравнения на фиг. 2С схематически показан отличный от нуля угол α пучка между вектором 259, нормальным к поверхности 210А пластины 210, и вектором 255А луча.
[0045] Если точечный источник 251 рентгеновского излучения перемещается вверх или вниз, угол α пучка изменяется, и высота j (271, см. например, фиг. 2I) ромбического отверстия 270 уменьшается как функция cos(α). При этом отверстие имеет боковой сдвиг на величину 0,5d tg(α), где d (240) - расстояние между пластинами коллиматора.
[0046] Например, согласно вышеуказанному, если падающее излучение (от точечного источника излучения) является нормальным к поверхности 210A коллиматора 200, отверстие 270 оказывается вблизи центра коллиматора 200. Альтернативно этому, если падающее излучение (от точечного источника излучения) подходит к поверхности 210А коллиматора 200 под другим углом, отверстие оказывается в другом месте (например, смещенным от центра), как, например, на фиг. 2D, 2Е, 2G и 2Н. В этом варианте 200 осуществления, если угол пучка изменяется между +45° и -45°, диапазон бокового смещения отверстия равен расстоянию d между пластинами. В некоторых вариантах осуществления траекторию точечного источника рентгеновского излучения можно регулировать, чтобы компенсировать боковое смещение отверстия и, таким образом, поддерживать прямолинейность сканирования.
[0047] Таким образом, для управления пучком коллимированного излучения можно изменять или управлять направлением электронного пучка известными способами, при этом фокальную точку 251 электронного пучка можно перемещать в другое место на аноде 250. Поскольку фокальная точка 251 представляет собой источник излучения, который облучает коллиматор 200, обеспечено эффективное управление этим источником излучения, в результате чего излучение подходит кколлиматору 200 под другим углом. Например, фокальная точка 251 излучения может быть перемещена для создания облучающего излучения вдоль вектора 255В или 255С. На практике положение фокальной точки можно изменять пошагово или непрерывно, чтобы создавать излучение из множества направлений. При каждом положении фокальной точки 241 образуется коллимированный пучок, который выходит из коллиматора 200 под углом, изменяющимся в зависимости от положения фокальной точки 251. Например, излучение вдоль вектора 255А создает коллимированный пучок 260А, излучение вдоль вектора 255В создает коллимированный пучок 260В, а излучение вдоль вектора 255С создает коллимированный пучок 260С. При этом направлением коллимированного излучающего пучка возможно управлять элеткронными средствами без физического перемещения какого-либо конструктивного элемента коллиматора или без манипулирования им, а также без физического перемещения какого-либо конструктивного элемента источника излучения или без манипулирования им.
[0048] Виртуальная поверхность между двумя пластинами 210, 220 коллиматора, имеющими прорезями, которые ограничивают пучок рентгеновских лучей, выполнена в форме гиперболического параболоида, определяемого функцией z(x,y)=ху. Такая виртуальная поверхность 300 схематически показана на фиг. 3А-3С, где темными линиями 301 изображены возможные положения пучка.
[0049] Альтернативный вариант осуществления 280 схематически показан на фиг. 2J и 2K и содержит третью или промежуточную пластину 230. Пластина 230 имеет первую сторону 230Е и вторую сторону 230F и является непроницаемой для того типа излучения, для которого предназначен коллиматор 280. Промежуточная пластина 230 также имеет отверстие 231 и расположена между пластинами 210 и 220 таким образом, что виртуальная гиперболическая параболоидная поверхность 300 проходит через отверстие 231 и, следовательно, образует часть комбинированного отверстия 270 с обеспечением прохождения некоторой части излучения через коллиматор 280. Такой вариант осуществления может повышать степень непроницаемости коллиматора (т.е. непроницаемость коллиматора), и может дополнительно повышать качество коллимированного пучка. В некоторых вариантах осуществления например, в симметричной конструкции, для которой углы прорезей для входа и выхода пучка являются одинаковыми, пластина 230 имеет в центре горизонтальную прорезь 231.
[0050] В другом варианте осуществления коллиматор 400 образован не несколькими пластинами, а двумя обращенными друг к другу блоками 401, 402, каждый из которых имеет гиперболическую параболоидную поверхность, как схематически показано на фиг. 4А-4С. Иными словами, такой вариант осуществления содержит две реальных, а не виртуальных поверхности между входным и выходным отверстиями.
[0051] На фиг. 4А схематически показан один такой блок 401, который имеет гиперболическую параболоидную поверхность 401А. Блоки 401, 402 действуют совместно с образованием выходного отверстия 470, аналогичного комбинированному отверстию 270, образованному пластинами 210 и 220 и описанному выше. Вкратце, отверстие 470 селективно пропускает излучение от источника в зависимости от угла, под которым это излучение падает на коллиматор 400, при этом результирующим коллимированным лучом можно управлять путем управления положением источника излучения. Видимое перемещение этого отверстия 470 схематически показано различными положениями отверстия 470 на фиг. 4В и фиг. 4С.
[0052] На фиг. 5А-5Е схематически показан вариант осуществления цилиндрического коллиматора 500 со спиральным вырезом. В общем случае такой вариант 500 осуществления представляет собой коллиматор с изменяемым углом, который состоит из прямого кругового цилиндра 501 с цилиндрической осью 503 и щелью 502. Щель 502 проходит через весь цилиндр 501 и закручивается по винтовой линии вдоль оси 503.
[0053] Вид с частичным вырезом варианта осуществления коллиматора 500 схематически показан на фиг. 5В, где представлена граничная поверхность 501В. Граничная поверхность 501В и цилиндрическая поверхность 501С образуют кромки 501D щели. В некоторых вариантах осуществления каждая из кромок 501D щели образует спираль, проходящую вокруг оси 503 цилиндра. При этом граничную поверхность 501В, которая представляет собой поверхность, расположенную между спиральными кромками 501D, можно характеризовать как "спиральную поверхность". Поверхность 501А также представляет собой спиральную поверхность, поэтому щель 502 можно описать как "спиральную щель". Если альтернативно этому указать, что щель 502 имеет спиральную форму, то граничные поверхности 501А, 501В щели 502 образуют двойную спираль (или перекрываются двойной спиралью), как схематически показано на фиг. 5А.
[0054] В одном варианте осуществления щель 502 на радиусе 504 цилиндра 501 (т.е. на поверхности 501С цилиндра 501) образует угол 520, равный 45°, с направлением оси 503 цилиндра 501, что приводит к квадратной форме отверстия 510. См., например, щель 502 на фиг. 5D.
[0055] В некоторых вариантах осуществления щель 502 имеет постоянную ширину 502А, которая образует поперечное сечение пучка, которое не зависит от угла. Например, у отверстия 510 сохранена квадратная форма для множества углов, как схематически показано на фиг. 5С-5Е.
[0056] В другом варианте 600 осуществления, схематически показанном на фиг. 6А-6С, высота h 605 промежутка 604 между двумя поверхностями 601А, 602А двух обращенных друг к другу блоков 601, 602, образующих криволинейную щель 603 коллиматора, является непостоянной, как, в частности, в варианте 400 осуществления, показанном на фиг. 4А-4С. Напротив, высота h 605 промежутка 604 увеличивается как функция секанса угла α пучка:
Figure 00000001
[0057] Таким образом, сохраняется пучок рентгеновских лучей с постоянной площадью поперечного сечения, независимой от угла пучка относительно гиперболической параболоидной поверхности, поскольку поперечное сечение пучка сохраняется квадратным или приближенным к квадратному.
[0058] Использование только высоты, независимой от угла, с целью модификации спиральной щели 603 коллиматора приводит к получению поверхностей, которые определяются формулой:
[0059]
Figure 00000002
[0060] Эти поверхности сохраняют постоянную высоту h пучка поперечного сечения, однако, квадратная форма, полученная для α=0 (где α=0 - угол, нормальный к поверхности коллиматора), теряется при увеличении угла α. Для сохранения квадратного или приближенного к квадратному поперечного сечения пучка наклон прорезей на входной и входной поверхностях коллиматора необходимо увеличивать, поскольку угол пучка увеличивается. Таким образом, центральная поверхность прорези задана не выражением z(x,у)=х-у, а выражением:
Figure 00000003
или его аппроксимацией. Если высота задана как
Figure 00000004
отверстие сохраняет квадратную форму, но уменьшается в размере при увеличении угла. Высота, заданная выражением cosh(y), обеспечивает сохранение постоянной площади поперечного сечения.
[0061] Центральная поверхность (h=0) остается линейной в направлении х, поскольку это является направлением прямолинейного пучка. Пример модифицированной гиперболической параболоидной поверхности показан на фиг. 6А-6С. На фиг. 6В и 6С схематически изображен коллиматор 600, образованный двумя обращенными друг к другу блоками 601, 602, которые формируют выходное отверстие 670.
[0062] Видоизменение гиперболических параболоидных поверхностей коллиматора не только позволяет получать площадь поперечного сечения пучка, независимую от угла пучка, но также позволяет получать определенное изменение площади поперечного сечения как функции угла пучка. Сохранение постоянной площади поперечного сечения пучка представляет собой особый случай управления этой площадью. Управление площадью поперечного сечения пучка как функцией угла пучка обеспечивает осуществление конструкции с модулированными формами и дозами облучения (интенсивностями), которые обеспечиваются коллимированным пучком. В различных вариантах осуществления контуры отверстия в коллиматоре можно конфигурировать таким образом, чтобы получить любую из множества форм поперечного сечения пучка, несколькими примерами которых являются, в частности, ромбическая (например, ромбическое отверстие 270 на фиг. 2I), прямоугольная или квадратная форма (например, квадратное отверстие 10 на фиг. 5С) или даже дельтоидная форма (например, отверстие 299 на фиг. 2L). В общем случае отверстие коллиматора выполнено с возможностью конфигурирования таким образом, чтобы создать пучок с размером и формой (поперечным сечением), которые по мнению конструктора системы являются полезными для условий применения, на которые рассчитана система.
[0063] По сравнению с коллиматором, имеющим точечное отверстие, в различных вариантах осуществления может быть создано увеличенное рассеяние, которое возможно уменьшить путем увеличения толщины коллиматора (например, коллиматора 400) или более эффективно - путем добавления одной или более дополнительных вторичных пластин на выходной стороне коллиматора. Такой вариант 700 осуществления схематически показан на фиг. 7 и содержит пластину 701, расположенную рядом с коллиматором 702. Коллиматор 702 может представлять собой любой из коллиматоров, например, описанный выше со ссылками на фиг. 2А-6С. Прорезь в пластине пластина 701 включает отверстие 703, предназначенное для того, чтобы освободить путь для основного пучка 710, выходящего из коллиматора 702.
[0064] Систему для получения коллимированного излучающего пучка можно описать как содержащую источник излучения и коллиматор согласно одному из вариантов осуществления, описанных выше, а также цепи управления источником излучения, чтобы обеспечить управление углом, под которым излучение от источника падает на коллиматор. Способ получения управляемого коллимированного излучающего пучка может включать обеспечение коллиматора согласно одному из вариантов осуществления, описанных выше, и облучение коллиматора излучением от источника излучения под множеством углов, чтобы, таким образом, управлять углом коллимированного пучка, выходящего из коллиматора.
[0065] Некоторые варианты осуществления обеспечивают коллиматор с изменяемым углом, который содержит входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны с обеспечением того, чтобы проекция первого удлиненного отверстия пересекала второе удлиненное отверстие под углом, не равным нулю, и чтобы пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образовывало ромбическое отверстие, через которое излучение может проходить без контакта с входной пластиной и без контакта с выходной пластиной.
[0066] В некоторых вариантах осуществления угол, не равный нулю, представляет собой прямой угол.
[0067] Некоторые варианты осуществления включают также промежуточную пластину, имеющую третье сквозное отверстие. Промежуточная пластина расположена между входной пластиной и выходной пластиной, при этом третье отверстие совмещается с первым удлиненным отверстием и вторым удлиненным отверстием под множеством углов, таким образом, первое удлиненное отверстие, второе удлиненное отверстие и третье отверстие образуют ромбическое отверстие (или отверстие другой многоугольной формы), через которое излучение может проходить без контакта с входной пластиной, выходной пластиной и промежуточной пластиной. В некоторых вариантах осуществления третье отверстие представляет собой удлиненное отверстие, при этом в некоторых вариантах осуществления третье отверстие является прямоугольным отверстием.
[0068] Другой вариант осуществления коллиматора с изменяемым углом содержит первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и второй компонент, также имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность. Первый компонент расположен относительно второго компонента с обеспечением обращения первой поверхности ко второй поверхности и отделения от второй поверхности промежутком, с обеспечением образования в коллиматоре сквозного гиперболического параболоидного отверстия.
[0069] В некоторых вариантах осуществления первая поверхность представляет собой модифицированную гиперболическую параболоидную поверхность, и вторая поверхность также является модифицированной гиперболической параболоидной поверхностью, при этом промежуток между первой поверхностью и второй поверхностью является непостоянным.
[0070] В другом варианте осуществления система сканирования излучения содержит источники излучения, выполненный с возможностью излучающего пучка, направляемого под множеством углов, и коллиматор, имеющий гиперболическое параболоидное отверстие с входом и выходом. В некоторых вариантах осуществления коллиматор содержит входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны с обеспечением того, чтобы проекция первого удлиненного отверстия пересекала второе удлиненное отверстие под углом, не равным нулю, и пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образовывало ромбическое отверстие, через которое излучение, направляемое от источника излучения под множеством углов, может проходить без контакта с входной пластиной и без контакта с выходной пластиной.
[0071] В некоторых вариантах осуществления коллиматор содержит первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и второй компонент, имеющий вторую поверхность, которая также представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность. При этом первый компонент расположен относительно второго компонента обеспечением обращения первой поверхности ко второй поверхности и отделения от второй поверхности промежутком, образующим сквозное гиперболическое параболоидное отверстие в коллиматоре.
[0072] Способ облучения мишени коллимированным излучающим пучком включает обеспечение коллиматора, имеющего гиперболическое параболоидное отверстие с входом и выходом, облучение входа гиперболического параболоидного отверстия облучающим излучением под первым углом облучения с обеспечением того, чтобы часть облучающего излучения проходила через коллиматор и выходила из коллиматора через четвертую поверхность под первым углом выхода, облучение входа гиперболического параболоидного отверстия облучающим излучением под вторым углом облучения с обеспечением того, чтобы часть облучающего излучения проходила через коллиматор и выходила из коллиматора через четвертую поверхность под вторым углом выхода, отличным от первого угла выхода.
[0073] В некоторых вариантах осуществления обеспечение коллиматора включает обеспечение коллиматора, содержащего входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны с обеспечением того, чтобы проекция первого удлиненного отверстия пересекала второе удлиненное отверстие под углом, не равным нулю, и чтобы пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образовывало ромбическое отверстие, через которое излучение может проходить без контакта с входной пластиной и без контакта с выходной пластиной.
[0074] В некоторых вариантах осуществления обеспечение коллиматора включает обеспечение коллиматора, содержащего первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, второй компонент, имеющий вторую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго элемента компонента с обеспечением обращения первой поверхности ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с обеспечением образования сквозного гиперболического параболоидного отверстия в коллиматоре.
[0075] В другом варианте осуществления обеспечен коллиматор с изменяемым углом, содержащий цилиндрический корпус, который имеет цилиндрическую поверхность и ось, а также спиральную щель, проходящую сквозь корпус, при этом спиральная щель образует первую граничную поверхность и вторую граничную поверхность, и при этом первая граничная поверхность отделена промежутком от второй граничной поверхности. В некоторых вариантах осуществления промежуток представляет собой постоянное расстояние между первой граничной поверхностью и второй граничной поверхностью цилиндрической поверхности.
[0076] Определения. Следующие термины, используемые в настоящем описании и прилагаемой формуле изобретения, имеют указанные ниже значения, если согласно соответствующему контекст не предполагается иное.
[0077] Гиперболическая параболоидная поверхность представляет собой поверхность, определяемую следующей формулой, где z - высота промежутка между противоположными поверхностями, образующими отверстие, а х и у - координаты на осях прямоугольных координат в плоскости, нормальной z.
[0078]
Figure 00000005
[0079] В некоторых вариантах осуществления гиперболическую параболоидную поверхность определяют при помощи следующей формы предыдущей формулы:
[0080]
Figure 00000006
[0081] Модифицированная гиперболическая параболоидная поверхность представляет собой гиперболическую параболоидную поверхность, модифицированную, как описано применительно к фиг. 7.
[0082] Гиперболическое параболоидное отверстие представляет собой сквозной канал коллиматора, имеющий по меньшей мере один контур в форме гиперболической параболоидной поверхности или модифицированной гиперболической параболоидной поверхности.
[0083] Различные варианты осуществления настоящего изобретения могут быть охарактеризованы потенциальной формулой изобретения, представленной в абзацах, следующих за данным абзацем (и перед действительной формулой изобретения, приведенной в конце данной заявки). Эта потенциальная формула изобретения составляет часть письменного описания данной заявки. Соответственно, суть следующей потенциальной формулы изобретения может быть представлена в виде действительной формулы изобретения в следующих работах, включающих данную заявку, или в какой-либо заявке, и спрашивающий приоритет на основании настоящей заявки. Включение такой потенциальной формулы изобретения не следует рассматривать таким образом, что действительная формула изобретения не охватывает суть потенциальной формулы изобретения. Поэтому решение не представлять эту потенциальную формулу изобретения в последующие работы не следует рассматривать как безвозмездную публичную передачу сути изобретения.
[0084] Без ограничения потенциальный предмет изобретения, который может быть заявлен (пункты снабжены предшествующей буквой "Р", чтобы избежать смешения с пунктами действительной формулы изобретения, представленной ниже) включает:
[0085] Р1. Коллиматор с изменяемым углом, содержащий: входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны с обеспечением того, чтобы проекция первого удлиненного отверстия пересекала второе удлиненное отверстие под углом, не равным нулю, и чтобы пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образовывало ромбическое отверстие, через которое излучение может проходить без контакта с входной пластиной и без контакта с выходной пластиной.
[0086] Р2. Коллиматор с изменяемым углом по потенциальному п. Р1, отличающийся тем, что указанный угол, не равный нулю, представляет собой прямой угол.
[0087] Р3. Коллиматор с изменяемым углом по потенциальному п. Р1, отличающийся тем, что он содержит также промежуточную пластину, имеющую третье отверстие, которое проходит сквозь промежуточную пластину, при этом промежуточная пластина расположена между входной пластиной и выходной пластиной, а третье отверстие совмещено с первым удлиненным отверстием и вторым удлиненным отверстием под множеством углов таким образом, что первое удлиненное отверстие, второе удлиненное отверстие и третье отверстие образуют ромбическое отверстие, через которое излучение может проходить без контакта с входной пластиной, выходной пластиной и промежуточной пластиной.
[0088] Р4. Коллиматор с изменяемым углом по потенциальному п. Р3, отличающийся тем, что третье отверстие представляет собой удлиненное отверстие.
[0089] Р5. Коллиматор с изменяемым углом по потенциальному п. Р3, отличающийся тем, что третье отверстие представляет собой прямоугольное отверстие.
[0090] Р6. Коллиматор с изменяемым углом, содержащий: первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и второй компонент, имеющий вторую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента так, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием в коллиматоре сквозного гиперболического параболоидного отверстия.
[0091] Р7. Коллиматор с изменяемым углом по потенциальному п. Р6, отличающийся тем, что первая поверхность представляет собой модифицированную гиперболическую параболоидную поверхность, и вторая поверхность также представляет собой модифицированную гиперболическую параболоидную поверхность, при этом промежуток между первой поверхностью и второй поверхностью является непостоянным.
[0092] Р11. Система сканирования излучения, содержащая: источник излучения, выполненный с возможностью обеспечения излучающего пучка, направляемого под множеством углов, и коллиматор с гиперболическим параболоидным отверстием, имеющим вход и выход.
[0093] Р12. Система сканирования излучения по потенциальному п. Р11, отличающаяся тем, что коллиматор содержит: входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны таким образом, что проекция первого удлиненного отверстия пересекает второе удлиненное отверстие под углом, не равным нулю, и пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образует ромбическое отверстие, через которое излучение от источника излучения может проходить под множеством углов без контакта с входной пластиной и без контакта с выходной пластиной.
[0094] Р13. Система сканирования излучения по потенциальному п. Р11, отличающаяся тем, что коллиматор содержит: первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, второй компонент, имеющий вторую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента так, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием в коллиматоре сквозного гиперболического параболоидного отверстия.
[0095] Р21. Способ облучения мишени коллимированным излучающим пучком, согласно которому берут коллиматор, содержащий гиперболическое параболоидное отверстие, имеющее вход и выход, облучают вход гиперболического параболоидного отверстия облучающим излучением под первым углом облучения таким образом, чтобы часть облучающего излучения проходила через коллиматор и выходила из коллиматора через четвертую поверхность под первым углом выхода, и облучают вход гиперболического параболоидного отверстия облучающим излучением под вторым углом облучения таким образом, чтобы часть облучающего излучения проходила через коллиматор и выходила из коллиматора через четвертую поверхность под вторым углом выхода, отличным от первого угла выхода.
[0096] Р22. Способ облучения мишени коллимированным излучающим пучком по потенциальному п. Р21, отличающийся тем, что в качестве коллиматора берут коллиматор, содержащий: входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне и находится на заданном расстоянии от четвертой стороны таким образом, чтобы проекция первого удлиненного отверстия пересекала второе удлиненное отверстие под углом, не равным нулю, и чтобы пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образовывало ромбическое отверстие, через которое излучение может проходить без контакта с входной пластиной и без контакта с выходной пластиной.
[0097] Р23. Способ облучения мишени коллимированным излучающим пучком по потенциальному п. Р21, отличающийся тем, что в качестве коллиматора берут коллиматор, содержащий: первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, второй компонент, имеющий вторую поверхность, которая также представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента таким образом, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием сквозного гиперболического параболоидного отверстия в коллиматоре.
[0098] Р31. Коллиматор с изменяемым углом, содержащий: цилиндрический корпус, имеющий цилиндрическую поверхность и ось и содержащий спиральную щель, которая проходит сквозь корпус и имеет первую граничную поверхность и вторую граничную поверхность, при этом первая граничная поверхность отделена от второй граничной поверхности промежутком.
[0099] Р32. Коллиматор с изменяемым углом по потенциальному п. Р31, отличающийся тем, что промежуток имеет постоянное расстояние между первой граничной поверхностью и второй граничной поверхностью цилиндрической поверхности.
[00100] Вышеизложенные варианты осуществления изобретения приведены только в качестве примера, при этом для специалиста в данной области техники очевидны многие изменения и модификации. Предполагается, что все эти изменения и модификации включены в объем настоящего изобретения, защищаемый прилагаемой формулой изобретения.

Claims (46)

1. Система для получения управляемого излучающего пучка, содержащая:
источник излучения, выполненный с возможностью создания излучения, направленного под углом относительно коллиматора, а также с возможностью электронного управления величиной указанного угла, и
коллиматор, содержащий материал, непроницаемый для излучения, создаваемого источником излучения, и отверстие, выполненное с возможностью приема излучения, поступающего от источника излучения под множеством углов падения, и пропускания части излучения через коллиматор под каждым из множества углов падения для получения коллимированного излучающего пучка, имеющего некоторое поперечное сечение,
при этом коллиматор и источник излучения выполнены и установлены так, чтобы оставаться неподвижными по отношению друг к другу при создании управляемого излучающего пучка.
2. Система по п. 1, отличающаяся тем, что источник излучения содержит источник электронов и анод, при этом источник электронов выполнен и установлен с возможностью облучения анода управляемым пучком электронов для создания перемещаемой фокусной точки источника излучения.
3. Система по п. 1, отличающаяся тем, что указанное отверстие представляет собой сложное отверстие, совместно образованное первым отверстием на первой поверхности коллиматора и вторым отверстием на второй поверхности коллиматора.
4. Система по п. 3, отличающаяся тем, что указанное отверстие, представляющее собой сложное отверстие, дополнительно образовано третьим отверстием, расположенным на третьей поверхности коллиматора.
5. Система по п. 1, отличающаяся тем, что указанное отверстие имеет ромбическую форму.
6. Система по п. 1, отличающаяся тем, что указанное отверстие имеет квадратную форму.
7. Система по п. 1, отличающаяся тем, что предусмотрена возможность изменения формы указанного отверстия как функции угла падения излучения относительно отверстия.
8. Система по п. 1, отличающаяся тем, что коллиматор содержит:
первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и
второй компонент, имеющий вторую поверхность, которая также представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность,
при этом первый компонент расположен относительно второго компонента так, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием сквозного отверстия в коллиматоре.
9. Система по п. 8, отличающаяся тем, что первая поверхность представляет собой модифицированную гиперболическую параболоидную поверхность, и вторая поверхность также представляет собой модифицированную гиперболическую параболоидную поверхность, при этом промежуток между первой поверхностью и второй поверхностью является непостоянным.
10. Система по п. 8, отличающаяся тем, что коллиматор представляет собой цилиндр со спиральным вырезом.
11. Способ облучения мишени коллимированным излучающим пучком, согласно которому:
берут управляемый источник излучения, выполненный и установленный с возможностью облучения коллиматора,
берут коллиматор, содержащий гиперболическое параболоидное отверстие, которое имеет вход и выход, при этом
указанный коллиматор расположен неподвижно относительно управляемого источника излучения,
получают коллимированный излучающий пучок с множеством углов выхода путем:
облучения входа гиперболического параболоидного отверстия облучающим излучением под первым углом облучения таким образом, что часть облучающего излучения проходит через коллиматор и выходит из коллиматора под первым углом выхода, и
облучения входа гиперболического параболоидного отверстия облучающим излучением под вторым углом облучения, отличным от первого угла облучения, таким образом, что часть облучающего излучения проходит через коллиматор и выходит из коллиматора под вторым углом выхода, отличным от первого угла выхода,
с обеспечением облучения мишени излучением, выходящим из коллиматора под первым углом выхода и под вторым углом выхода.
12. Способ по п. 11, отличающийся тем, что в качестве коллиматора берут коллиматор, содержащий:
входную пластину, имеющую первую сторону и вторую сторону, а также первое удлиненное отверстие, проходящее сквозь входную пластину между первой стороной и второй стороной, и
выходную пластину, имеющую третью сторону и четвертую сторону, а также второе удлиненное отверстие, проходящее сквозь выходную пластину между третьей стороной и четвертой стороной, при этом первая сторона является параллельной четвертой стороне, и находится на заданном расстоянии от четвертой стороны, так что проекция первого удлиненного отверстия пересекает второе удлиненное отверстие под углом, не равным нулю, а пересечение проекции первого удлиненного отверстия и второго удлиненного отверстия образует ромбическое отверстие, выполненное с возможностью обеспечения прохождения излучения через него без контакта с входной пластиной и без контакта с выходной пластиной.
13. Способ по п. 11, отличающийся тем, что в качестве коллиматора берут коллиматор, содержащий:
первый компонент, имеющий первую поверхность, которая представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность, и
второй компонент, имеющий вторую поверхность, которая также представляет собой гиперболическую параболоидную поверхность или модифицированную гиперболическую параболоидную поверхность,
при этом первый компонент расположен относительно второго компонента так, что первая поверхность обращена ко второй поверхности, и при этом первая поверхность и вторая поверхность отделены друг от друга промежутком с образованием в коллиматоре сквозного гиперболического параболоидного отверстия.
14. Способ по п. 11, отличающийся тем, что коллимированный пучок, выходящий из коллиматора под первым углом, имеет первую форму в поперечном сечении, а коллимированный пучок, выходящий из коллиматора под вторым углом, имеет вторую форму в поперечном сечении, при этом вторая форма является отличной от первой формы.
15. Система для создания управляемого излучающего пучка, содержащего:
средства источника излучения для получения точечного источника облучающего излучения с фокусной точкой, имеющей электронное управление, и
коллимирующие средства, имеющие отверстие для пропускания части облучающего излучения, падающего на указанные коллимирующие средства,
при этом средства источника излучения расположены относительно коллимирующих средств с обеспечением их неподвижности относительно коллимирующих средств и облучения отверстия падающим излучением от управляемого точечного источника излучения таким образом, что отверстие создает управляемый излучающий пучок.
16. Система по п. 15, отличающаяся тем, что коллимирующие средства содержат:
первый компонент, имеющий первую гиперболическую параболоидную поверхность,
и второй компонент, имеющий вторую гиперболическую параболоидную поверхность,
при этом первый компонент расположен относительно второго компонента так, что первая гиперболическая параболоидная поверхность расположена напротив второй гиперболической параболоидной поверхности, причем первая гиперболическая параболоидная поверхность отделена от второй гиперболической параболоидной поверхности промежутком, так что первый компонент и второй компонент образуют отверстие, пересекающее указанный промежуток.
17. Система по п. 15, отличающаяся тем, что коллимирующие средства содержат:
первый компонент, имеющий первую модифицированную гиперболическую параболоидную поверхность,
и второй компонент, имеющий вторую модифицированную гиперболическую параболоидную поверхность, при этом первый компонент расположен относительно второго компонента с обеспечением возможности расположения первой модифицированной гиперболической параболоидной поверхности напротив второй модифицированной гиперболической параболоидной поверхности, и отделения первой модифицированной гиперболической параболоидной поверхности от второй модифицированной гиперболической параболоидной поверхности промежутком, который является непостоянным, а первый компонент и второй компонент образуют отверстие, пересекающее указанный промежуток.
18. Система по п. 17, отличающаяся тем, что коллимирующие средства содержат цилиндр со спиральным вырезом.
19. Система по п. 15, отличающаяся тем, что средства источника излучения содержат источник электронов и анод, при этом указанный источник электронов выполнен и установлен с возможностью облучения анода управляемым электронным пучком.
20. Система по п. 15, отличающаяся тем, что указанное отверстие представляет собой сложное отверстие, совместно образованное первым отверстием на первой поверхности коллиматора и вторым отверстием на второй поверхности коллиматора.
RU2015103673A 2012-07-05 2013-07-02 Коллиматор с изменяемым углом RU2617443C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261668268P 2012-07-05 2012-07-05
US61/668,268 2012-07-05
PCT/US2013/049098 WO2014008275A1 (en) 2012-07-05 2013-07-02 Variable angle collimator

Publications (2)

Publication Number Publication Date
RU2015103673A RU2015103673A (ru) 2016-08-27
RU2617443C2 true RU2617443C2 (ru) 2017-04-25

Family

ID=49878522

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015103673A RU2617443C2 (ru) 2012-07-05 2013-07-02 Коллиматор с изменяемым углом

Country Status (12)

Country Link
US (2) US9117564B2 (ru)
EP (2) EP3640952A1 (ru)
JP (1) JP6277186B2 (ru)
KR (2) KR102179573B1 (ru)
CN (1) CN104584137B (ru)
BR (1) BR112015000037B1 (ru)
ES (1) ES2779056T3 (ru)
HK (1) HK1205345A1 (ru)
MX (1) MX340645B (ru)
PL (1) PL2870608T3 (ru)
RU (1) RU2617443C2 (ru)
WO (1) WO2014008275A1 (ru)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
US10670740B2 (en) 2012-02-14 2020-06-02 American Science And Engineering, Inc. Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
CN104584137B (zh) * 2012-07-05 2017-05-10 美国科技工程公司 角度可变的准直器
WO2015102681A2 (en) * 2013-09-11 2015-07-09 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for rf power generation and distribution to facilitate rapid radiation therapies
EP3043864A4 (en) 2013-09-11 2017-07-26 The Board of Trustees of The Leland Stanford Junior University Methods and systems for beam intensity-modulation to facilitate rapid radiation therapies
US11266006B2 (en) 2014-05-16 2022-03-01 American Science And Engineering, Inc. Method and system for timing the injections of electron beams in a multi-energy x-ray cargo inspection system
WO2015175751A1 (en) 2014-05-16 2015-11-19 American Science And Engineering, Inc. Source for intra-pulse multi-energy x-ray cargo inspection
US10228487B2 (en) 2014-06-30 2019-03-12 American Science And Engineering, Inc. Rapidly relocatable modular cargo container scanner
WO2016118271A1 (en) 2015-01-20 2016-07-28 American Science And Engineering , Inc. Dynamically adjustable focal spot
CN107615052A (zh) 2015-03-20 2018-01-19 拉皮斯坎系统股份有限公司 手持式便携反向散射检查系统
DE102015008272A1 (de) 2015-06-18 2016-12-22 Kurt Osterloh Schlitzblendensystem für bildgebende Verfahren mit harter Strahlung
GB201515666D0 (en) * 2015-09-04 2015-10-21 Secr Defence Scanning beam collinator
US10656304B2 (en) 2015-09-10 2020-05-19 American Science And Engineering, Inc. Backscatter characterization using interlinearly adaptive electromagnetic X-ray scanning
DE102016004624A1 (de) * 2016-04-13 2017-10-19 Kurt Osterloh Das Gammaauge: Ein Gerät zur Abbildung hochenergetisch strahlender Objekte
KR101772324B1 (ko) * 2016-04-18 2017-08-28 고려대학교 산학협력단 가변형 핀홀 콜리메이터 및 이를 이용한 방사선 영상 장치
US10720300B2 (en) 2016-09-30 2020-07-21 American Science And Engineering, Inc. X-ray source for 2D scanning beam imaging
US11350892B2 (en) * 2016-12-16 2022-06-07 General Electric Company Collimator structure for an imaging system
CN110199373B (zh) 2017-01-31 2021-09-28 拉皮斯坎系统股份有限公司 大功率x射线源与操作方法
CN107966460B (zh) * 2017-12-26 2024-05-10 清华大学 辐射检查系统和辐射检查方法
WO2019245636A1 (en) 2018-06-20 2019-12-26 American Science And Engineering, Inc. Wavelength-shifting sheet-coupled scintillation detectors
CN109659061B (zh) * 2018-12-27 2020-06-23 中国原子能科学研究院 发散角连续可调的中子准直器结构及其标定方法
CN114930466A (zh) * 2019-08-02 2022-08-19 维德雷技术公司 封闭式x射线斩波轮
WO2021094591A1 (de) * 2019-11-14 2021-05-20 Kurt Osterloh Abbildendes strahlenoptisches system
US11193898B1 (en) 2020-06-01 2021-12-07 American Science And Engineering, Inc. Systems and methods for controlling image contrast in an X-ray system
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079259A (en) * 1973-07-18 1978-03-14 Blum Alvin S Tomographic apparatus and method
US20080089478A1 (en) * 2005-03-12 2008-04-17 Martin Hartick Collimator with adjustable focal length
US20090040520A1 (en) * 2007-08-07 2009-02-12 Fujifilm Corporation Spectroscopy device, spectroscopy apparatus and spectroscopy method
RU2405438C1 (ru) * 2009-07-27 2010-12-10 Общество с ограниченной ответственностью "С.П.ГЕЛПИК" Рентгенографическая установка для медицинской диагностики

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780291A (en) 1971-07-07 1973-12-18 American Science & Eng Inc Radiant energy imaging with scanning pencil beam
US3894234A (en) * 1974-01-28 1975-07-08 Us Navy Radial scanner
US4031401A (en) 1975-03-14 1977-06-21 American Science & Engineering, Inc. Radiant energy imaging scanning
US4045672A (en) * 1975-09-11 1977-08-30 Nihon Denshi Kabushiki Kaisha Apparatus for tomography comprising a pin hole for forming a microbeam of x-rays
JPS5234689A (en) * 1975-09-11 1977-03-16 Jeol Ltd Apparatus to obtain x-ray body axis tomogramic image
US4419585A (en) 1981-02-26 1983-12-06 Massachusetts General Hospital Variable angle slant hole collimator
US4433427A (en) * 1982-01-26 1984-02-21 Elscint, Inc. Method and apparatus for examining a body by means of penetrating radiation such as X-rays
GB2170980B (en) * 1985-02-07 1988-05-25 Steve Webb Ct scanner and detector therefor
DE3829688A1 (de) 1988-09-01 1990-03-15 Philips Patentverwaltung Anordnung zur erzeugung eines roentgen- oder gammastrahls mit geringem querschnitt und veraenderlicher richtung
DE3908966A1 (de) * 1989-03-18 1990-09-20 Philips Patentverwaltung Anordnung zur erzeugung eines roentgen- oder gammastrahls mit geringem querschnitt und veraenderbarer lage
JPH06237927A (ja) * 1993-02-15 1994-08-30 Hitachi Medical Corp 放射線画像撮影装置
US5493596A (en) * 1993-11-03 1996-02-20 Annis; Martin High-energy X-ray inspection system
GB2295266A (en) * 1994-11-21 1996-05-22 Secr Defence X-ray generator
EP1206903A2 (en) 1999-07-30 2002-05-22 American Science & Engineering, Inc. Method for raster scanning an x-ray tube focal spot
ATE369556T1 (de) * 2000-09-27 2007-08-15 Euratom Mikrostrahl-kollimator für hochauflösungs- röntgenstrahl-beugungsanalyse mittels konventionellen diffraktometern
US6735271B1 (en) * 2000-11-28 2004-05-11 Ge Medical Systems Global Technology Company Llc Electron beam computed tomographic scanner system with helical or tilted target, collimator, and detector components to eliminate cone beam error and to scan continuously moving objects
US6792077B2 (en) * 2002-06-19 2004-09-14 Ge Medical Systems Global Technology Company, Llc Collimation system for dual slice EBT scanner
CN1603946A (zh) * 2003-09-29 2005-04-06 Ge医疗系统环球技术有限公司 X射线光阑、x射线辐照器及x射线装置
WO2005104952A1 (en) * 2004-04-28 2005-11-10 Philips Intellectual Property & Standards Gmbh Three-dimensional electron beam computed tomography
DE102005029674B4 (de) * 2005-06-20 2008-08-21 BAM Bundesanstalt für Materialforschung und -prüfung Blende für eine bildgebende Einrichtung
US20110199764A1 (en) * 2005-08-26 2011-08-18 Camtek Ltd. Device and method for controlling an angular coverage of a light beam
DE102006006840A1 (de) * 2006-02-14 2007-08-23 Siemens Ag Röntgen-Computertomograph mit Lichtstrahl-gesteuerter Röntgenquelle
ATE547803T1 (de) * 2007-06-21 2012-03-15 Koninkl Philips Electronics Nv Schnelle dosismodulierung über z-deflektion in einer rotierenden anode oder einer rotierenden rahmenröhre
JP5184251B2 (ja) * 2007-08-07 2013-04-17 富士フイルム株式会社 分光素子、分光装置および分光方法
DE102008025109B4 (de) 2008-05-22 2010-06-17 BAM Bundesanstalt für Materialforschung und -prüfung Blende für eine bildgebende Einrichtung
CN201285377Y (zh) * 2008-08-05 2009-08-05 同方威视技术股份有限公司 背散射成像用射线束扫描装置
US8315428B2 (en) * 2009-10-22 2012-11-20 Siemens Medical Solutions Usa, Inc. Automatic line identification and pairing for nuclear imaging collimator vector map characterization
DE102009052627B4 (de) * 2009-11-10 2012-07-12 Siemens Aktiengesellschaft Streustrahlungskollimator und Verfahren zur Herstellung eines Streustrahlungskollimators
EP2333786B1 (de) 2009-12-08 2012-02-15 BAM Bundesanstalt für Materialforschung und -prüfung Asymmetrische Schlitzblende sowie Vorrichtung und Verfahren zur Herstellung derselben
CN103558240B (zh) * 2009-12-30 2016-03-09 同方威视技术股份有限公司 一种成像用射线束的扫描装置和方法
BR112012023117A2 (pt) 2010-03-14 2016-05-24 Rapiscan Systems Inc equipamento de formação de feixe
CN104584137B (zh) * 2012-07-05 2017-05-10 美国科技工程公司 角度可变的准直器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079259A (en) * 1973-07-18 1978-03-14 Blum Alvin S Tomographic apparatus and method
US20080089478A1 (en) * 2005-03-12 2008-04-17 Martin Hartick Collimator with adjustable focal length
US20090040520A1 (en) * 2007-08-07 2009-02-12 Fujifilm Corporation Spectroscopy device, spectroscopy apparatus and spectroscopy method
RU2405438C1 (ru) * 2009-07-27 2010-12-10 Общество с ограниченной ответственностью "С.П.ГЕЛПИК" Рентгенографическая установка для медицинской диагностики

Also Published As

Publication number Publication date
MX340645B (es) 2016-07-18
US9257208B2 (en) 2016-02-09
US20140010351A1 (en) 2014-01-09
US20150294748A1 (en) 2015-10-15
EP2870608B1 (en) 2020-01-01
US9117564B2 (en) 2015-08-25
CN104584137A (zh) 2015-04-29
KR102179573B1 (ko) 2020-11-16
CN104584137B (zh) 2017-05-10
KR102065158B1 (ko) 2020-01-10
KR20200004926A (ko) 2020-01-14
JP6277186B2 (ja) 2018-02-07
KR20150035811A (ko) 2015-04-07
WO2014008275A1 (en) 2014-01-09
ES2779056T3 (es) 2020-08-13
MX2015000031A (es) 2015-08-20
BR112015000037A2 (pt) 2017-06-27
PL2870608T3 (pl) 2020-07-27
EP2870608A1 (en) 2015-05-13
EP3640952A1 (en) 2020-04-22
EP2870608A4 (en) 2016-07-06
RU2015103673A (ru) 2016-08-27
BR112015000037B1 (pt) 2021-06-29
JP2015523570A (ja) 2015-08-13
HK1205345A1 (en) 2015-12-11

Similar Documents

Publication Publication Date Title
RU2617443C2 (ru) Коллиматор с изменяемым углом
EP3141889B1 (en) X-ray small angle optical system with multilayer mirror
US9020103B2 (en) Versatile beam scanner with fan beam
US20150071402A1 (en) X-ray imaging system
US8094785B2 (en) Modulatable radiation collimator
JP2008014861A (ja) 超小角x線散乱測定装置
US10295481B2 (en) Detection system and method
RU2545095C1 (ru) Устройство для испускания лучей и система формирования изображений с данным устройством
US6895079B2 (en) Multiple focal spot X-ray inspection system
RU2556712C2 (ru) Устройство рентгеновского формирования изобретений
JPWO2018061456A1 (ja) 放射線位相差撮影装置
US10102937B2 (en) Collimator for providing constant collimation effect
US10925556B2 (en) Imaging with modulated X-ray radiation
CN202837210U (zh) 射线发射装置和成像系统
JP2012000233A (ja) マルチリーフコリメータ及び粒子線治療装置
KR101719434B1 (ko) 접부채 형상의 가림막을 이용하여 레이저 여기 표면파를 생성하기 위한 슬릿 마스크