RU2614984C2 - Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс - Google Patents

Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс Download PDF

Info

Publication number
RU2614984C2
RU2614984C2 RU2014127141A RU2014127141A RU2614984C2 RU 2614984 C2 RU2614984 C2 RU 2614984C2 RU 2014127141 A RU2014127141 A RU 2014127141A RU 2014127141 A RU2014127141 A RU 2014127141A RU 2614984 C2 RU2614984 C2 RU 2614984C2
Authority
RU
Russia
Prior art keywords
unit
ray
image
complex
control unit
Prior art date
Application number
RU2014127141A
Other languages
English (en)
Other versions
RU2014127141A (ru
Inventor
Евгений Юрьевич Шиманский
Вольдемар Освальдович Ребони
Original Assignee
Закрытое акционерное общество "Научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон") filed Critical Закрытое акционерное общество "Научно-исследовательская производственная компания "Электрон" (ЗАО НИПК "Электрон")
Priority to RU2014127141A priority Critical patent/RU2614984C2/ru
Publication of RU2014127141A publication Critical patent/RU2014127141A/ru
Application granted granted Critical
Publication of RU2614984C2 publication Critical patent/RU2614984C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor

Abstract

Группа изобретений относится к рентгеновской аппаратуре и может быть использована при создании средств исследования в области радиологии. Система содержит блок детектирования сигнала изображения, блок управления, обеспечивающий задание по меньшей мере одного установочного параметра, определяющего параметры изображения, блок обработки сигнала изображения, блок визуализации, блок записи, архивации и хранения изображения, блок интеграции с оборудованием комплекса и блок интеграции с внешними системами, блок формирования обратной связи, блок калибровок. Блок детектирования содержит детектор рентгеновского излучения, блок формирования дополнительного сигнала и блок синхронизации. Блок формирования дополнительного сигнала выполнен с возможностью обеспечения неразрушающего считывания информации с детектора рентгеновского излучения. Система формирования изображения может найти применение в любом рентгеновском комплексе как встраиваемый модуль. В рентгеновском комплексе посредством цепи обратной связи: детектор рентгеновского излучения - блок формирования дополнительного сигнала - блок формирования обратной связи - рентгеновское питающее устройство - рентгеновский излучатель - блок детектирования реализована возможность в режиме реального времени отслеживать и поддерживать заранее заданные значения параметров съемки. Технический результат - повышение качества изображения без дополнительной лучевой нагрузки на объект исследования . 2 н. и 4 з.п. ф-лы, 1 ил.

Description

Настоящая группа изобретений относится к системам формирования рентгеновского изображения и может найти применение в медицине, например, для использования в ангиографических комплексах, маммографии, флюороскопии, в интервенционной радиологии и т.д., а также в промышленных рентгеновских установках для выполнения неразрушающего контроля качества материалов.
Техническое решение относится к рентгеновской аппаратуре и может быть использовано при создании средств исследования в области радиологии.
В медицинских исследованиях для диагностики и лечения различных патологий внутренних органов широко используются радиологические комплексы, которые позволяют производить разные типы исследований: рентгенографию, рентгеноскопию, линейную томографию и томосинтез, флюорографию, маммографию и т.д. Для каждого типа исследований существует определенный набор данных, задаваемых перед проведением исследования. К таким заранее задаваемым параметрам относятся, например, доза облучения, зависящая от структуры, плотности органа, подлежащего исследованию; тип исследования и другие. Однако вне зависимости от этих данных одной из основных задач при выполнении исследований является задача установки и поддержания оптимальных параметров экспозиции и снижения лучевой нагрузки на исследуемый объект при сохранении качества изображения.
При проведении рентгеновского исследования в большинстве случаев требуется исследовать структуру определенной области объекта. Для исследования и отображения внутренней структуры объекта с помощью рентгеновского источника генерируют рентгеновское излучение и направляют его на объект исследования. Пройдя через объект, излучение падает на блок регистрации и получения изображения, который преобразует его в видеосигнал изображения, обрабатываемый системой формирования рентгеновского изображения, входящей в состав рентгеновского комплекса. Часть информации из входного рентгеновского излучения система преобразует в электрические сигналы изображения, выполняет их калибровку и обработку, формирует видеосигналы для дальнейшей визуализации или передачи в системы хранения и архивации. Другую часть сигналов система преобразует в электрические управляющие сигналы, предназначенные для формирования воздействия на другие блоки системы и на внешнее оборудование комплекса. Собственно говоря, система формирования изображения является основным элементом любого рентгеновского комплекса и выполняет не только обработку полученного видеосигнала изображения, но и позволяет проводить управление оборудованием рентгеновского комплекса и внешними системами, влияет на информативность и качество изображения, управляет параметрами работы комплекса, в частности, позволяет регулировать дозу облучения объекта при проведении исследования. Очень важно, чтобы такая система была как можно более унифицированной, не зависела от типа проводимых рентгеновских исследований и могла быть легко интегрирована в любой рентгеновский комплекс с минимальной настройкой и адаптацией к работе в данном рентгеновском комплексе.
Из уровня техники известно, например, техническое решение по заявке US №2013/272500 (опубл. 17.10.2013), где для исследования внутренней структуры объекта система рентгеновской визуализации включает блок визуализации, содержащий рентгеновскую трубку и обращенный к трубке рентгеновский детектор; блок ввода параметров и блок создания изображения. Блок ввода параметров предназначен для ввода условий (параметров) формирования изображения, таких как значения тока и напряжения трубки, и установки протокола радиологического исследования; блок создания изображения вычисляет дозу облучения при изменении тока или напряжения рентгеновской трубки. Помимо этого, данный блок создает индекс изображения в виде иконки, отображаемой на экране монитора и показывающей экспозиционную дозу. Для наглядности и удобства принятия решений иконка накладывается на двумерную диаграмму, характеризующую изменения тока и напряжения трубки. В этой системе функции блока создания изображения заключаются в расчете необходимых дозовых характеристик. На основании этих расчетных значений оператор рентгеновского комплекса либо совершает определенные действия по управлению комплексом (например, выбирает режим съемки: рентгеноскопии, рентгенографии), либо использует эту информацию как справочную. Однако при всех достоинствах системы она не способна в полной мере обеспечить качественную работу рентгеновского комплекса, так как в системе не предусмотрены средства для поддержания параметров съемки и управления внешними блоками системы в режиме реального времени. В работе системы присутствует воздействие человеческого фактора, что влияет на безопасность использования системы.
В качестве наиболее близкого аналога, совокупность признаков которого наиболее близкая к совокупности существенных признаков заявленной группы изобретений, принято известное из уровня техники решение по патенту US №7313224 (опубл. 25.12.2007), где реализуется задача разработки системы формирования изображения для рентгеновского комплекса, точнее задача автоматического управления экспозицией и ее оптимизации для рентгеновских систем. Для решения задачи предлагается система формирования рентгеновского изображения (рентгеновской визуализации), включающая соединенный с рентгеновским питающим устройством рентгеновский источник, который излучает рентгеновские лучи. Пройдя через объект исследования, лучи попадают на блок детектирования, преобразующий фотоны с низкой энергией в свет, и матрица фотодетекторов преобразует световые сигналы в электрические. Полученный на выходе блока видеосигнал изображения направляют в блок обработки, который включает схему для накопления, обработки и усиления видеосигнала изображения. Обработанное изображение может быть сохранено в блоке хранения изображений либо направлено для отображения на мониторе. Блок управления, входящий в состав системы визуализации и обеспечивающий посредством интерфейса связь с панелью пользователя, управляет работой блока детектирования и всей системы. Система визуализации использует данные предварительного (Preshot) изображения от детектора, полученного в результате воздействия на объект небольшой дозы рентгеновского излучения. Данные о количестве, местоположении и размере областей интереса на предварительном изображении определяются на основе заранее заданной анатомии/вида или автоматически вычисляются из данных изображения, созданных в блоке детектирования. Эти данные используются для управления экспозицией и получения в области интереса оптимального количества излучения. Таким образом, для разных способов визуализации посредством выборочного комбинирования сигнала от одной или более областей интереса заданной формы и размера может быть скорректирован автоматический контроль экспозиции области интереса. Однако в данной системе автоматическое управление экспозиционной дозой и подбор оптимальной дозы выполняется на основе данных предварительного изображения, что должно быть отнесено к недостаткам технического решения, т.к. это изображение получают в результате дополнительной лучевой нагрузки на объект исследования. Кроме того, для управления рентгеновским источником в системе предлагается использование интегрированного модульного устройства, реализованного на основе ионизационной камеры и размещаемого между источником и блоком детектирования. Такое устройство, будучи установленным перед блоком детектирования, является элементом, ухудшающим качество сигнала. В результате включения конструктивных элементов ионизационной камеры в тракт распространения рентгеновского луча происходит поглощение рентгеновского излучения, участвующего в формировании полезного сигнала, что негативно влияет на результаты диагностики. Кроме того, конструктивные элементы имеют разные спектральные рентгеновские свойства, что приводит к появлению дополнительных артефактов на изображении. Недостатком является также жесткое задание зон интереса с ограниченной возможностью их изменения.
Задачей предложенной группы изобретений является разработка новых решений для формирования рентгеновского изображения, лишенных недостатков известных средств и методов данного назначения.
Техническим результатом предложенной группы изобретений является расширение области применения, расширение функциональных возможностей за счет разработки системы формирования изображения в виде универсального модуля, не зависящего от типа исследования и легко интегрируемого в любой рентгеновский комплекс, позволяющего в режиме реального времени на основе заранее заданных исходных данных отслеживать и управлять параметрами съемки без дополнительной лучевой нагрузки на объект исследования и при этом обеспечивать высокое качество изображения.
Технический результат достигается в системе формирования изображения.
Согласно первому варианту разработана система формирования рентгеновского изображения для радиологического комплекса, которая содержит блок детектирования сигнала изображения, включающий детектор рентгеновского излучения; блок управления, обеспечивающий задание по меньшей мере одного установочного параметра, определяющего параметры изображения, блок обработки сигнала изображения, блок визуализации, блок интеграции с оборудованием комплекса, блок интеграции с внешними системами и блок записи, архивации и хранения данных изображения. Первый выход детектора рентгеновского излучения, который является первым выходом блока детектирования, подключен к блоку управления, а второй выход, который является вторым выходом блока детектирования, - к последовательно соединенным блоку обработки сигнала изображения и блоку визуализации, первый выход которого соединен с блоком управления, а второй является выходом системы; блок записи, архивации и хранения изображения соединен с блоком обработки, подключенным к блоку управления, с блоком управления и блоком интеграции с внешними системами, который так же, как и блок интеграции с оборудованием комплекса, подключен к блоку управления. При этом предложенная система от известной отличается тем, что в нее дополнительно введены блок формирования сигнала обратной связи, обеспечивающий поддержание требуемого значения по меньшей мере одного заранее заданного установочного параметра, и блок калибровок изображения и пикселей неразрушающего считывания, включенный между вторым выходом блока детектирования и блоком обработки изображения и соединенный также с блоком управления; в блок детектирования дополнительно введены блок синхронизации, который включен между детектором рентгеновского излучения и блоком интеграции с оборудованием, и блок формирования дополнительного сигнала, связанный с детектором рентгеновского излучения и своим первым выходом - с блоком управления, а вторым выходом - с блоком формирования сигнала обратной связи, при этом блок формирования дополнительного сигнала выполнен с возможностью обеспечения неразрушающего считывания информации с детектора рентгеновского излучения.
В качестве варианта, в системе детектор рентгеновского излучения выполнен на основе сенсоров, изготовленных с использованием технологии комплементарных структур металл-оксид-полупроводник (КМОП), с использованием тонкопленочных транзисторов или ПЗС-матриц.
В качестве варианта, в системе блок управления содержит средство для установки в качестве одного из установочных параметров дозы излучения.
В качестве варианта, в системе блок интеграции с оборудованием комплекса выполнен в виде интерфейсных модулей, аппаратно и программно совместимых с оборудованием, удовлетворяющим техническим и эксплуатационным требованиям указанного комплекса.
В качестве варианта, блок интеграции с внешними системами обеспечивает передачу в соответствующем формате записанных или архивированных видеоданных в информационную сеть.
Технический результат достигается в радиологическом комплексе, содержащем предлагаемую систему формирования рентгеновского изображения, а также источник рентгеновского излучения, обеспечивающий формирование рентгеновских лучей, проходящих через объект исследования, и соединенное с указанным источником рентгеновское питающее устройство. В указанном комплексе блок детектирования системы формирования рентгеновского изображения выполнен с возможностью приема рентгеновских лучей, прошедших через объект, и формирования сигнала изображения, блок формирования сигнала обратной связи указанной системы соединен с рентгеновским питающим устройством, и блок управления системы через блок интеграции с оборудованием также соединен с рентгеновским питающим устройством.
Таким образом, совокупность соответствующих существенных признаков предложенной группы изобретений можно формально свести к определению (разработке) конфигурации системы формирования рентгеновского изображения с использованием в ней блока формирования дополнительного сигнала, блока синхронизации, блока формирования сигнала обратной связи и выполнению связей между всеми блоками, входящими в указанную систему, а также выполнению связей между указанной системой и радиологическим комплексом.
Использование в системе формирования рентгеновского изображения блока формирования дополнительного сигнала, выполненного с возможностью обеспечения неразрушающего считывания информации с детектора рентгеновского излучения, позволяет исключить из тракта распространения рентгеновского излучения интегрированное модульное устройство, которое в известных рентгеновских комплексах размещают между источником излучения и блоком детектирования, и передать его функции (автоматический контроль экспозиции) блоку формирования дополнительного сигнала. Это позволило значительно повысить информативность и качество изображения.
За счет наличия канала обратной связи, выполненного в виде цепочки: блок формирования дополнительного сигнала - блок формирования сигнала обратной связи - рентгеновское питающее устройство - рентгеновский излучатель - блок детектирования реализована возможность по сигналу управления от блока управления выполнять автоматическую поддержку постоянного значения заранее заданного параметра, например дозы излучения, обеспечивая непревышение заданного заранее значения дозы в расчете на одно изображение. Кроме того, за счет наличия такой цепи обратной связи система формирования изображения может быть легко интегрирована в любой рентгеновский комплекс и применена для любой области исследования.
Предлагаемое техническое решение рассмотрено на примере рентгенодиагностического комплекса и поясняется чертежом, на котором приведена функциональная блок-схема, иллюстрирующая общее описание комплекса, включающего систему формирования изображения. На чертеже позициями обозначены:
1 - рентгеновский излучатель
2 - рентгеновское питающее устройство (далее - РПУ)
3 - блок детектирования
4 - детектор рентгеновского излучения
5 - блок формирования дополнительного сигнала
6 - блок калибровок
7 - блок обработки изображения
8 - блок визуализации
9 - блок управления
10 - блок интеграции с оборудованием комплекса
11 - блок интеграции с внешними системами
12 - блок записи, архивации и хранения видеоданных изображения
13 - блок формирования сигнала обратной связи
14 - оборудование рентгеновского комплекса
15 - внешние системы
16 - монитор(ы)
17 - блок синхронизации
18 - линия связи
Рентгеновский диагностический комплекс содержит рентгеновский излучатель 1, соединенный с РПУ 2. Через размещаемый по ходу рентгеновских лучей объект исследования излучатель 1 связан оптически с детектором 4 рентгеновского излучения. Детектор 4, в свою очередь, через блок 5 формирования дополнительного сигнала и блок 13 формирования обратной связи соединен с РПУ 2. Второй выход детектора 4, который является выходом блока детектирования 3, подключен к последовательно соединенным блокам: блоку калибровок 6, блоку 7 обработки изображения и блоку визуализации 8, причем каждый блок из указанной последовательности, а также детектор 4 посредством линии связи 18 соединены с блоком управления 9. Блок 7 соединен с блоком 12 записи, архивации и хранения изображений, который связан с блоком 11 интеграции с внешними системами. Детектор 4 через блок синхронизации 17, а РПУ 2 напрямую соединены с блоком 10 интеграции с оборудованием 14 рентгеновского комплекса, при этом блок 10 так же, как и блоки 11 и 12, с помощью линии связи 18 подключены к блоку управления 9.
Детектор 4 для примера реализации изобретения выполнен на основе сенсоров, изготовленных с использованием технологии комплементарных структур металл-оксид-полупроводник (КМОП), однако он может быть реализован с использованием тонкопленочных транзисторов или ПЗС-матриц.
В основе функционирования блока 5 формирования дополнительного сигнала лежит решение, защищенное патентом US №7659516, что позволяет применять указанный блок в качестве устройства, выполняющего функции рентгеноэкспонометра с использованием пикселей с неразрушающим считыванием: блок позволяет производить считывание таких пикселей в заданной области интереса. Работа такого устройства основана на том, что считывание информации с данных пикселей производиться в течение экспозиции много чаще, чем длительность самой экспозиции, что приводит к формированию дополнительной информации, которая используется в канале обратной связи (блок 13 - см. далее), и во время проведения исследования поддерживает значение установочного параметра, по существу, постоянным. Информация с блока 5 поступает на блок 13 формирования сигнала обратной связи и предназначена для регулирования параметров РПУ. При применении данного устройства в системе формирования изображения значения яркости пикселей привязываются к дозе излучения при калибровке системы - на этапе задания установочных параметров с помощью блока управления 9, и далее, при штатной работе, система использует эту информацию для управления дозой излучения.
Блоки 6-13 являются функциональными блоками для выполнения различных операций, в частности операций, связанных с обработкой изображения, и для специалистов в данной области техники очевидно, что эти блоки могут быть реализованы в аппаратных и/или программных средствах.
Блок калибровок 6 изображения и пикселей неразрушающего считывания считывает видеоданные из блока детектирования 3 и осуществляет предварительную обработку (пре-процессинг) видеоданных изображения, позволяющую компенсировать особенности конструкции детектора и используемых в нем активных элементов с целью получения изображения, отражающего состояние объекта на момент съемки, а также особенности пространственного расположения блока детектирования в рентгеновском комплексе.
Блок 7 обработки изображения для повышения качества изображения выполняет обработку видеоданных, прошедших пре-процессинговую обработку, и приводит изображение к виду, пригодному для отображения (например, блок выполняет коррекцию частотных, амплитудных, шумовых и т.п. характеристик). Обработка видеоданных изображения может подразумевать, в частности, использование специализированных пакетов обработки данных, получение или измерение параметров объекта исследования и т.д.
Блок визуализации 8 позволяет осуществлять вывод изображения на монитор(ы) 16 с заданными параметрами отображаемого изображения.
Блок управления 9, который, в общем случае, может содержать соответствующий процессор и интерфейс для управления и приема сигналов от блоков системы и комплекса в целом, обеспечивает как управление блоками, входящими в систему формирования изображений, так и управление оборудованием 14, входящим в комплекс, осуществляет взаимодействие между блоками, координирует работу блоков системы и всего комплекса. Блок позволяет обрабатывать квитированные и диагностические сообщения.
Блок 10 интеграции с оборудованием - устройство, позволяющее осуществлять на физическом и логическом уровне увязку системы формирования изображений с оборудованием, входящим в комплекс (например, оборудование (блок 14) для ангиографического комплекса это - стол, штатив, коллиматор, дозиметр, инжектор, дистанционный пульт управления и т.д.). Для обеспечения связи блок 10 оснащен достаточным количеством интерфейсов для подключения оборудования (например, интерфейс «сухие контакты», цифровые интерфейсы: Ethernet, CAN (CANopen), RS232, RS485, RS422 и т.п.)
Блок 11 интеграции с внешними системами позволяет осуществлять передачу записанных или архивированных данных в информационные системы в соответствующем формате (например, внешние системы (блок 15) для медицинских учреждений - это RIS - рентгенологическая информационная система, HIS - больничная информационная системы, формат данных для передачи DICOM).
Блок 12 записи, архивации и хранения изображения выполняет запись видеоданных изображения на носитель и считывание видеоданных с носителя, хранение и архивирование видеоданных изображения в требуемом формате.
Блок 13 формирования сигнала обратной связи обеспечивает выработку сигнала обратной связи на РПУ для корректировки настройки РПУ с целью поддержания требуемой дозы излучения либо прекращения экспозиции. При этом для формирования сигнала обратной связи используется информация с блока 5 формирования дополнительного сигнала (например, сигнал стабилизации яркости для режима скопии в ангиографических комплексах, сигнал остановки экспозиции для режима графии в ангиографических комплексах и т.п.).
Блок синхронизации 17 обеспечивает на физическом и логическом уровне формирование сигналов синхронизации детектора 4 с оборудованием системы: формирование сигнала готовности блока детектирования 3 к накоплению видеоданных, обработка сигнала начала экспозиции и, как следствие, начало накопления информации в блоке детектирования.
В частном случае медицинского применения предлагаемое устройство функционирует следующим образом.
На предварительном этапе при подготовке к проведению исследования оператор через блок управления 9 формирует запрос на получение снимка (либо серии снимков), для чего задает установочные параметры:
- для системы формирования изображений:
Figure 00000001
параметры съемки - на детектор 4,
Figure 00000001
размер, расположение и форму области интереса - на блок 5 формирования дополнительного сигнала,
Figure 00000001
состав и параметры функций для предварительной обработки видеоданных изображения - на блок калибровок 6,
Figure 00000001
состав и параметры функций обработки видеоданных изображения, прошедших пре-процессинговую обработку в блоке 6, - на блок 7 обработки изображения,
Figure 00000001
параметры записи/хранения - на блок 12 записи, архивации и хранения изображения;
- для рентгеновского комплекса, например для ангиографического комплекса:
Figure 00000001
параметры для установки шторок коллиматора,
Figure 00000001
уставки генератора для режимов съемки: скопия, серийная графия или одиночный снимок,
Figure 00000001
установка/считывание положения стола,
Figure 00000001
установка/считывание положения штатива и т.д.
После выбора параметров проведения съемки оператор через блок управления 9 формирует запрос готовности РПУ 2 и запрос готовности на блок детектирования 3.
Получив состояние готовности от РПУ 2 и детектора 4, блок 10 интеграции с оборудованием формирует соответствующую схему включения РПУ (например, режим скопия или графия для ангиографического комплекса) и обеспечивает синхронную работу блока 3 и РПУ для получения снимков (например, накопление данных в блоке 3 идет в момент подачи высокого напряжения на рентгеновский излучатель 1, считывание - в момент, когда высокое напряжение снято с рентгеновского излучателя). Считывание данных для формирования сигнала обратной связи обеспечивается в течение экспозиции. Формирование сигнала обратной связи, в зависимости от режима работы комплекса, может осуществляться как в течение экспозиции, так и по окончании экспозиции с предсказанием параметров генератора на следующий кадр.
Полученные видеоданные изображения с блока 3 отправляются в блок калибровок 6, где к ним применяется процедура предварительной обработки. После предварительной обработки видеоданные поступают на блок 7 обработки изображения, где для их обработки могут быть применены специализированные пакеты обработки данных (например, используемые в медицине кардиопакет, сосудистый пакет и т.п.). Если установочные параметры для данного блока не были заданы, видеоданные направляют на блок 8 визуализации, откуда они поступают на монитор(ы) 16 и на блок 12 записи, архивации и хранения видеоданных изображения, где сохраняются на носителе. Сохраненные видеоданные изображения также могут быть обработаны специализированными пакетами, для чего загружаются в блок 7. Результаты обработки выводятся на монитор(ы) 16. Параметры обработки устанавливают с помощью блока управления 9. Сохраненные изображения по команде от блока 9 дополнительно могут быть переданы в блок 11 интеграции с внешними системами для передачи данных в информационные системы.
Таким образом, данная система представляет собой, по сути, унифицированный модуль, позволяющий (с минимальными конструктивными изменениями и минимальными изменениями программной части) с минимальными трудовыми и временными затратами встраивать его в любой рентгеновский комплекс, обеспечивая при этом высокое качество изображения определенной области исследуемого объекта. В радиологическом комплексе, включающем систему, реализована возможность в режиме реального времени без дополнительной нагрузки на пациента отслеживать текущие параметры съемки, управлять рентгеновским питающим устройством (величиной тока и напряжения), автоматически регулируя параметры экспозиции на основе заранее заданных анатомических параметров. Разработанная система формирования рентгеновского изображения может быть применена в любом рентгеновском комплексе, предназначенном для широкой области применения.
Следует отметить, что описание группы изобретений и чертеж приведены только в качестве примера и не ограничивают возможные модификации группы изобретений в рамках предложенной формулы.

Claims (13)

1. Система формирования изображений для радиологического комплекса, содержащая:
блок детектирования сигнала изображения, включающий детектор рентгеновского излучения,
блок управления, обеспечивающий задание по меньшей мере одного установочного параметра, определяющего параметры изображения,
блок обработки сигнала изображения, блок визуализации,
блок записи, архивации и хранения изображения,
блок интеграции с оборудованием комплекса и
блок интеграции с внешними системами,
при этом первый выход детектора рентгеновского излучения, который является первым выходом блока детектирования, подключен к блоку управления, а второй выход, который является вторым выходом указанного блока, - к последовательно соединенным блоку обработки сигнала изображения и блоку визуализации, первый выход которого соединен с блоком управления, а второй является выходом системы; блок записи, архивации и хранения изображения соединен с блоком обработки, подключенным к блоку управления, с блоком управления и блоком интеграции с внешними системами, который так же, как и блок интеграции с оборудованием комплекса, подключен к блоку управления, отличающаяся тем, что в систему дополнительно введены блок формирования сигнала обратной связи, обеспечивающий поддержание требуемого значения по меньшей мере одного заранее заданного установочного параметра, и блок калибровок для калибровки изображения и пикселей неразрушающего считывания, включенный между вторым выходом блока детектирования и блоком обработки изображения и соединенный также с блоком управления; в блок детектирования дополнительно введены блок синхронизации, который включен между детектором рентгеновского излучения и блоком интеграции с оборудованием, и блок формирования дополнительного сигнала, связанный с детектором рентгеновского излучения и своим первым выходом - с блоком управления, а вторым выходом - с блоком формирования сигнала обратной связи, при этом блок формирования дополнительного сигнала выполнен с возможностью обеспечения неразрушающего считывания информации с детектора рентгеновского излучения.
2. Система формирования изображений по п. 1, отличающаяся тем, что детектор рентгеновского излучения выполнен на основе сенсоров, изготовленных с использованием технологии комплементарных структур металл-оксид-полупроводник (КМОП), с использованием тонкопленочных транзисторов или ПЗС-матриц.
3. Система формирования изображений по п. 1, отличающаяся тем, что блок управления содержит средство для установки, в качестве одного из установочных параметров, дозы излучения.
4. Система формирования изображений по п. 1, отличающаяся тем, что блок интеграции с оборудованием комплекса выполнен в виде интерфейсных модулей, аппаратно и программно совместимых с оборудованием, удовлетворяющим техническим и эксплуатационным требованиям указанного комплекса.
5. Система формирования изображений по п. 1, отличающаяся тем, что блок интеграции с внешними системами, обеспечивающий передачу в соответствующем формате записанных или архивированных видеоданных в информационную сеть.
6. Радиологический комплекс, содержащий систему формирования изображений по любому из пп. 1-5, источник рентгеновского излучения, обеспечивающий формирование рентгеновских лучей, проходящих через объект исследования, соединенное с указанным источником рентгеновское питающее устройство, блок детектирования указанной системы выполнен с возможностью приема рентгеновских лучей, прошедших через объект, и получения изображения указанного объекта, причем блок формирования сигнала обратной связи системы соединен с рентгеновским питающим устройством, и блок управления через блок интеграции с оборудованием также соединен с рентгеновским питающим устройством.
RU2014127141A 2014-07-03 2014-07-03 Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс RU2614984C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014127141A RU2614984C2 (ru) 2014-07-03 2014-07-03 Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014127141A RU2614984C2 (ru) 2014-07-03 2014-07-03 Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс

Publications (2)

Publication Number Publication Date
RU2014127141A RU2014127141A (ru) 2016-01-27
RU2614984C2 true RU2614984C2 (ru) 2017-04-03

Family

ID=55237184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014127141A RU2614984C2 (ru) 2014-07-03 2014-07-03 Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс

Country Status (1)

Country Link
RU (1) RU2614984C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180039U1 (ru) * 2017-11-13 2018-05-31 Андрей Викторович Васильев Устройство контроля рентгеновского аппарата
WO2019027472A1 (en) * 2017-08-04 2019-02-07 Hewlett-Packard Development Company, L.P. DATA TRANSMISSIONS POWERED BY X-RAYS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313224B1 (en) * 2006-06-22 2007-12-25 General Electric Co. Wireless integrated automatic exposure control module
US7659516B2 (en) * 2006-06-29 2010-02-09 Dalsa Corporation C-MOS sensor readout from multiple cells across the array to generate dose sensing signal
US20110013746A1 (en) * 2008-10-27 2011-01-20 Imaging Sciences International Llc Triggering of intraoral x-ray sensor using pixel array sub-sampling
RU2462195C2 (ru) * 2010-12-31 2012-09-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ исследования и диагностики состояния биологического объекта или его части

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313224B1 (en) * 2006-06-22 2007-12-25 General Electric Co. Wireless integrated automatic exposure control module
US7659516B2 (en) * 2006-06-29 2010-02-09 Dalsa Corporation C-MOS sensor readout from multiple cells across the array to generate dose sensing signal
US20110013746A1 (en) * 2008-10-27 2011-01-20 Imaging Sciences International Llc Triggering of intraoral x-ray sensor using pixel array sub-sampling
RU2462195C2 (ru) * 2010-12-31 2012-09-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ исследования и диагностики состояния биологического объекта или его части

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027472A1 (en) * 2017-08-04 2019-02-07 Hewlett-Packard Development Company, L.P. DATA TRANSMISSIONS POWERED BY X-RAYS
US11636278B2 (en) 2017-08-04 2023-04-25 Hewlett-Packard Development Company, L.P. X-ray powered data transmissions
RU180039U1 (ru) * 2017-11-13 2018-05-31 Андрей Викторович Васильев Устройство контроля рентгеновского аппарата

Also Published As

Publication number Publication date
RU2014127141A (ru) 2016-01-27

Similar Documents

Publication Publication Date Title
JP5738510B2 (ja) 可搬型フラット・パネル検出器を用いた二重エネルギ放射線撮像法の画像取得及び処理連鎖
JP5602198B2 (ja) 放射線撮影装置、およびこれに用いられる放射線画像検出装置並びにその作動方法
US8894280B2 (en) Calibration and correction procedures for digital radiography detectors supporting multiple capture modes, methods and systems for same
US9753158B2 (en) Radiographic imaging apparatus, radiographic imaging system, and radiographic imaging method
JP6662385B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
JP5438424B2 (ja) 医用画像撮影装置およびその撮影方法
US9615811B2 (en) Radiation imaging apparatus and method for controlling the same
WO2014030467A1 (ja) 電子式放射線撮影システムおよび信号中継装置
US9182361B2 (en) Digital X-ray imaging system with still and video capture modes
Colbeth et al. Characterization of a third-generation multimode sensor panel
Bruijns et al. Technical and clinical results of an experimental flat dynamic (digital) x-ray image detector (FDXD) system with real-time corrections
JP2017063839A (ja) X線診断装置
RU2614984C2 (ru) Система формирования изображения для рентгенодиагностического комплекса и рентгенодиагностический комплекс
JP2013094454A (ja) 放射線撮影装置、放射線撮影システム及び放射線撮影方法
JP2011183021A (ja) 放射線画像撮影システム及び放射線画像の表示方法
JP2018093954A (ja) 放射線画像撮影システム
JP2023103479A (ja) 放射線撮影システム
JP2018038547A (ja) 放射線撮像装置、その制御方法、放射線撮像システム、およびプログラム
US7076027B2 (en) Fluoroscopic apparatus and method
RU154086U1 (ru) Блок детектирования системы формирования изображения для радиологического комплекса
US20210082114A1 (en) Image processing apparatus, radiography system, image processing method, and image processing program
JP2019000460A (ja) 放射線撮影装置、放射線撮影システム、放射線撮影方法、及びプログラム
JP2011235006A (ja) 放射線撮影装置及び方法
WO2013042514A1 (ja) 放射線動画像撮影装置、放射線動画像撮影装置用関心領域設定方法、放射線画像撮影システム、放射線動画像撮影制御プログラム
JP2014036776A (ja) 放射線画像撮影システムおよび放射線画像撮影装置