RU2614363C2 - Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов - Google Patents

Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов Download PDF

Info

Publication number
RU2614363C2
RU2614363C2 RU2015132794A RU2015132794A RU2614363C2 RU 2614363 C2 RU2614363 C2 RU 2614363C2 RU 2015132794 A RU2015132794 A RU 2015132794A RU 2015132794 A RU2015132794 A RU 2015132794A RU 2614363 C2 RU2614363 C2 RU 2614363C2
Authority
RU
Russia
Prior art keywords
selenium
arabinogalactan
nanocomposites
nanocomposite
solvent
Prior art date
Application number
RU2015132794A
Other languages
English (en)
Other versions
RU2015132794A (ru
Inventor
Борис Геннадьевич Сухов
Татьяна Васильевна Ганенко
Наталья Николаевна Погодаева
Сергей Викторович Кузнецов
Иван Иванович Силкин
Евгения Александровна Лозовская
Михаил Геннадьевич Шурыгин
Ирина Александровна Шурыгина
Борис Александрович Трофимов
Original Assignee
Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук
Федеральное государственное бюджетное научное учреждение Иркутский научный центр хирургии и травматологии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук, Федеральное государственное бюджетное научное учреждение Иркутский научный центр хирургии и травматологии filed Critical Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук
Priority to RU2015132794A priority Critical patent/RU2614363C2/ru
Publication of RU2015132794A publication Critical patent/RU2015132794A/ru
Application granted granted Critical
Publication of RU2614363C2 publication Critical patent/RU2614363C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/04Sulfur, selenium or tellurium; Compounds thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к медицине, в частности к средству, обладающему противоопухолевой активностью, а также к способу получения средства и его применению. Способ получения средства включает взаимодействие арабиногалактанового сырья и диоксида селена или солей селенистой кислоты в растворителе с последующим осаждением в этиловый спирт, или ацетон, или другой смешивающийся с водой органический растворитель. Способ характеризуется тем, что процесс ведут при температуре 20-25°С, размер стабильных наночастиц селена составляет 0,5-250 нм, а в качестве арабиногалактанового сырья используют либо арабиногалактан-сырец, либо специально очищенный от фенольных примесей арабиногалактан, а в качестве растворителей воду, или диметилсульфоксид, или формамид. Осуществление изобретения позволяет получить стабильные водорастворимые нанокомпозиты, обладающие противоопухолевой активностью, в сухом виде. 3 н.п. ф-лы, 7 ил., 11 пр.

Description

Изобретение относится к химико-фармацевтической промышленности, фармакологии, медицине и ветеринарии, в частности фармакологии и онкологии, и может быть использовано для торможения развития опухолей эпителиального происхождения (карцином), в частности карциномы Эрлиха, и касается получения нанокомпозитов элементного селена на основе полисахарида арабиногалактана, которые обладают противоопухолевой активностью.
Разработанные нанокомпозиты могут быть использованы в практической медицине и ветеринарии в качестве высокоэффективных противоопухолевых средств.
Известен способ получения нанокомпозита элементного селена на основе полисахаридов - средства, обладающего противоопухолевой активностью (US 20130029931 А1) [Patent US 2013029931 "Pleurotus tuber-regium polysaccharide functionalized nano-selenium hydrosol with anti-tumor activity and preparation method thereof.", кл. A61K 31/715; A61P 35/00, опубликовано 31.01.2013 г.], где в качестве стабилизирующей высокомолекулярной матрицы ультрадисперсных селенсодержащих систем используется полисахарид, полученный из грибов Pleurotus tuber-regium, который и сам обладает противоопухолевой активностью [Zhang М., Cheung Р.С., Zhang L./ "Evaluation of mushroom dietary fiber (nonstarch polysaccharides) from sclerotia of Pleurotus tuber-regium (Fries) singer as a potential antitumor agent." J Agric Food Chem. 2001 Oct; 49(10): 5059-62].
Синтез селеновых нанокомпозитов из полисахаридов этих грибов осуществляют следующим образом.
При комнатной температуре и атмосферном давлении смешивают водные растворы витамина С и полисахаридов Pleurotus tuber-regium, затем при равномерном перемешивании по каплям добавляют водный раствор диоксида селена или селенита. Полученный в результате гидрозоль полисахаридов Pleurotus tuber-regium, функционализированных наноселеном, включает полисахариды Pleurotus tuber-regium в концентрации 10-1000 мг⋅л-1 (0.001-0.1%); витамин С в концентрации 0.02-20 ммоль⋅л-1 (0.00035-0.35%); наноселен в концентрации 0.005 ммоль⋅л-1 (0.0395%), либо полисахариды Pleurotus tuber-regium в концентрации 10-800 мг⋅л-1 (0.001-0.08%); витамин С в концентрации 0.01-2.00 ммоль⋅л-1 (0.000176-0.0352%); наноселен в концентрации 0.1 ммоль⋅л-1 (0.00079%).
Полученный продукт может сохраняться в виде золя в водном растворе при 2-10°С. Этот способ имеет ряд недостатков.
1. В качестве источника полисахарида - матрицы для стабилизации селеновых наночастиц - используется гриб Pleurotus tuber-regium, дикорастущий в тропических зонах Африки, Азии и Австралии, промышленное выращивание которого не налажено, что принципиально ограничивает промышленное изготовление селенового нанокомпозита.
2. Грибной полисахарид, используемый для получения селеновых нанокомпозитов, не стандартизован, его строение не установлено.
3. Отсутствие избирательного проникновения у получаемых селеновых наночастиц в ядро опухолевой клетки.
4. Необходимость хранения полученного препарата в виде растворенного в воде золя.
5. Нестойкость полученного нанокомпозита (нет результатов по долговременному хранению).
6. Необходимость хранения препарата в условиях холодильника.
7. Есть данные о размере и форме функционализированных наноселеном только частиц полисахарида, но нет данных о размерности частиц самого селена, их дисперсности и мономорфности.
Наиболее близким к предлагаемому способу является способ получения селенсодержащих нанокомпозитов на основе галактозосодержащих полисахаридов (включая арабиногалактан) с антиоксидантными свойствами и гепатопротекторным эффектом [заявка РФ на изобретение №2013159311], однако в данном случае ничего не известно о противоопухолевых свойствах как самих галактозосодержащих полисахаридов (включая арабиногалактан), так и получаемых из них нанокомпозитных субстанций с элементным селеном.
Этот способ имеет ряд недостатков, главными из которых являются необходимость введения в реакционную смесь дополнительных потенциально агрессивных и токсичных восстанавливающих или окисляющих реагентов (борогидрид натрия, гидразин-гидрат, перекись водорода), а также проведение процесса синтеза нанокомпозитов при повышенных температурах.
Задачей предлагаемого изобретения является создание новых препаратов, обладающих противоопухолевой активностью, включающих нанокомпозиты селена и арабиногалактана, на основе рационального синтеза (без нагревания и дополнительных потенциально агрессивных и токсичных восстанавливающих или окисляющих реагентов) нанокомпозитов элементного селена в арабиногалактановой матрице. И затем провести их исследование на предмет получения на их основе средства, обладающего противоопухолевой активностью.
Технический результат достигается тем, что такой рациональный синтез проводят либо на основе арабиногалактана-сырца, выделяемого промышленно из древесины лиственницы (без процедуры специальной очистки этот полисахарид конъюгирован с полифенолами, в частности, биофлавоноидами [Б.Г. Сухов и др. Известия академии наук. Серия химическая. 2014. №9. С. 2189-2194], обладающими выраженными восстанавливающими свойствами), либо селеносодержащие нанобиокомпозиты можно получить на основе специально очищенного арабиногалактана, но только в среде восстанавливающих растворителей (диметилсульфоксида, или формамида, или другого восстанавливающего растворителя), последние в этом случае выполняют роль восстановителя ионов селена, и во всех случаях реакция идет при комнатной температуре (20-25°С). Целевые нанокомпозиты элементного селена и арабиногалактана представляют собой наночастицы нуль-валентного селена с размером частиц 0.5-250 нм (в зависимости от условий получения, см. примеры ниже), стабилизированные нетоксичной полисахаридной матрицей - арабиногалактаном в виде стабильных порошков, и, как показано ниже, они обладают противоопухолевым действием с избирательным проникновением в ядро опухолевой клетки. По-видимому, мягкие условия образования нанобиокомпозитов селена сохранили структуру галактозосодержащей полисахаридной матрицы, что в результате привело к созданию ценных противоопухолевых препаратов.
Отличительной особенностью разработанных нанокомпозитов селена является их водорастворимость, биосовместимость, рецептор-опосредованные трансмембранные свойства по отношению к живой клетке, иммуномодулирующие свойства, пролонгированность биологического действия, что позволяет получать селеновые нанокомпозиты с высокой степенью биологической доступности, способные избирательно проникать в ядро опухолевой клетки (что проявляется в максимуме противоопухолевой эффективности при минимуме побочных действий) и обладающие возможностью длительного хранения в сухом порошкообразном виде.
Технический результат достигается также тем, что для образования при комнатной температуре нанокомпозитов, представляющих собой наночастицы элементного селена с размером 0.5-250 нм (в зависимости от условий получения), стабилизированных макромолекулами арабиногалактана, в качестве исходного селеносодержащего сырья берут диоксид селена - ангидрид селенистой кислоты, или водорастворимые соли этой кислоты (например, селенит натрия, или калия, или другой водорастворимой соли селенистой кислоты). Промышленно доступный арабиногалактан-сырец (представляет собой конъюгаты арабиногалактана и полифенолов, в частности биофлавоноидов, обладающих высокими электроно-восстанавливающими свойствами [Егорова Е.М., Ревина А.А. Журн. физ. химии. 2003. Т. 77. №9. С. 1683-1692]) реагирует с диоксидом селена или селенитами в водном растворе, а специально очищенный в мягких условиях на полиамидной колонке от полифенолов арабиногалактан - в растворе диметилсульфоксида (ДМСО), или формамида, или другого восстанавливающего растворителя, которые не только являются растворителями, но и восстанавливают молекулы диоксида селена или солей селенистой кислоты до элементарного селена.
Преимуществами заявляемых методов получения нанокомпозитов элементного селена и арабиногалактана от известных методов является отсутствие дополнительных, специально вводимых восстанавливающих реагентов (в случае арабиногалактана-сырца роль восстанавливающих реагентов выполняют уже находящиеся в макромолекулах арабиногалактана природные полифенолы, в частности флавоноиды, а в случае проведения синтеза на основе очищенного арабиногалактана в растворе восстанавливающих растворителей (диметилсульфоксид, или формамид, или другой способный к легкому окислению растворитель) последние выполняет одновременно функцию как растворителя всех реагентов, так и восстановителя прекурсоров селена до его нульвалентного состояния). Кроме того, в заявляемых методах синтеза нанокомпозитов элементного селена и арабиногалактана не требуется дополнительных затрат энергии - реакция осуществляется при комнатной температуре.
Техническим результатом настоящего изобретения является получение в сухом порошкообразном виде стабильных водорастворимых нанокомпозитов (содержащих в макромолекулах арабиногалактана наночастицы селена), которые обладают противоопухолевой активностью. На основе этих композитов готовится противоопухолевое средство, представляющее собой водные растворы этих нанокомпозитов, нормированные по содержанию селена (см. примеры ниже).
Синтез селенонанобиокомпозитов осуществляется следующим образом. Для получения стабильных наночастиц элементного селена к раствору товарного арабиногалактана-сырца в воде или чистого арабиногалактана в диметилсульфоксиде добавляли раствор диоксида селена (или водорастворимых солей селенистой кислоты) соответственно в воде или в диметилсульфоксиде. В случае использования водных растворов арабиногалактана-сырца и диоксида селена добавляли также водный раствор аммиака до нейтральной реакции. Реакцию в обоих случаях проводили при комнатной температуре (20-25°С). Образующуюся субстанцию арабиногалактана с инкапсулированными в его макромолекулы наночастицами селена осаждали этиловым спиртом, или ацетоном, или другим смешивающимся с водой органическим растворителем, промывали тем же растворителем, фильтровали и сушили.
Содержание селена в полученных образцах нанокомпозитов составляет 0.5-60.0% (в зависимости от исходного соотношения арабиногалактан/предшественник селена и от других условий синтеза - см. примеры). По данным электронной микроскопии, селен в наноразмерной форме, стабилизированной арабиногалактаном, имеет размеры частиц от 0.5 до 250 нм (в зависимости от способа получения - см. примеры).
Дифрактограммы композитов характеризуют ренгеноаморфное состояние как арабиногалактана, так и элементного селена.
По данным просвечивающей электронной микроскопии, полученные нанокомпозиты содержат наночастицы селена сферической или почти сферической формы.
Предлагаемый способ получения нанокомпозитов элементного селена и арабиногалактана характеризуется следующими преимуществами:
- арабиногалактан-сырец (конъюгат арабиногалактана с природными полифенолами, в частности флавоноидами), а также чистый арабиногалактан, используемые для синтеза нанокомпозитов селена, являются стандартизованными товарными продуктами;
- селенсодержащие нанокомпозиты получаются из доступного и дешевого сырья хорошо воспроизводимым в промышленности рациональным способом, их получение отличается простотой в техническом исполнении и экономичностью, так как не требует применения дополнительных специальных восстанавливающих реагентов, энергозатрат на нагревание и связанных с этим повышенных затрат рабочего времени;
- полученные нанокомпозиты элементного селена на основе арабиногалактана сохраняют структурную организацию и водорастворимость, удобны при хранении, выдерживают длительное хранение в сухом виде и способность к повторному растворению в воде после хранения;
- полученные нанокомпозиты элементного селена и арабиногалактана обладают противоопухолевой активностью, как показано на примере асцитной карциномы Эрлиха, при этом продолжительность жизни животных (белые мыши) увеличивалась на 47%, а торможение опухоли приведении вышеуказанных нанокомпозитов достигало 67,4%.
- полученные нанокомпозиты элементного селена и арабиногалактана способны к целевой доставке в ядро опухолевой клетки.
На рисунке 1 представлено типичное фото селеновых наночастиц в арабиногалактане, полученное с помощью просвечивающей электронной микроскопии.
На рисунке 2 представлена типичная ренгенодифрактограмма нанокомпозита элементный селен - арабиногалактан (фазы как арабиногалактана, так и селена рентгеноаморфны).
На рисунке 3А представлено отсутствие свечения клеток асцитной карциномы Эрлиха через 24 часа инкубации, эпифлюоресценции DIH-M с фильтром Nikon TRITC, ув. 400×.
На рисунке 3Б представлено яркое свечение ядер клеток асцитной карциномы Эрлиха после инкубации с нанокомпозитом элементного селена и арабиногалактана в дозе 7.5 мг/л в пересчете на Se через 24 часа инкубации, эпифлюоресценции DIH-M с фильтром Nikon TRITC, ув. 400×.
На рисунке 4А показаны клетки асцитной карциномы Эрлиха без признаков дегенеративных изменений, контрольная группа, окраска Hoechst 33342, эпифлюоресценции DIH-M с фильтром Nikon DAPI, ув. 400×.
На рисунке 4Б показаны клетки асцитной карциномы Эрлиха опытной группы №3 (доза селена 7.5 мг/кг), большое количество дегенеративных форм, окраска Hoechst 33342, эпифлюоресценции DIH-M с фильтром Nikon DAPI, ув. 400×.
На рисунке 5 представлена Таблица влияния нанокомпозита элементного селена и арабиногалактана на развитие асцитной карциномы Эрлиха. (Примечание к Таблице. Разница с контролем статистически значима: * - при Р<0.001; ** - при Р<0.01.)
Пример 1.
Арабиногалактан-сырец (0.85 г) растворяли в 3.5 мл воды и к нему приливали раствор SeO2 m≈0.008 г в 0.5 мл воды при постоянном перемешивании в течение 15 мин при комнатной температуре 20-25°С. После смешивания растворов реагентов видимых изменений не наблюдалось. Затем доводили рН раствора до 7.0, добавляя по каплям (≈60 мкл) 25% водный раствор аммиака. Реакционная смесь изменяла окраску с соломенно-желтой на розоватую. Контроль за величиной рН среды осуществляли с помощью иономера ЭВ-74. Реакционную смесь выдерживали для завершения химической реакции 30 минут, затем проводили осаждение полученного нанокомпозита в 15 мл этанола с последующим фильтрованием через воронку Шотта под вакуумом. Осаждение повторяли, нанокомпозит фильтровали и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита составил 91%, содержание селена в нанокомпозите - 0.5%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 0.5-3.2 нм (средний размер 1.2 нм) по данным просвечивающей электронной микроскопии.
Пример 2.
Навеску арабиногалактана-сырца (0.5 г) растворяли в 2.5 мл воды и к нему приливали раствор SeO2 m≈0.05 г в 0.5 мл воды при постоянном перемешивании в течение 30 мин при комнатной температуре 20-25°С. При смешивании растворов видимых изменений не наблюдалось. Затем доводили рН раствора до 7.0, добавляя по каплям 25% водный раствор аммиака (≈175 мкл). Реакционная смесь изменяла окраску с соломенно-желтой на ярко-красную. Контроль за величиной рН среды вели с помощью иономера ЭВ-74. Реакционную смесь выдерживали для завершения химической реакции 30 минут, затем проводили осаждение полученного нанокомпозита в 15 мл этанола с последующим фильтрованием через воронку Шотта под вакуумом. Осаждение повторяли, нанокомпозит фильтровали и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита составил 87%, содержание селена в нанокомпозите - 2.5%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 0.7-4.6 нм (средний размер 2.5 нм) по данным просвечивающей электронной микроскопии.
Пример 3.
Арабиногалактан-сырец (0.85 г) растворяли в 3.5 мл воды и к нему приливали раствор Na2SeO3 (можно использовать другие водорастворимые соли селенистой кислоты) (0.036 г) в 0.5 мл воды при постоянном перемешивании в течение 15 мин при комнатной температуре 20-25°С. Реакционная смесь изменяла окраску с соломенно-желтой на розоватую. Реакционную смесь выдерживали для завершения химической реакции 30 минут, затем проводили осаждение полученного нанокомпозита в 15 мл ацетона с последующим фильтрованием через воронку Шотта под вакуумом. Осаждение повторяли, нанокомпозит фильтровали и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита составил 90%, содержание селена в нанокомпозите -1,73%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 1.2-6.0 нм (средний размер 2.5 нм) по данным просвечивающей электронной микроскопии.
Пример 4.
Чистый (без полифенолов) арабиногалактан (0.2 г) растворяли в 2 мл диметилсульфоксида, при перемешивании добавляли 0.1 г SeO2 при комнатной температуре 20-25°С. Через 0.5 часа образовавшийся нанокомпозит осаждали 5 мл этанола, промыли 3 раза по 5 мл тем же спиртом от непрореагировавшего SeO2 и других продуктов реакции. Осадок фильтровали через стеклянный фильтр Шотта и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита в виде порошка бледно-оранжевого цвета составил 92.3%, содержание селена в нанокомпозите - 6.5%. Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 5.0-50.0 нм (средний размер 25 нм) по данным просвечивающей электронной микроскопии.
Пример 5.
Чистый (без полифенолов) арабиногалактан (0.2 г) растворяли в 3 мл диметилсульфоксида, при перемешивании добавляли 0.2 г SeO2 при комнатной температуре 20-25°С. Через 3.5 часа образовавшийся продукт высадили в 10 мл ацетона, промыли 3 раза по 5 мл тем же растворителем от непрореагировавшего SeO2. Осадок фильтровали через стеклянный фильтр Шотта и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита в виде порошка бледно-оранжевого цвета составил 82.4% с содержанием селена 60%.
Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 7-60 нм (средний размер 6.5 нм) по данным просвечивающей электронной микроскопии.
Пример 6.
Чистый (без полифенолов) арабиногалактан (0.2 г) растворяли в 2 мл диметилсульфоксида, при перемешивании добавляли 0.1 г K2SeO3 при комнатной температуре 20-25°С. Через 0.5 часа образовавшийся нанокомпозит осаждали в 15 мл этанола. Промывали декантацией 4 раза по 5 мл этанола. Осадок фильтровали через стеклянный фильтр Шота и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита в виде порошка светло коричнего цвета составил 87.4% с содержанием селена 4%.
Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 5.0 - 250.0 нм (средний размер 70.0 нм) по данным просвечивающей электронной микроскопии.
Пример 7.
Чистый (без полифенолов) арабиногалактан (0.4 г) растворяли в 5 мл формамида, при перемешивании добавляли 0.2 г K2SeO3 при комнатной температуре 20-25°С. Через 0.5 часа образовавшийся нанокомпозит осаждали в 20 мл этанола. Промывали декантацией 4 раза по 5 мл этанола. Осадок фильтровали через стеклянный фильтр Шота и высушивали в эксикаторе над безводным свежепрокаленным карбонатом кальция до постоянного веса.
Выход полученного нанокомпозита в виде порошка бледно-коричневого цвета составил 90.0%, с содержанием селена 5%.
Нанокомпозит рентгеноаморфный. Частицы селена имеют размеры 10.0-55.0 нм (средний размер 25.0 нм) по данным просвечивающей электронной микроскопии.
Пример 8.
Синтезированные по примерам 1-7 нанокомпозиты хранили при комнатной температуре в укупоренной таре. Через год нанокомпозиты сохраняют 100% водорастворимость, при этом средний размер и степень дисперсности селеновых наночастиц сохраняют свои первоначальные значения в соответствии с примерами 1-7.
Пример 9.
Для приготовления средства с противоопухолевой активностью нанокомпозит растворяли в стерильной воде до получения раствора нанокомпозита 20% концентрации, затем полученный раствор нормировали по содержанию селена (см. примеры ниже).
Пример 10.
Культуру перепрививаемого штамма асцитной карциномы Эрлиха, приобретенную в питомнике Федерального государственного учреждения науки «Государственный научный центр вирусологии и биотехнологии «Вектор» (Россия, Новосибирская область, поселок Кольцово), ветеринарный сертификат 254 №0336050 от 28 июля 2010 г., инкубировали с раствором нанокомпозита элементного селена и арабиногалактан в стерильной воде в дозе 2.5 мг, 5 мг и 7.5 мг на литр (в пересчете на Se) в питательной среде RPMI-1640 (ПанЭко) при 37°С в течение 24 часов, контрольную группу - без добавления нанокомпозита.
Оценку эффекта воздействия на культуру опухолевых клеток и распределение нанокомпозита элементного селена и арабиногалактана проводили с использованием световой микроскопии в комбинированном режиме (дифференциальный интерференционный контраст + флюоресценция). Как известно, наноструктурированные селенсодержащие соединения на основе арабиногалактана способны к флюоресценции в широком диапазоне длин волн - от 405 до 514 нм [Шурыгина И.А., Родионова Л.В., Шурыгин М.Г., Сухов Б.Г., Кузнецов С.В., Попова Л.Г., Дремина Н.Н. Конфокальная микроскопия в изучении влияния оригинальных проферментных наногликоконъюгатов элементного селена на регенерацию опорных тканей // Известия Российской академии наук. Серия физическая. 2015. Т. 79. №2. С. 280-282].
Готовили мазки, визуализацию свечения проводили на исследовательском микроскопе Nikon Eclipse 80i с приставкой для эпифлюоресценции DIH-M с фильтром Nikon TRITC (возбуждение 528-553 нм, дихроичное зеркало 565 LP, эмиссия 590-650 нм).
Установлено, что у контрольной группы свечения клеток асцитной карциномы Эрлиха через 24 часа инкубации не обнаружено (Рис. 3А). На Фиг. 3Б представлено яркое свечение ядер клеток асцитной карциномы Эрлиха после инкубации с нанокомпозитом элементного селена и арабиногалактана в дозе 7.5 мг в пересчете на Se на кг через 24 часа инкубации (светятся проникшие в опухолевые клетки наночастицы элементного селена, обладающие люминесцентными свойствами полупроводниковых "квантовых точек").
Таким образом, в настоящем примере представлено избирательное накопление селенового нанокомпозита в ядре опухолевых клеток.
Пример 11.
Эксперименты были проведены на белых нелинейных мышах массой тела 20-25 г, самцах (N=80), в осенне-зимний период, разводимых в виварии научно-исследовательского противочумного института Сибири и Дальнего Востока (ветеринарный сертификат 254 №0336050 от 28.07.2010). Культуру перепрививаемого штамма асцитной карциномы Эрлиха приобрели в питомнике Федерального государственного учреждения науки «Государственный научный центр вирусологии и биотехнологии «Вектор» (Россия, Новосибирская область, поселок Кольцово), ветеринарный сертификат 254 №0336050 от 28 июля 2010 г. Все исследования выполнены в соответствии с этическими требованиями по работе с экспериментальными животными, которые изложены в следующих регламентирующих документах: «Хельсинская декларация всемирной медицинской ассоциации» (2000); «Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ» (2005); «правила лабораторной практики» (приложение к приказу министерства здравоохранения Российской Федерации №708 от 23 августа 2010 г.)
Всем животным внутрибрюшинно вводили культуру перепрививаемого штамма асцитной карциномы Эрлиха в дозе 3×106 клеток в 0.2 мл физиологического раствора. Контрольной группе вводили только культуру перепрививаемого штамма асцитной карциномы Эрлиха. Опытным группам через 24 часа после перепрививки вводили внутрибрюшинно раствор нанокомпозита элементного селена и арабиногалактана в стерильной воде однократно в дозе 2.5 мг, 5 мг и 7.5 мг на кг живой массы (в пересчете на Se).
День забора материала определяли периодом логарифмического увеличения числа клеток (лог-фаза роста опухоли) после появления опухоли в организме, которым явился 10-й день с момента прививки. Определяли объем асцитной жидкости, концентрацию в ней клеток опухоли, морфологические характеристики клеток асцитной карциномы Эрлиха. Органы (печень, сальник, кишечник, переднюю брюшную стенку) заливали в парафин, готовили срезы, депарафинировали, изучали наличие флюоресценции тканей. На специальных группах животных определяли продолжительность жизни животных. Результаты представлены в таблице 1 (рис. 5)Изучение морфологии опухолевых клеток у животных после введения нанокомпозита элементного селена и арабиногалактана продемонстрировало резкое повышение количества форм с признаками дегенерации, в то время как у животных без лечения клетки опухоли не имели дегенеративных изменений. Проведенные исследования демонстрирует Фиг. 4Б, окраска ядерным красителем Hoechst 33342. Для сравнения на Фиг. 4А представлены клетки асцитной карциномы Эрлиха, полученные от мышей контрольной группы на 10 день после перепрививки опухоли. Видны сохранные клетки без признаков дегенеративных изменений. На фиг. 4Б представлены клетки асцитной карциномы Эрлиха, полученные от мышей опытной группы №3 (доза селена 7.5 мг/кг) на 10 день после перепрививки опухоли. Видны множественные дегенеративные формы.
Изучали органы (печень, сальник, кишечник, переднюю брюшную стенку) на наличие флюоресценции селенового нанокомпозита в тканях. Исследование проведено на микроскопе Nikon Eclipse 80i с приставкой для эпифлюоресценции DIH-M с фильтром Nikon TRITC (возбуждение 528-553 нм, дихроичное зеркало 565 LP, эмиссия 590-650 нм). Специфического свечения в органах не зафиксировано, что свидетельствует об избирательном накоплении нанокомпозита элементного селена и арабиногалактана в ядрах опухолевых клеток. Таким образом, установлено достоверное снижение объема асцитной жидкости, концентрации опухолевых клеток и повышение продолжительности жизни животных. Пролонгированность действия подтверждается токсическим эффектом по отношению к опухолевым клеткам через 9 суток после однократного введения разработанного нанокомпозита. Полученный объем информации свидетельствует о выраженной противоопухолевой активности нанокомпозита элементного селена и арабиногалактана с избирательным действием на опухолевые клетки.

Claims (3)

1. Средство, обладающее противоопухолевой активностью, включающее наночастицы нуль-валентного селена в арабиногалактановой матрице в виде сухих водорастворимых порошков с содержанием селена 0.5-60% и размером стабильных наночастиц селена 0.5 -250.0 нм.
2. Способ получения средства по п. 1, обладающего противоопухолевой активностью, включающий взаимодействие арабиногалактанового сырья и диоксида селена или солей селенистой кислоты в растворителе с последующим осаждением в этиловый спирт, или ацетон, или другой смешивающийся с водой органический растворитель, фильтрованием и сушкой, отличающийся тем, что процесс ведут при температуре 20-25°С, при этом размер стабильных наночастиц селена составляет 0.5 -250 нм и в качестве арабиногалактанового сырья используются либо арабиногалактан-сырец - нековалентный гликоконъюгат с природными полифенолами, в частности флавоноидами, а в качестве растворителя - вода, либо в качестве арабиногалактанового сырья берут специально очищенный от фенольных примесей арабиногалактан, а в качестве растворителя - диметилсульфоксид, или формамид, или другой восстанавливающий растворитель, который одновременно играет роль растворителя и восстановителя селена.
3. Применение средства по п. 1 для лечения онкологических заболеваний у нуждающегося субъекта.
RU2015132794A 2015-08-05 2015-08-05 Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов RU2614363C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015132794A RU2614363C2 (ru) 2015-08-05 2015-08-05 Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015132794A RU2614363C2 (ru) 2015-08-05 2015-08-05 Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов

Publications (2)

Publication Number Publication Date
RU2015132794A RU2015132794A (ru) 2017-02-09
RU2614363C2 true RU2614363C2 (ru) 2017-03-24

Family

ID=58453402

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015132794A RU2614363C2 (ru) 2015-08-05 2015-08-05 Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов

Country Status (1)

Country Link
RU (1) RU2614363C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795219C1 (ru) * 2022-07-21 2023-05-02 Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук (ИрИХ СО РАН) Способ получения йод-содержащих композитов арабиногалактана с антимикробными и противогрибковыми свойствами

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262564A1 (en) * 2010-04-22 2011-10-27 Xueyun Gao Treatment of Cancer with Selenium Nanoparticles
US20130029931A1 (en) * 2011-07-25 2013-01-31 The Hong Kong Polytechnic University Pleurotus tuber-regium polysaccharide functionalized nano-selenium hydrosol with anti-tumor activity and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262564A1 (en) * 2010-04-22 2011-10-27 Xueyun Gao Treatment of Cancer with Selenium Nanoparticles
US20130029931A1 (en) * 2011-07-25 2013-01-31 The Hong Kong Polytechnic University Pleurotus tuber-regium polysaccharide functionalized nano-selenium hydrosol with anti-tumor activity and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Antitumor mechanism of Se-containing polysaccharide, a novel organic selenium compound / Dejing SHANG // Front. Biol. China 2009, 4(3). P.248-253. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795219C1 (ru) * 2022-07-21 2023-05-02 Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук (ИрИХ СО РАН) Способ получения йод-содержащих композитов арабиногалактана с антимикробными и противогрибковыми свойствами
RU2813724C1 (ru) * 2023-11-10 2024-02-15 Федеральное государственное бюджетное учреждение науки Иркутский институт химии им. А.Е. Фаворского Сибирского отделения Российской академии наук (ИрИХ СО РАН) Средство, обладающее противоопухолевой активностью, и способ его получения

Also Published As

Publication number Publication date
RU2015132794A (ru) 2017-02-09

Similar Documents

Publication Publication Date Title
Fathy et al. Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities
Mocniak et al. Incorporation of cisplatin into the metal–organic frameworks UiO66-NH 2 and UiO66–encapsulation vs. conjugation
Valodkar et al. In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells
Dhivya et al. pH responsive curcumin/ZnO nanocomposite for drug delivery
US20160257694A1 (en) Oridonin functionalized selenium nanoparticles and method of preparation thereof
Raju et al. Fabrication of pH responsive FU@ Eu-MOF nanoscale metal organic frameworks for lung cancer therapy
KR20070078196A (ko) 항암제가 봉입된, 소수성 담즙산이 결합된 친수성 키토산올리고당 나노입자 및 그 제조방법
Tang et al. One pot synthesis of water-soluble quercetin derived multifunctional nanoparticles with photothermal and antioxidation capabilities
Anitha et al. Facile green synthesis of nano-sized ZnO using leaf extract of Morinda tinctoria: MCF-7 cell cycle arrest, antiproliferation, and apoptosis studies
Pandey et al. Biocompatible gadolinium oxide nanoparticles as efficient agent against pathogenic bacteria
Muthulakshmi et al. Green synthesis of ionic liquid assisted ytterbium oxide nanoparticles by Couroupita guianensis abul leaves extract for biological applications
Sargazi et al. Synthesis and apoptotic efficacy of biosynthesized silver nanoparticles using acacia luciana flower extract in MCF-7 breast cancer cells: Activation of bak1 and bclx for cancer therapy
CN111053911A (zh) 还原响应型交联剂及其交联羟基药物分子的制备及应用
Mei et al. Layered double hydroxide bio-composites toward excellent systematic anticancer therapy
Guo et al. Magnesium hydroxide nanoplates: a pH-responsive platform for hydrophobic anticancer drug delivery
Roy et al. Multi-emissive biocompatible silicon quantum dots: Synthesis, characterization, intracellular imaging and improvement of two fold drug efficacy
Tsou et al. Mesoporous silica nanoparticles with fluorescent and magnetic dual-imaging properties to deliver fucoidan
CN104383543A (zh) 手性纳米硒材料负载siRNA在制备抗肿瘤药物的应用
RU2614363C2 (ru) Средство, обладающее противоопухолевой активностью на основе нанокомпозитов арабиногалактана с селеном, и способы получения таких нанобиокомпозитов
CN113209292A (zh) 槲皮素纳米自组装材料和制备方法及应用
Gao et al. Synthesis, crystal structure, DNA binding, and cytotoxicity of a Zn (II) complex constructed from phenylacetic acid
CN110302391A (zh) 一种葡聚糖-槲皮素聚合物载药胶束制剂及其制备方法
JP6190445B2 (ja) ベンゼンポリカルボン酸化合物及びその薬剤としての使用
CN115212319A (zh) 一种小尺寸铁掺杂氧化锌纳米复合颗粒的制备及应用
Yin et al. Facile solution routes for the syntheses of water-dispersable germanium nanoparticles and their biological applications