RU2613994C1 - Способ получения легированного алюмоиттриевого граната - Google Patents
Способ получения легированного алюмоиттриевого граната Download PDFInfo
- Publication number
- RU2613994C1 RU2613994C1 RU2015141750A RU2015141750A RU2613994C1 RU 2613994 C1 RU2613994 C1 RU 2613994C1 RU 2015141750 A RU2015141750 A RU 2015141750A RU 2015141750 A RU2015141750 A RU 2015141750A RU 2613994 C1 RU2613994 C1 RU 2613994C1
- Authority
- RU
- Russia
- Prior art keywords
- yttrium
- garnet
- alloying elements
- product
- aluminum
- Prior art date
Links
- 239000002223 garnet Substances 0.000 title claims abstract description 21
- 229910052727 yttrium Inorganic materials 0.000 title claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 12
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 239000004411 aluminium Substances 0.000 title abstract 3
- 238000004519 manufacturing process Methods 0.000 title description 8
- 238000000034 method Methods 0.000 claims abstract description 41
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical class [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000005275 alloying Methods 0.000 claims abstract description 25
- 239000000047 product Substances 0.000 claims abstract description 21
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 16
- 239000007864 aqueous solution Substances 0.000 claims abstract description 13
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000975 co-precipitation Methods 0.000 claims abstract description 7
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 4
- 239000012467 final product Substances 0.000 claims abstract 2
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 12
- RFEISCHXNDRNLV-UHFFFAOYSA-N aluminum yttrium Chemical compound [Al].[Y] RFEISCHXNDRNLV-UHFFFAOYSA-N 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052700 potassium Inorganic materials 0.000 claims description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 125000002091 cationic group Chemical group 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- PSNPEOOEWZZFPJ-UHFFFAOYSA-N alumane;yttrium Chemical class [AlH3].[Y] PSNPEOOEWZZFPJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims 1
- 238000000527 sonication Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 29
- 238000001556 precipitation Methods 0.000 abstract description 6
- 238000009827 uniform distribution Methods 0.000 abstract description 4
- -1 yttrium aluminium derivative Chemical class 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 239000008367 deionised water Substances 0.000 abstract description 2
- 229910021641 deionized water Inorganic materials 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract description 2
- 229910002651 NO3 Inorganic materials 0.000 abstract 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract 2
- 238000000605 extraction Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 33
- 239000000654 additive Substances 0.000 description 26
- 239000011651 chromium Substances 0.000 description 19
- 239000002244 precipitate Substances 0.000 description 13
- 239000011777 magnesium Substances 0.000 description 12
- 239000011575 calcium Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 229910052684 Cerium Inorganic materials 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000001636 atomic emission spectroscopy Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 238000000103 photoluminescence spectrum Methods 0.000 description 4
- 238000012797 qualification Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000000462 isostatic pressing Methods 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229910000946 Y alloy Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- IJJPOUUNTYKRHG-UHFFFAOYSA-N dialuminum hexanitrate Chemical compound [Al+3].[Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O IJJPOUUNTYKRHG-UHFFFAOYSA-N 0.000 description 1
- 238000007713 directional crystallization Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 150000003746 yttrium Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/10—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/10—Preparation or treatment, e.g. separation or purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/30—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
- C01F17/32—Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
- C30B29/28—Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0877—Liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0873—Materials to be treated
- B01J2219/0881—Two or more materials
- B01J2219/0888—Liquid-liquid
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/80—Optical properties, e.g. transparency or reflexibility
- C04B2111/807—Luminescent or fluorescent materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Structural Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Luminescent Compositions (AREA)
Abstract
Изобретение относится к технологии получения соединений, относящихся к группе сложных оксидов со структурой граната, легированных щелочными и щелочноземельными элементами и элементами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике, в том числе для изготовления светодиодных источников освещения. Способ осуществляют диспергированием твердого алюмоиттриевого оксидного производного в азотнокислых водных растворах солей легирующих элементов и последующей обработкой и выделением конечного продукта. При этом в качестве исходного алюмоиттриевого производного используют продукт, предварительно полученный совместным осаждением из азотнокислых водных растворов алюминия и иттрия. Полученный осажденный продукт затем подвергают фильтрации и промывке деионизированной водой. После этого выделенный продукт диспергируют при воздействии ультразвука в растворе легирующих элементов, выбранных из группы щелочных и щелочноземельных металлов и элементов 3d группы, образовавшуюся пульпу сушат при постоянном перемешивании, высушенный продукт измельчают и прокаливают при 1200°C до 1600°C. Изобретение позволяет получать алюмоиттриевый гранат с равномерным распределением легирующих элементов в количестве от 1⋅10-4 до 1 масс. %. 2 з.п. ф-лы, 4 ил., 3 табл., 4 пр.
Description
Предлагаемое изобретение относится к технологии получения соединений относящихся к группе сложных оксидов со структурой граната, а именно касается получения алюмоиттриевого граната, легированного щелочными и щелочноземельными металлами и металлами 3d группы, которые могут быть применены для изготовления различных люминесцентных материалов в оптоэлектронике, в том числе для изготовления светодиодных источников освещения.
Как известно, алюмоиттриевый гранат (YAG) представляет собой сложный оксид иттрия и алюминия с химической формулой Y3Al5O12 и структурой граната. Алюмоиттриевый гранат (АИГ; YAG) имеет кубическую симметрию решетки, обладает изотропным тепловым расширением, устойчив к деформации при повышенных температурах (более 1000°C). Разработаны различные методы получения алюмоиттриевого граната в форме монокристаллов: метод выращивания кристаллов [Тугоплавкие соединения. Наука, стр. 579, 1979, Новосибирск], метод горизонтальной направленной кристаллизации (CN 1552956, C30B 15/00, 2004) и в форме порошков: метод твердофазного синтеза (conventional solid-state method) [JP 27966321, C09K 11/08, 1998], гидротермальный метод (solvothermal method) [Puttbach R.C. et al., J.Phys Chem. Solids, 1967 №1, 569-571; RU 2137867, C01F 17/00, 2000], метод «горения» (flame-synthesis method) или метод СВС (самораспространяющийся высокотемпературный синтез) [WO 2011102566, C09K 35/10, 2011], криохимический метод [CN 101497790, C30B 29/28, 2009], метод соосаждения из растворов (coprecipitation method) [US 68442585, C03C 35/106, 2005, CN 1562880, C04B 35/50, 2005; CN 101973569, C01F 17/00, 2011; CN 101870491, C01F 17/02, 2010; Ji Guang Coprecipitation synthesis, European Ceramic Soc, 2000, 20, p. 2395-2405], золь-гель метод (sol-gel method) [Яновская М.И. Формирование ультрадисперсных оксидных систем. Физико-химические ультрадисперсные системы. М.: Наука, 1987, стр. 189-191].
Для применения в области оптоэлектроники синтезируются различные легированные производные алюмоиттриевого граната. Например, описан алюмоиттриевый гранат, содержащий редкоземельные и редкие элементы, общей формулы: Y3-xРЗAl5O12, где РЗ - Ce, Eu, Nd, Yb, Cr, Sm, при x=0,03 [CN 101985397, C01F 17/00, 2011], и алюмоиттриевый гранат, легированный европием (Y2,97Eu0,03Al5O12) и церием (Y2,97Ce0,03Al5O12) [RU 2503754, C30B 29/28, 2014].
Легирование алюмоиттриевого граната элементами из ряда щелочных элементов (ЩЭ), щелочноземельных элементов (ЩЗЭ), 3d-элементов может проводиться с различными целями.
Известно, что Li и Na могут рассматриваться как добавки, улучшающие спекание керамики из этого материала, a Mn, Ni и Cr могут использоваться для придания материалу особых люминесцентных свойств [N. Hanami, Т. Katsumata, Н. Aizawa, М. Honda, М. Shibasaki, K. Otsubo, S. Komuro, Fluorescence Thermometer Based on Luminescence Imaging of Garnet Sensor, материалы конференции International Conference on Control, Automation and Systems 2008, Oct. 14-17, 2008, Seoul, Korea. W. Wang, J. Tang, S.T. Hsu, J. Wang, B.P. Sullivan, Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors, Chemical Physics Letters 457 (2008) 103-105. W. Xiang, J. Zhong, Y. Zhao, B. Zhao, X. Liang, Y. Dong, Z. Zhang, Z. Chen, B. Liu, Growth and characterization of air annealing Mn-doped YAG: Ce single crystal for LED, Journal of Alloys and Compounds 542 (2012) 218-221. E.P. Dubrovina, V.A. Sandulenko, M.I. Demchuk, N.V. Kuleshov, V.P. Mikhailov, The optical spectroscopy of Ni-doped garnets, Chemical Physics Letters 170(5,6) (1990) 473-477].
Fe рассматривается как возможный сенсибилизатор люминесценции для получения лазерных материалов [V. Lupei, A. Lupei, S. Bonea, М. Nanau, М. Bolog, Energy transfer from Fe3+ to rare-earth ions in YAG and the problem of sensitization of laser emission, Journal de Physique IV, 1994, 04 (C4), p.C4-505-C4-508].
Mn и Ca могут служить модификаторами сцинтилляционных свойств материалов на основе алюмоиттриевого граната [K. Kamada, М. Nikl, S. Kurosawa, A. Beitlerova, A. Nagura, Y. Shoji, J. Pejchal, Y. Ohashi, Y. Yokota, A. Yoshikawa, Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator, Optical Materials 41 (2015). P. 63-66].
В известном способе получения алюмоиттриевого граната, легированного редкоземельными элементами [RU 2503754, C30B 29/28, 2014], применяется метод осаждения, который осуществляют путем введения в водный раствор гидрокарбоната аммония, используемого в качестве осадителя, смесевого водного раствора азотнокислых солей алюминия, иттрия и легирующих элементов в количестве, соответствующем молярному соотношению гидрокарбоната аммония к суммарному количеству катионов металлов, равному 3,6:1. При этом осаждение проводят при перемешивании и в присутствии фторсодержащей добавки, вводимой в раствор осадителя в количестве 0,1-5 мол. % атомов фтора от количества осадителя, после чего перемешивают реакционную массу со скоростью 300-500 об/мин, выделяют осажденный продукт, промывают его водой, сушат при 100-150°C и прокаливают при температуре 1100°C. Осаждение осуществляют предпочтительно 2-молярным водным раствором гидрокарбоната аммония. В качестве исходного раствора совместного водного раствора азотнокислых солей алюминия, иттрия и легирующих элементов предпочтительно используют раствор с общей концентрацией ионов металлов 1 моль/л. При этом смесевой раствор катионов приливают предпочтительно со скоростью, равной 60 мл/мин, в качестве фторсодержащей добавки при осаждении используют водный раствор фторида аммония. В результате осуществления данного способа получается группа производных алюмоиттриевого граната, легированного редкоземельными элементами в виде высокочистых, однофазных порошков с субмикронным размером частиц и повышенной яркостью свечения. Однако, как показывает практика, описанный в данном патенте метод совместного осаждения из водных растворов при непосредственном добавлении растворов легирующих элементов к растворам солей алюминия и иттрия, применимый при получении производных алюмоиттриевого граната, легированного редкоземельными элементами, неэффективен при получении алюмоиттриевого граната, легированного рядом щелочных и щелочноземельных элементов. Выявлено, что щелочные и щелочноземельные элементы (Li, Na, K, Mg, Ca) не осаждаются количественно совместно с гранатом, как и некоторые 3d элементы (см. таблицу 1).
Другое направление в осуществлении метода соосаждения для получения легированного алюмоиттриевого граната сводится к тому, что в качестве исходного продукта используется сформированный заранее образец алюмоиттриевого граната, который пропитывают растворами легирующих добавок. Данный метод применен в известном способе, защищаемом патентом США [US 6844285, C03C 35/106, 2005] для получения прозрачного поликристаллического алюмоиттриевого граната, легированного оксидами магния и циркония (yttrium aluminium garnet co-doped with MgO and ZrO2), в котором весовое соотношение оксида магния к оксиду циркония варьируется от 1,5:1 до 3:1, предпочтительно - 2:1. При этом количество магния от общего веса составляет 200-1000 ppm, а оксида циркония - 70-600 ppm. Толщина получаемого материала составляет 0,8 мм. Получаемый продукт имеет суммарное пропускание 93% при длинах волн 400-700 нм и линейное (in line) пропускание 10% при длине волны 600 нм.
Исходный порошкообразный АИГ согласно описанию осуществления способа в цитируемом выше патенте сушат, прессуют под давлением порядка 5 ksi, а затем подвергают так называемому мокрому прессованию (изостатическое прессование) под давлением порядка 25 ksi. В случае использования образца АИГ в трубчатой форме проводят изостатическое прессование в полиуретановых трубках. Затем проводят предварительную термообработку получаемых образцов на воздухе при 900°C в течение двух часов, выжигание связки и спекание. Добавки вводят в виде растворов, пропитывая ими предварительно термообработанный образец. Растворы добавок получают растворением рассчитанных количеств нитрата магния Mg(NO3)2. 6H2O и/или цирконилнитрата ZrO(NO3)2 в деионизированной воде. После погружения образцов в раствор добавок их извлекают и помещают в вакуумную камеру при 27 дюймах рт.ст., а затем снижают вакуум до 15 дюймов рт.ст. в течение 30 минут. Затем образец извлекают из камеры, сушат на воздухе и повторно спекают при 900°C в течение 2 часов. При таких условиях нитраты переходят в оксиды. Спекание осуществляют в вольфрамо-молибденовых печах в токе влажного водорода, который барботируют через слой воды, получая пароводородный газовый поток. Спекание обычно проводят при 1750-1910°C, с нагревом со скоростью 15°C/мин и охлаждением до комнатной температуры со скоростью 30°C/мин. Влажный водород при введении в печь имеет температуру 1400°C. В получаемом продукте измеряется пропускание в диапазоне длин волн 400-700 нм.
Описано получение образцов АИГ, легированных только MgO, или только ZrO2, или MgO и ZrO2 одновременно. Образец, содержавший 350 ppm оксида магния и 374 ppm оксида циркония, был розового цвета, а содержавший 350 ppm оксида магния и 187 ppm оксида циркония - прозрачный. Данный способ как наиболее близкий по технической сущности заявленному способу принят за его прототип.
Недостатком известного способа-прототипа является неоднородность распределения легирующей вводимой добавки в алюмоиттриевом гранате. Добавка вводится на поверхность синтезированных частиц алюмоиттриевого граната, и, поскольку алюмоиттриевый гранат является тугоплавким оксидом, для ее равномерного распределения требуется неоправданно увеличивать время термообработки. В противном случае максимальная концентрация вводимой добавки будет реализовываться на поверхности его частиц. Кроме того, на равномерность распределения добавки могут оказывать влияние капиллярные явления в пространстве между частицами сформированного образца при его высыхании.
Целью создания нового изобретения является синтез группы производных алюмоиттриевого граната, легированных щелочными и щелочноземельными металлами и металлами 3d-группы, на примерах Li, Na, K, Mg, Ca, Cr, Mn, Co, Ni, Cu, Zn, с равномерным распределением легирующих элементов в порошке. Для осуществления указанной цели предлагается способ получения легированного алюмоиттриевого граната, включающий стадию диспергирования твердого алюмоиттриевого оксидного производного в азотнокислых водных растворах солей легирующих элементов, где в качестве исходного алюмоиттриевого производного используют продукт, имеющий катионный состав алюмоиттриевого граната, предварительно полученный совместным осаждением из азотнокислых водных растворов алюминия и иттрия, взятых в количествах, соответствующих катионному составу алюмоиттриевого граната, выделенный фильтрацией и промытый водой, который затем диспергируют при воздействии ультразвука в смешанном азотнокислом водном растворе легирующих металлов, выбранных из группы щелочных и щелочноземельных металлов и элементов 3d группы, содержащем легирующие элементы в количестве от 1⋅10-4 до 1 масс. % по отношению к весу получаемого легированного граната, после чего образовавшуюся после диспергирования пульпу сушат при постоянном перемешивании, затем высушенный продукт измельчают, просевают и прокаливают при 1200-1600°C.
В качестве легирующих элементов 3d группы используют Cr, Mn, Fe, Co, Ni, Cu, Zn. В качестве щелочных и щелочноземельных легирующих элементов используют Li, Na, K, Mg, Ca.
Предлагаемый способ существенно отличается от рассмотренного детально выше способа-прототипа [US 6844285]. В прототипе рассматривается получение алюмоиттриевого граната, содержащего оксиды магния и/или циркония, осуществляемое пропитыванием водными азотнокислыми растворами магния и/или циркония уже сформированного объекта из алюмоиттриевого граната в форме твердого диска или трубки, полученного из синтезированного порошкообразного алюмоиттриевого граната. При таком способе введения добавки может возникать неоднородность распределения добавок по готовому керамическому объекту, вызванная наличием капиллярного эффекта в пространстве между частицами сформированной заготовки при ее высыхании после введения добавок, а также тем, что растворы добавок при их нанесении распределяются на поверхности частиц тугоплавкого и достаточно инертного алюмоиттриевого граната и с трудом проникают внутрь частиц.
В отличие от прототипа в предлагаемом способе раствор добавок вводится в пульпу алюмоиттрийоксидного соединения, полученного после осаждения, не прошедшего высокотемпературной термической обработки и в котором еще не сформирована фаза граната. При термообработке осадка он оказывается в более реакционноспособном состоянии по сравнению с частицами тугоплавкого оксида, используемого в прототипе, и, как результат, в получаемом по предлагаемому способу легированном алюмоиттриевом гранате достигается более равномерное распределение легирующих элементов.
Прокаливание проводят при температуре 1200-1600°C, так как при этих температурах в прокаленных образцах формируется фаза граната
На свойства получаемых соединений оказывает влияние чистота исходных продуктов, поэтому в качестве исходных продуктов используют только чистые химические соединения, например реактивной квалификации и выше. В качестве исходных продуктов могут быть применены: алюминий азотнокислый квалификации «осч», оксид иттрия квалификации «4N», а также нитраты лития, натрия, калия, магния, кальция, хрома, марганца, железа, кобальта, никеля, меди, цинка квалификации не ниже «чда».
Ниже изобретение иллюстрируется следующими примерами.
Пример 1
Готовят азотнокислые растворы алюминия и иттрия с концентрациями не ниже 1 моль/л по содержанию катиона. Затем готовят смесевой раствор, смешивая требуемые количества растворов иттрия азотнокислого и алюминия азотнокислого с соотношением катионов Al+3:Y3+, равным 5:3, исходя из их концентрации, определяемой одним из известных способов. Добавляют воду для обеспечения общей концентрации ионов металлов 1 моль/л. Также готовят растворы, содержащие индивидуальные легирующие добавки Cr, Mn, Fe, Co, Ni, Cu, Zn, с концентрациями 1 г/л в пересчете на металл. Готовят совместный раствор требуемых легирующих добавок.
В стеклянный стакан помещают водный раствор аммиака с концентрацией 5% и при постоянном перемешивании приливают к нему тонкой струей смесевой раствор катионов. Осадок отфильтровывают и промывают на фильтре водой.
Отфильтрованный осадок в требуемом количестве из расчета на 10 г готового продукта помещают в стеклянный стакан емкостью 100 мл, добавляют к нему совместный раствор легирующих компонентов, содержащий по 1 мл приготовленных растворов индивидуальных добавок. Проводят диспергирование осадка в растворе, обрабатывая стакан с осадком в ультразвуковой ванне в течение 10 минут при тщательном перемешивании.
Полученную пульпу загружают в кварцевый тигель и помещают в сушильный шкаф. Сушку ведут при температуре 100°C в течение 8 часов, перемешивая содержимое тигля каждый час или чаще, если это необходимо, чтобы избежать расслаивания. Просушенный продукт измельчают в агатовой ступке и просевают через сетку из полиамидных нитей с размером ячеек 100 мкм. Тигель с продуктом загружают в печь и проводят прокалку в температурном интервале от 1200°C до 1600°C в течение 2 часов после выхода печи на режим.
Описанным способом получают алюмоиттриевый гранат с добавками 3d элементов в количестве 1⋅10-2 масс. %. Результаты анализа методом атомно-эмиссионной спектрометрии с возбуждением пробы индуктивно связанной плазмой, приведенные в Таблице 2, подтверждают вхождение добавок Cr, Mn, Fe, Co, Ni, Cu, Zn в состав АИГ при введении патентуемым способом.
Пример 2
Способом, аналогичным описанному в примере 1, готовят смесевой раствор алюминия, иттрия и церия с соотношением катионов Al3+:Y3+:Ce3+, равным 5:2,97: 0,03. Также готовят растворы, содержащие индивидуальные легирующие добавки Li, Na, K, Mg, Ca в концентрациях 10 г/л в пересчете на металл. Готовят совместный раствор требуемых легирующих добавок.
Получение осадка проводят аналогично примеру 1.
Отфильтрованный осадок в требуемом количестве из расчета на 10 г готового продукта помещают в стеклянный стакан емкостью 100 мл, добавляют к нему по 0,1, 0,5 или 1 мл растворов требуемых легирующих добавок. Далее осадок обрабатывают аналогично примеру 1.
Описанным способом получают алюмоиттриевый гранат, легированный церием, с добавками щелочных или щелочноземельных элементов в количестве 1⋅10-2 масс. % - 1⋅10-1 масс. %. Результаты анализа методом атомно-эмиссионной спектрометрии с возбуждением пробы индуктивно связанной плазмой, приведенные в Таблице 3, подтверждают вхождение добавок Li, Na, K, Mg, Ca в состав АИГ при введении патентуемым способом.
Описанный способ обеспечивает гомогенное распределение добавки в матрице алюмоиттриевого граната. Так, введение в состав алюмоиттриевого граната кальция патентуемым способом в количестве 1⋅10-2 масс. % - 5⋅10-2 масс. % не приводит к изменению его микроструктуры (Фиг. 1). В то же время в работе [Schuh L.H. Microstructure and defect chemistry of yttrium aluminium garnet ceramics // Eindhoven: Doctor thesis, Technical University of Eindhoven. 1989. 171 p.], в которой введение добавки кальция производилось на поверхность частиц спеченного оксида, введение 5⋅10-3 масс. % - 5⋅10-2 масс. % приводила к ограничению роста зерен и снижению среднего размера зерна в 4 раза.
Пример 3
Способом, описанным в примере 1, готовят смесевой раствор алюминия и иттрия с соотношением катионов Al3+:Y3+, равным 5:2,886. Способом, описанным в примере 1, получают осадок. Готовят раствор нитрата хрома (III) с концентрацией 10 г/л в расчете на хром. Отфильтрованный осадок в требуемом количестве из расчета на 10 г готового продукта помещают в стеклянный стакан и добавляют к нему 10 мл приготовленного раствора нитрата хрома. Далее осадок обрабатывают аналогично примеру 1. Описанным способом получают алюмоиттриевый гранат, активированный хромом, отвечающий формуле (Y0,962Cr0,038)3Al5O12 (что составляет 1 масс. % относительно массы образца АИГ). Спектр его фотолюминесценции приведен на Фиг. 2.
Пример 4
Способом, аналогичным описанному в примере 1, готовят смесевой раствор алюминия, иттрия и церия с соотношением катионов Al3+:Y3+:Ce3+, равным 5:2,955:0,03. Способом, описанным в примере 1, получают осадок. Готовят раствор нитрата хрома (III) с концентрацией 10 г/л в расчете на хром. Отфильтрованный осадок в требуемом количестве из расчета на 10 г готового продукта помещают в стеклянный стакан емкостью 100 мл, добавляют к нему 1,3 мл приготовленного раствора нитрата хрома. Далее осадок обрабатывают аналогично примеру 1. Описанным способом получают алюмоиттриевый гранат, активированный совместно церием и хромом, отвечающий формуле (Y0,985Ce0,01Cr0,005)3Al5O12. Спектр его фотолюминесценции приведен на Фиг. 3.
Таким образом, приведенные примеры демонстрируют применимость патентуемого способа для получения алюмоиттриевого граната, легированного щелочными и щелочноземельными металлами и металлами 3d группы. На Фиг. 4 приведена схема процесса получения алюмоиттриевого граната, легированного щелочными и щелочноземельными металлами и металлами 3d группы по предлагаемому способу. В частности, описанным методом может быть получен алюмоиттриевый гранат, активированный хромом (пример 3), который представляет интерес в качестве материала для люминесцентного термометра [N. Hanami, Т. Katsumata, Н. Aizawa, М. Honda, М. Shibasaki, K. Otsubo, S. Komuro, Fluorescence Thermometer Based on Luminescence Imaging of Garnet Sensor, материалы конференции International Conference on Control, Automation and Systems 2008, Oct. 14-17, 2008, Seoul, Korea], а также алюмоиттриевый гранат, со-активированный церием и хромом (пример 4), который представляет интерес в качестве материала люминофора для светодиодных источников освещения [W. Wang, J. Tang, S.T. Hsu, J. Wang, B.P. Sullivan, Energy transfer and enriched emission spectrum in Cr and Ce co-doped Y3Al5O12 yellow phosphors, Chemical Physics Letters 457 (2008) 103-105].
Ниже приводятся Табл. 1, 2, 3 и Фиг. 1, 2, 3, 4, подтверждающие характеристики полученных соединений.
Таблица 1 - результаты анализа методами масс-спектрометрии и атомно-эмиссионной спектрометрии с возбуждением пробы индуктивно связанной плазмой вхождения легирующих добавок в состав АИГ при введении методом осаждения.
Таблица 2 - результаты анализа методом атомно-эмиссионной спектрометрии с возбуждением пробы индуктивно связанной плазмой вхождения добавок Cr, Mn, Fe, Co, Ni, Cu, Zn в состав АИГ при введении патентуемым способом.
Таблица 3 - результаты анализа методом атомно-эмиссионной спектрометрии с возбуждением пробы индуктивно связанной плазмой вхождения добавок Li, Na, K, Mg, Ca в состав АИГ при введении патентуемым способом
Фиг. 1 - Изображение сканирующей электронной микроскопии образцов АИГ:Ce без добавок и с добавкой Ca в количестве 5⋅10-2 масс. %.
Фиг. 2 - Спектр фотолюминесценции соединения (Y0,962Cr0,038)3Al5O12 из примера 3 и спектр фотовозбуждения того же соединения.
Фиг. 3 - Спектр фотолюминесценции соединения (Y0,985Ce0,01Cr0,005)3Al5O12 из примера 4.
Фиг. 4 - Схема процесса получения алюмоиттриевого граната, легированного щелочными и щелочноземельными металлами и металлами 3d группы по предлагаемому способу.
Claims (3)
1. Способ получения легированного алюмоиттриевого граната, включающий стадию диспергирования твердого алюмоиттриевого оксидного производного в азотнокислых водных растворах солей легирующих элементов, последующую обработку и выделение конечного продукта, отличающийся тем, что в качестве исходного алюмоиттриевого производного используют продукт, имеющий катионный состав алюмоиттриевого граната, предварительно полученный совместным осаждением из смешанного водного раствора чистых азотнокислых солей алюминия и иттрия, выделенный фильтрацией, промытый водой, который затем диспергируют при воздействии ультразвука в смешанном водном растворе азотнокислых солей легирующих элементов, выбранных из группы щелочных и щелочноземельных металлов и элементов 3d группы, содержащих легирующие элементы в количестве от 1⋅10-4 до 1 масс. % по отношению к весу получаемого легированного граната, после чего образовавшуюся после диспергирования пульпу сушат при регулярном перемешивании, высушенный продукт измельчают, просеивают и прокаливают при температурах 1200-1600°С.
2. Способ по п. 1, отличающийся тем, что в качестве легирующих элементов 3d группы используют Cr, Mn, Fe, Со, Ni, Cu, Zn.
3. Способ по п. 1, отличающийся тем, что в качестве щелочных и щелочноземельных легирующих элементов используют Li, Na, K, Mg, Са.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015141750A RU2613994C1 (ru) | 2015-10-01 | 2015-10-01 | Способ получения легированного алюмоиттриевого граната |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015141750A RU2613994C1 (ru) | 2015-10-01 | 2015-10-01 | Способ получения легированного алюмоиттриевого граната |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2613994C1 true RU2613994C1 (ru) | 2017-03-22 |
Family
ID=58453160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015141750A RU2613994C1 (ru) | 2015-10-01 | 2015-10-01 | Способ получения легированного алюмоиттриевого граната |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2613994C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2682554C1 (ru) * | 2017-12-28 | 2019-03-19 | Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт" | Способ получения поликристаллических сцинтилляционных материалов в форме порошков |
RU2689721C1 (ru) * | 2018-08-07 | 2019-05-29 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Способ получения высокостехиометричных наноразмерных материалов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов |
US20200008363A1 (en) * | 2016-06-29 | 2020-01-09 | Nichia Corporation | Light emitting device and plant cultivation method |
RU2761324C1 (ru) * | 2021-03-15 | 2021-12-07 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) | Способ получения нанопорошка иттрий-алюминиевого граната |
RU2789398C1 (ru) * | 2021-10-19 | 2023-02-02 | Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) | Способ получения бифазных керамических люминофоров для белых светодиодов |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2137867C1 (ru) * | 1998-04-22 | 1999-09-20 | Химический факультет МГУ им.М.В.Ломоносова | Способ получения мелкокристаллического нелегированного и легированного иттрий-алюминиевого граната |
US6555022B2 (en) * | 1997-02-24 | 2003-04-29 | Superior Micropowders Llc | Oxygen-containing phosphor powders, methods for making phosphor powders and devices incorporating same |
US6844285B1 (en) * | 2003-09-03 | 2005-01-18 | Osram Sylvania Inc. | Transparent polycrystalline yttrium aluminum garnet |
RU2503754C1 (ru) * | 2012-08-06 | 2014-01-10 | Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Министерства Образования И Науки Российской Федерации | Способ получения алюмоиттриевого граната, легированного редкоземельными элементами |
-
2015
- 2015-10-01 RU RU2015141750A patent/RU2613994C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6555022B2 (en) * | 1997-02-24 | 2003-04-29 | Superior Micropowders Llc | Oxygen-containing phosphor powders, methods for making phosphor powders and devices incorporating same |
RU2137867C1 (ru) * | 1998-04-22 | 1999-09-20 | Химический факультет МГУ им.М.В.Ломоносова | Способ получения мелкокристаллического нелегированного и легированного иттрий-алюминиевого граната |
US6844285B1 (en) * | 2003-09-03 | 2005-01-18 | Osram Sylvania Inc. | Transparent polycrystalline yttrium aluminum garnet |
RU2503754C1 (ru) * | 2012-08-06 | 2014-01-10 | Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Министерства Образования И Науки Российской Федерации | Способ получения алюмоиттриевого граната, легированного редкоземельными элементами |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200008363A1 (en) * | 2016-06-29 | 2020-01-09 | Nichia Corporation | Light emitting device and plant cultivation method |
US10952382B2 (en) * | 2016-06-29 | 2021-03-23 | Nichia Corporation | Light emitting device and plant cultivation method |
RU2682554C1 (ru) * | 2017-12-28 | 2019-03-19 | Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт" | Способ получения поликристаллических сцинтилляционных материалов в форме порошков |
RU2689721C1 (ru) * | 2018-08-07 | 2019-05-29 | Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ | Способ получения высокостехиометричных наноразмерных материалов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов |
RU2761324C1 (ru) * | 2021-03-15 | 2021-12-07 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) | Способ получения нанопорошка иттрий-алюминиевого граната |
RU2789398C1 (ru) * | 2021-10-19 | 2023-02-02 | Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) | Способ получения бифазных керамических люминофоров для белых светодиодов |
RU2818556C1 (ru) * | 2023-08-18 | 2024-05-02 | федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" | Способ получения люминесцирующей оксидной композиции для преобразователя излучения в источниках белого света |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hakmeh et al. | Combustion synthesis and up-conversion luminescence of La2O2S: Er3+, Yb3+ nanophosphors | |
RU2503754C1 (ru) | Способ получения алюмоиттриевого граната, легированного редкоземельными элементами | |
RU2613994C1 (ru) | Способ получения легированного алюмоиттриевого граната | |
Zollfrank et al. | Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization | |
KR20160061393A (ko) | 고체 상태 조명을 위한 새로운 니트리도알루모실리케이트 형광체 | |
Wu et al. | A new molybdate host material: synthesis, upconversion, temperature quenching and sensing properties | |
Yang et al. | Ultraviolet long afterglow emission in Bi3+ doped CdSiO3 phosphors | |
Dai et al. | Effect of dopant concentration on the optical characteristics of Cr3+: ZnGa2O4 transparent ceramics exhibiting persistent luminescence | |
Chen et al. | Improved luminescence and afterglow emission from Mn2+/Si4+ co-doped AlN by combustion synthesis method | |
Zhu et al. | Up-conversion monodispersed spheres of NaYF 4: Yb 3+/Er 3+: green and red emission tailoring mediated by heating temperature, and greatly enhanced luminescence by Mn 2+ doping | |
Thoř et al. | Dense ceramics of lanthanide-doped Lu2O3 prepared by spark plasma sintering | |
Sajwan et al. | Recent progress in multicolor tuning of rare earth-doped gadolinium aluminate phosphors GdAlO3 | |
Mingyi et al. | Effect of Yb3+ concentration on upconversion luminescence of AlON: Er3+ phosphors | |
JP2005298679A (ja) | 希土類ホウ酸塩の製造方法 | |
Singh et al. | Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor | |
Fadlalla et al. | Sol–gel preparation and photoluminescence properties of Ce3+-activated Y3Al5O12 nano-sized powders | |
Jiao et al. | Luminescence properties of Eu3+-doped new scheelite-type compounds | |
JP5409906B2 (ja) | Eu賦活アルカリ土類金属シリケート蛍光体の製造方法 | |
Noh et al. | Concentration enhanced upconversion luminescence in ZrO2: Ho3+, Yb3+ nanophosphors | |
Lakshmanan et al. | Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes | |
Podhorodecki et al. | Ion–ion interaction in two-dimensional nanoporous alumina filled with cubic YAlO3: Tb3+ matrix | |
Zhang et al. | Enhanced upconversion luminescence in LuPO 4: Ln 3+ phosphors via optically inert ions doping | |
Bárta et al. | Photoinduced preparation of bandgap-engineered garnet powders | |
JP2005298272A (ja) | 希土類ホウ酸塩の製造方法 | |
CN101333441A (zh) | Ce3+掺杂的镥铝石榴石纳米陶瓷发光粉体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
QB4A | Licence on use of patent |
Free format text: LICENCE FORMERLY AGREED ON 20180609 Effective date: 20180609 |