RU2613590C1 - Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах - Google Patents

Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах Download PDF

Info

Publication number
RU2613590C1
RU2613590C1 RU2015148173A RU2015148173A RU2613590C1 RU 2613590 C1 RU2613590 C1 RU 2613590C1 RU 2015148173 A RU2015148173 A RU 2015148173A RU 2015148173 A RU2015148173 A RU 2015148173A RU 2613590 C1 RU2613590 C1 RU 2613590C1
Authority
RU
Russia
Prior art keywords
idt
piezoelectric substrate
substrate
sensor
idts
Prior art date
Application number
RU2015148173A
Other languages
English (en)
Inventor
Геворк Яковлевич Карапетьян
Евгений Михайлович Кайдашев
Владимир Евгеньевич Кайдашев
Денис Анатольевич Жилин
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет"
Priority to RU2015148173A priority Critical patent/RU2613590C1/ru
Application granted granted Critical
Publication of RU2613590C1 publication Critical patent/RU2613590C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Изобретение относится к области микроэлектроники и касается пассивного беспроводного датчика ультрафиолетового излучения. Датчик включает в себя пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале находятся приемо-передающий однонаправленный встречно-штыревой преобразователь (ВШП) и два отражательных ВШП. Между отражательными ВШП параллельно поверхности подложки на расстоянии не более длины поверхностной акустической волны на центральной частоте ВШП расположена прозрачная для УФ-излучения диэлектрическая подложка с полупроводниковой пленкой, чувствительной к УФ-излучению. Пленка расположена на поверхности, обращенной к пьезоэлектрической подложке. К приемо-передающему ВШП подсоединена приемо-передающая антенна. Для обеспечения зазора между полупроводниковой пленкой и пьезоэлектрической подложкой расположены опоры, которые размещены вне акустического канала и по обе стороны от него. Технический результат заключается в обеспечении возможности проведения измерений без использования дополнительных схем генерации радиосигнала и источников напряжения. 1 ил.

Description

Изобретение относится к микроэлектронике и может быть использовано в технологии конструирования полупроводниковых датчиков (ППД) ультрафиолетового излучения (УФИ) с чувствительным слоем, выполненным из полупроводниковой пленки.
Известен датчик ультрафиолетового излучения на основе полупроводниковых пленок [1] (патент РФ №2392693, МПК-2006.01 H01L 31/101, от 20.06.2010). В этом датчике, представляющем кремниевую подложку, на одну из поверхностей которой нанесен титановый электрод, поверх которого нанесена пленка нитрида алюминия. На пленку нанесен полупрозрачный электрод из платины. При попадании ультрафиолетового излучения (УФИ) на пленку нитрида алюминия через полупрозрачный электрод на электродах датчика появляется фотоэдс или он может работать в режиме обратно включенного фотодиода, сопротивление которого зависит от мощности источника УФ. Такой способ индикации УФИ требует дополнительного источника напряжения, даже если он работает в режиме фотоэдс, так как необходимо преобразовать сигнал для передачи его по радиоканалу или необходимо притягивать провода к датчику для снятия с него показаний, что является существенным недостатком данного датчика. Тот же недостаток имеет датчик [2] (US patent 9064987, МПК-2014.01, H01L 31/0232, от 23.06.2015), в котором в качестве чувствительного слоя используется пленка окиси цинка. Кроме того, наличие полупрозрачного электрода приводит к некоторому ослаблению УФИ, что снижает чувствительность датчика. Совсем избавиться от полупрозрачного электрода, а также непосредственно влиять на частоту - центральную частоту генератора передатчика для связи по радиоканалу, предложено в работах [3] (Wenbo Peng, Yongning Неа, Changbao Wen, Ke Ma "Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer" //Sensors and Actuators A 184 (2012) 34-40), [4] (Venkata Chivukula, Daumantas Ciplys, Michael Shur, and Partha Dutta "ZnO nanoparticle surface acoustic wave UV sensor" //APPLIED PHYSICS LETTERS 96, 233512, 2010), [5] (Wen-Che Tsai, Hui-ling Kao, Kun-Hsu Liao, Yu-Hao Liu, Tzu-Ping Lin, and Erik S. Jeng "Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient" // OPTICS EXPRESS, 9 Feb 2015 Vol. 23, No. 3, 2187), [6] (Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, R.P. "Tand on ZnO based surface acoustic wave ultraviolet photo sensor" // J. Electroceram (2009) 22, p. 198-202), [7] (Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, and Luo Ji-Kui "Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors" // Chin. Phys. В Vol. 24, No. 5 (2015) 057701), [8] (US patent 7989851, МПК-2006.01 H01L 29/82, от 02.08.2011), [9] (US patent 6914279, МПК-2006.01 H01L 29/82, от 07.05.2005), [10] (US patent 6621192, МПК7 H01L 41/08, от 16.09.2003). Там предложен датчик, содержащий пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале расположены приемный и передающий встречно-штыревые преобразователи и пленка, чувствительная к УФИ, между ними [3, 4, 5] и акустический поглотитель на торцах подложки. Также предложен датчик, в котором используется не пьезоэлектрическая подложка, на которую нанесена полупроводниковая пьезоэлектрическая пленка, чувствительная к УФИ, на которой расположены в одном акустическом канале приемный и передающий ВШП [6, 7]. Это позволяет по сдвигу центральной частоты передатчика измерять интенсивность УФИ без всяких других сигнал преобразующих схем, что упростит конструкцию датчиков УФИ и повысит их надежность. Принцип действия новых датчиков основан на изменении затухания и скорости поверхностных акустических волн (ПАВ) от интенсивности УФИ из-за акустоэлектронного взаимодействия ПАВ с электронами проводимости в полупроводниковом слое, находящемся на поверхности пьезоэлектрической подложки, вдоль которой распространяются ПАВ. Концентрация электронов, в свою очередь, зависит от интенсивности УФИ, что и позволяет судить о наличии и интенсивности УФИ. Так как при акустоэлектронном взаимодействии меняется скорость ПАВ, то это приводит изменению центральной частоты встречно-штыревого преобразователя [6, 7], если встречно-штыревые преобразователи (ВШП) нанесены на пленку оксида цинка, которая также обладает пьезоэлектрическими свойствами, или к сдвигу частоты генерации [3, 4, 5, 8, 9, 10], если пленка, чувствительная к УФИ, находится между приемным и передающим ВШП. Так как скорость ПАВ зависит от температуры, то центральная частота ВШП или частота генерации будет зависеть от температуры, что необходимо учитывать при измерении УФИ. Для измерения центральной частоты ВШП требуется специальная схема, требующая источник напряжения, а для датчика, работающего в режиме генератора, частота которого зависит от УФ, также требуется источник напряжения, что является существенным недостатком описываемых датчиков.
Задача, на решение которой направлено изобретение, заключается в упрощении конструкции и повышении надежности датчиков. Технический результат, который дает осуществление изобретения, заключается в том, что конструкция датчика выполнена таким образом, что позволяет определять наличие и интенсивность УФИ без дополнительных схем для генерации радиосигнала и источника напряжения.
Это позволяет конструкция, содержащая пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале находятся приемо-передающий однонаправленный ВШП и два отражательных ВШП, причем между отражательными ВШП на расстоянии не более длины ПАВ на центральной частоте ВШП, параллельно поверхности расположена чувствительная к УФИ полупроводниковая пленка, нанесенная на диэлектрическую подложку, прозрачную для УФИ, которая лежит на опорах, находящихся по обе стороны от акустического канала на краях пьезоэлектрической подложки между отражательными ВШП, а к приемо-передающему ВШП подсоединена приемо-передающая антенна.
На чертеже показана конструкция датчика. Датчик содержит пьезоэлектрическую подложку (пьезоэлектрический звукопровод) 1, на рабочей поверхности которого в одном акустическом канале расположены приемо-передающий однонаправленный ВШП 2 и отражательные ВШП 3 и 4. Между этими ВШП на расстоянии не более длины ПАВ на центральной частоте ВШП параллельно поверхности пьезоэлектрической подложки расположена диэлектрическая подложка 5, прозрачная для УФИ, с полупроводниковой пленкой 6, чувствительной к УФИ, которая расположена на поверхности, обращенной к пьезоэлектрической подложке 1, а к приемо-передающему ВШП подсоединена приемо-передающая антенна 7. На торцах подложки расположены акустические поглотители 8, а для обеспечения необходимого зазора между полупроводниковой пленкой 5 и пьезоэлектрической подложкой 1 на ее краях расположены опоры 9 вне акустического канала по обе стороны от него.
Датчик работает следующим образом. При подаче на приемо-передающую антенну 7 считывающего электромагнитного импульса от опросного устройства последний в ВШП 2 преобразуется в импульс ПАВ, который отражается от отражательных ВШП 3 и 4. ВШП 2 выполнен однонаправленным [11] (патент РФ №2195069 С1, МПК7 Н03Н 9/145 дата опубл. 2002.12.20), чтобы ПАВ излучались преимущественно в сторону отражателей, что приведет к уменьшению затухания отраженных от датчика электромагнитных импульсов, так как излучение ПАВ в противоположную сторону (в сторону поглотителя ПАВ 8) в 10 раз меньше, чем в сторону отражателей ПАВ 3, что уменьшает потери энергии электромагнитного импульса на преобразование в ПАВ, распространяющихся в сторону отражательных ВШП. Чтобы ПАВ, излученные к торцам, не искажали работу датчика (приводили к ложным импульсам) на торце пьезоэлектрической подложки нанесен поглотитель ПАВ 8, который поглощает ПАВ и не дает им попасть снова на ВШП 2. Отраженные от отражательных ВШП импульсы ПАВ попадают обратно на приемо-передающий ВШП. Там они преобразуются в электрический сигнал, который наводит в антенне электромагнитный импульс, который излучается обратно на опросное устройство. Между отражательными ВШП на опорах 9 лежит диэлектрическая подложка 5, на поверхности которой, обращенной к пьезоэлектрической подложке 1, нанесена полупроводниковая пленка оксида цинка 6. Так как эта пленка находится на расстоянии не более длины ПАВ на центральной частоте ВШП от поверхности, вдоль которой распространяются ПАВ, то в нее проникает электрическое поле, сопровождающее ПАВ в пьезоэлектрике [12] (Морган Д. «Устройства обработки сигналов на поверхностных акустических волнах»: Пер. с англ. - М.: Радио и связь, 1990. - 416 с.: ил.). Это приводит к взаимодействию электрического поля с электронами проводимости в полупроводнике и обусловливает дополнительное затухание ПАВ и изменение их скорости в результате акустоэлектронного взаимодействия [13] (Викторов И.А. «Звуковые поверхностные волны в твердых телах». - М.: Наука, 1981). При попадании УФИ на полупроводниковую пленку через прозрачную диэлектрическую подложку концентрация электронов в ней увеличивается, что приводит к увеличению затухания ПАВ. Это в свою очередь приводит к уменьшению амплитуды импульса ПАВ, который отражается от дальнего отражательного ВШП 4 по сравнению с импульсом ПАВ, отраженным от ближнего отражательного ВШП 3. Концентрация свободных электронов в полупроводниковой пленке оксида цинка подбирается таким образом, что при увеличении интенсивности УФИ затухание ПАВ увеличивается. Поэтому, чем больше интенсивность УФИ, тем меньше амплитуда отраженного импульса ПАВ от отражательного ВШП 4 по сравнению с импульсом, отраженным от отражательного ВШП 3. Сравнение амплитуд этих импульсов и дает информацию о интенсивности УФИ.
Пример выполнения. Датчик выполнен на пьезоэлектрической подложке 1 из YX/128° - среза ниобата лития размерами 12×1,4×0,5 мм. ВШП 2 выполнен с внутренними отражателями на центральную частоту
Figure 00000001
0=870 МГц и длиной в 33 длины ПАВ на центральной частоте, что обеспечивает однонаправленный режим в 15 дБ, отражательные ВШП 3,4 выполнены в виде двунаправленных ВШП с числом электродов, равным 3. Расстояние между отражательными ВШП равно 6 мм. Период всех ВШП выбран равным длине ПАВ на центральной частоте и равен 4,4 мкм. Величина перекрытия электродов во всех ВШП выбрана равной 80 длинам ПАВ на центральной частоте. Опоры 9 для обеспечения необходимого зазора и прижатия подложки 5 были изготовлены из иттрийстабилизированного циркония толщиной 2 мкм методом лазерного напыления через маску из фоторезиста. Пьезоэлектрическая подложка расположена в герметичном SMD корпусе 12 (корпус KD-V99377-A фирмы «KYOCERA»), к выводам которого подсоединена антенна 7 в виде полуволнового вибратора длиной 16 см. На торцы подложки нанесены акустические поглотители 8 из эластосила. Полупроводниковая пленка 6 из оксида цинка толщиной 1 мкм нанесена на подложку 5 из сапфира толщиной 450 мкм методом лазерного напыления. Пленка имеет концентрацию электронов около 1016 1/см3. При воздействии на нее УФИ концентрация электронов в ней повышается таким образом, что максвеловская частота релаксации должна быть близка к
Figure 00000002
при интенсивности излучения около 1 mW/см2. Как показали измерения, амплитуда ПАВ импульса, отраженного от отражательного ВШП 4 при наличии УФИ интенсивностью 1 mW/см2 уменьшилась на 25% по сравнению со случаем, когда излучение отсутствовало.
Источники информации
1. Патент РФ №2 392 693, МПК-2006.01 H01L 31/101, от 20.06.2010.
2. US patent 9064987, МПК-2014.01, H01L 31/0232, от 23.06.2015.
3. Wenbo Peng, YongningHea, ChangbaoWen, KeMa "Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer" //Sensors and Actuators A 184 (2012) 34-40
4. Venkata Chivukula, Daumantas Ciplys, Michael Shur, and Partha Dutta "ZnO nanoparticle surface acoustic wave UV sensor" // APPLIED PHYSICS LETTERS 96, 233512, 2010.
5. Wen-Che Tsai, Hui-ling Kao, Kun-Hsu Liao, Yu-Hao Liu, Tzu-Ping Lin, and Erik S. Jeng "Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient" // OPTICS EXPRESS, 9 Feb 2015 Vol. 23, No. 3, 2187.
6. Sanjeev Kumar, Gil-Ho Kim, K. Sreenivas, R.P. "Tand on ZnO based surface acoustic wave ultraviolet photo sensor" // J Electroceram (2009) 22, p. 198-202.
7. Wang Wen-Bo, Gu Hang, He Xing-Li, Xuan Wei-Peng, Chen Jin-Kai, Wang Xiao-Zhi, and Luo Ji-Kui "Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors" // Chin. Phys. В Vol. 24, No. 5 (2015) 057701.
8. US patent 7989851, МПК-2006.01 H01L 29/82, от 02.08.2011.
9. US patent 6914279, МПК-2006.01 H01L 29/82, от 07.05.2005.
10. US patent 621192, МПК7 H01L 41/08, от 16.09.2003.
11. Патент РФ №2195069 С1, 7МПК Н03Н 9/145 дата опубл. 2002.12.20.
12. Морган Д. «Устройства обработки сигналов на поверхностных акустических волнах»: Пер. с англ. - М.: Радио и связь, 1990. - 416 с: ил.
13. Викторов И.А. «Звуковые поверхностные волны в твердых телах». М.: Наука, 1981.

Claims (1)

  1. Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах (ПАВ), содержащий пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале расположены встречно-штыревые преобразователи (ВШП), полупроводниковая пленка, чувствительная к ультрафиолетовому излучению (УФИ), между ними и поглотители ПАВ на торцах подложки, отличающийся тем, что на рабочей поверхности пьезоэлектрической подложки в одном акустическом канале находятся приемо-передающий однонаправленный ВШП и два отражательных ВШП, причем между отражательными ВШП на расстоянии не более длины ПАВ на центральной частоте ВШП, параллельно поверхности расположена чувствительная к УФИ полупроводниковая пленка, нанесенная на диэлектрическую подложку, прозрачную для УФИ, которая расположена на опорах, находящихся по обе стороны от акустического канала на краях пьезоэлектрической подложки между отражательными ВШП, а к приемо-передающему ВШП подсоединена приемо-передающая антенна.
RU2015148173A 2015-11-09 2015-11-09 Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах RU2613590C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148173A RU2613590C1 (ru) 2015-11-09 2015-11-09 Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148173A RU2613590C1 (ru) 2015-11-09 2015-11-09 Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах

Publications (1)

Publication Number Publication Date
RU2613590C1 true RU2613590C1 (ru) 2017-03-17

Family

ID=58458449

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148173A RU2613590C1 (ru) 2015-11-09 2015-11-09 Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах

Country Status (1)

Country Link
RU (1) RU2613590C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180995U1 (ru) * 2017-11-20 2018-07-03 Федеральное государственное унитарное предприятие Ордена Трудового Красного Знамени научно-исследовательский институт радио Датчик давления на поверхностных акустических волнах
RU2692832C1 (ru) * 2018-06-25 2019-06-28 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Пассивный беспроводной датчик ультрафиолетового излучения на поверхностных акустических волнах

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2195069C1 (ru) * 2002-04-08 2002-12-20 Зао Нпп "Элко" Однонаправленный преобразователь поверхностных акустических волн
US6621192B2 (en) * 2000-07-13 2003-09-16 Rutgers, The State University Of New Jersey Integrated tunable surface acoustic wave technology and sensors provided thereby
CN104810427A (zh) * 2014-01-26 2015-07-29 中国科学院苏州纳米技术与纳米仿生研究所 基于声表面波增强的紫外探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621192B2 (en) * 2000-07-13 2003-09-16 Rutgers, The State University Of New Jersey Integrated tunable surface acoustic wave technology and sensors provided thereby
RU2195069C1 (ru) * 2002-04-08 2002-12-20 Зао Нпп "Элко" Однонаправленный преобразователь поверхностных акустических волн
CN104810427A (zh) * 2014-01-26 2015-07-29 中国科学院苏州纳米技术与纳米仿生研究所 基于声表面波增强的紫外探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
X. L. He и др. "High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing"; JOURNAL OF MICROMECHANICS AND MICROENGINEERING, No 24, 2014 г, стр.055014-1 - 055014-8. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180995U1 (ru) * 2017-11-20 2018-07-03 Федеральное государственное унитарное предприятие Ордена Трудового Красного Знамени научно-исследовательский институт радио Датчик давления на поверхностных акустических волнах
RU2692832C1 (ru) * 2018-06-25 2019-06-28 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Пассивный беспроводной датчик ультрафиолетового излучения на поверхностных акустических волнах

Similar Documents

Publication Publication Date Title
JP5885014B2 (ja) 無給電ワイヤレス式センサモジュールおよびワイヤレス式物理量検出システム
US9097638B2 (en) Sensing devices and methods
RU2613590C1 (ru) Пассивный беспроводный датчик ультрафиолетового излучения на поверхностных акустических волнах
WO2017000615A1 (zh) 一种基于无线温度传感器的芯片
RU2387051C1 (ru) Датчик физической величины на поверхностных акустических волнах
JP2008096359A (ja) センサ
RU2585487C1 (ru) Пассивный датчик температуры на поверхностных акустических волнах
Karapetyan et al. Passive wireless UV SAW sensor
JP2020060588A (ja) センサ素子およびセンサ装置
JP2005214713A (ja) 湿度状態検出システム
RU2692832C1 (ru) Пассивный беспроводной датчик ультрафиолетового излучения на поверхностных акустических волнах
US11112352B2 (en) Saw based optical sensor device and package including the same
US20220357483A1 (en) Optical detector including plasmonic metasurfaces and bulk acoustic wave resonators
US4195244A (en) CdS Solid state phase insensitive ultrasonic transducer
Abdelmejeed et al. A CMOS compatible GHz ultrasonic pulse phase shift based temperature sensor
KR101661113B1 (ko) 다중 광 센서 및 이를 제조하는 방법
RU2581570C1 (ru) Пассивный беспроводный датчик на поверхностных акустических волнах для измерения концентрации моноокиси углерода
CN107228641A (zh) 基于声表面波的微位置传感器
RU2550697C1 (ru) Датчик на поверхностных акустических волнах для измерения концентрации моноокиси углерода
RU2427943C1 (ru) Пассивный датчик на поверхностных акустических волнах
US20180143069A1 (en) Uv sensor and method of manufacturing same
SU1000789A1 (ru) Устройство дл дистанционного измерени температуры
KR101847389B1 (ko) 자외선 센서를 포함하는 발진회로
JP2014192692A (ja) 弾性表面波デバイス及びこれを用いた物理量検出装置
JP4059338B2 (ja) ファイバーを用いた線状センサ及びそのシステム