RU2613250C2 - Устройство для микродугового оксидирования - Google Patents

Устройство для микродугового оксидирования Download PDF

Info

Publication number
RU2613250C2
RU2613250C2 RU2014125451A RU2014125451A RU2613250C2 RU 2613250 C2 RU2613250 C2 RU 2613250C2 RU 2014125451 A RU2014125451 A RU 2014125451A RU 2014125451 A RU2014125451 A RU 2014125451A RU 2613250 C2 RU2613250 C2 RU 2613250C2
Authority
RU
Russia
Prior art keywords
duration
anode
power
pulses
control element
Prior art date
Application number
RU2014125451A
Other languages
English (en)
Other versions
RU2014125451A (ru
Inventor
Борис Михайлович Клименко
Татьяна Алексеевна Клименко
Юлия Анатольевна Печейкина
Дмитрий Леонидович Раков
Original Assignee
Борис Михайлович Клименко
Татьяна Алексеевна Клименко
Юлия Анатольевна Печейкина
Дмитрий Леонидович Раков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Борис Михайлович Клименко, Татьяна Алексеевна Клименко, Юлия Анатольевна Печейкина, Дмитрий Леонидович Раков filed Critical Борис Михайлович Клименко
Priority to RU2014125451A priority Critical patent/RU2613250C2/ru
Publication of RU2014125451A publication Critical patent/RU2014125451A/ru
Application granted granted Critical
Publication of RU2613250C2 publication Critical patent/RU2613250C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation

Abstract

Изобретение относится к электрохимическому способу нанесения покрытий и может найти применение в машиностроении и других отраслях промышленности. Устройство содержит источник силового питания, связанный с ним силовой блок управления, соединенный с ванной с электролитом с погруженной в нее деталью и измерительным блоком, причем силовой блок содержит регулирующий элемент, обеспечивающий управление напряжением, временем начала и конца и длительности анодного и катодного циклов. Регулирующий элемент выполнен с возможностью подачи импульсов с промежутками между ними продолжительностью от 80 мксек до 5 мсек в течение анодного и катодного циклов с импульсами регулируемой частоты и длительности, при этом использован регулирующий элемент, обеспечивающий управление напряжением с широтно-импульсной и/или амплитудно-импульсной модуляцией. Технический результат: расширение технологических возможностей микродугового оксидирования, повышение сцепления покрытия с подложкой, достижение высокой твердости покрытия при регулируемой его пористости. 3 з.п. ф-лы, 2 ил.

Description

Область техники
Изобретение относится к электрохимическому способу нанесения покрытий и может найти применение в машиностроении и других отраслях промышленности.
Предшествующий уровень техники
Одним из перспективных методов поверхностного упрочнения деталей, позволяющим формировать на поверхности принципиально новые высококачественные покрытия с высокой износостойкостью и прочностью сцепления к основе является метод микродугового оксидирования (МДО). Метод МДО, представляющий собой электрохимический процесс окисления поверхностного слоя в сочетании с электроразрядными явлениями на границе анод - электролит, позволяет получать на деталях из алюминиевых сплавов принципиально новые покрытия. Суть метода заключается в формировании на поверхности детали в условиях воздействия микродуговых разрядов высокопрочного износостойкого покрытия (МДО-покрытия), состоящего, например, на алюминиевых сплавах преимущественно из а-Al2O3 (корунда) и других окислов алюминия.
Процесс МДО можно проводить на постоянном токе, однако он становится чувствительным к величине напряжения (Казанцев И.А., Кривенков А.О. Технология получения композиционных материалов микродуговым оксидированием. Монография. Пенза, ИНЦ, ПГУ 2007, с. 78), диапазон напряжений с устойчивым мелким искрением очень узкий. При небольших его отклонениях процесс либо прекращается, либо переходит в дуговой режим, при котором мощные разряды прожигают образовавшуюся пленку до основы. Более устойчиво идет этот процесс при импульсном питании, когда между активными участками есть промежутки. Процесс МДО проводится при 50 Гц промышленной сети, что позволяет устойчиво проводить его при повышенных напряжениях (до 600 и более Вольт), что необходимо для наращивания толстых пленок.
Известно устройство получения покрытий на вентильных металлах и сплавах при помощи которого оксидирование осуществляют в микродуговом режиме. Напряжение, подаваемое на анод, составляет 150-300 В, плотность тока 15-40 А/дм2, время оксидирования 5-10 мин. На титане покрытие состоит из TiO2 (рутил) и шпинели Al2TiO5. На алюминии образуются собственные оксиды. Однако износостойкость покрытий, полученных на титане и алюминии в электролите данного состава, очень низкая и при Ρ 3000 МПа время истирания покрытий незначительно. Электролит содержит в своем составе, г/л: алюминат натрия 3-10, сульфат щелочного металла 5-15 или сульфат магния 10-25 или гидразин-сульфат 10-15, персульфат аммония 0,5-0,8
Известно также устройство получения покрытий на вентильных металлах и сплавах (патент РФ N 2046156), в котором в качестве катода применяют сталь. Анодом является оксидируемое изделие (титан, алюминий). Напряжение, подаваемое на анод, составляет 200-350 В. Плотность тока формирования пленки 0,5 А/см2. Время оксидирования 5-10 мин.
Известно также устройство (заявка на изобретение РФ 2004105642) микродугового оксидирования, позволяющее осуществлять процесс путем наложения на изделие повторяющихся циклов напряжения промышленной частоты с постоянным соотношением амплитуд катодного и анодного токов, а в пределах цикла плотность катодного тока равномерно-ступенчато уменьшают до значения 0,5÷1,5 А/дм2, изменяя при этом длительность каждой.
Известно также устройство и способ получения композиционных покрытий на алюминии и его сплавах (патент РФ 2068037), в котором на керамическое покрытие, полученное методом микродугового оксидирования в гальваностатическом режиме, при плотности постоянного тока 0.1-1.0 А/дм2 и напряжении 190-220 В, для придания ему функциональных свойств (антипригарные покрытия) дополнительно наносят слой тефлона (политетрафторэтилен) механическим натиранием с последующим отжигом.
Известны также способ и устройство для микродугового оксидирования (патент РФ N 2224828). Способ включает погружение детали в электролит, подготовку поверхности детали перед подачей напряжения к оксидированию путем электрохимического травления и нанесения электролитической пленки. Процесс ведут при плотностях тока до 20 кА/м2 и завершают подачей напряжения с увеличенной катодной составляющей. Устройство для реализации способа содержит ванну с электролитом, корпус которой соединен с клеммой сети переменного напряжения, формирователь напряжений для электрохимического травления и покрытия деталей пленкой, соединенный с деталью, блок управления, конденсаторную батарею, состоящую из двух частей, соединяемых при помощи переключателей параллельно или последовательно, через которую от второй клеммы сети через переключатель подается напряжение на деталь и электрический вентиль, один конец которого соединен с одним выводом второй части конденсаторной батареи, а второй конец - с другим выводом второй части батареи.
Известны также способ модифицирования поверхности медицинских изделий, выполненных из титана и его сплавов (патент РФ N 2206642), включающий помещение изделия в водный раствор электролита и возбуждение на поверхности изделия микродуговых разрядов, отличающийся тем, что возбуждение микродуговых разрядов проводят с наложением импульсов анодного или анодно-катодного тока в электролите с рН 1-14 при напряжении, достаточном для образования на поверхности изделия биокерамического покрытия заданной толщины. Возбуждение микродуговых разрядов на поверхности изделия осуществляют наложением импульсов анодно-катодного тока частотой 50 Гц, при напряжении до 1000 В, длительности анодного, катодного импульсов 30-400 мкс и паузой между ними не менее 100 мкс, причем в начальный период длительности импульса 10-30 мкс плотность тока анодного импульса достигает значений 10-50 А/см2, затем скачком ее уменьшают до значений 8-10 А/см2 в оставшийся период длительности импульса, а плотность тока катодного импульса в начальный период длительности импульса 10-30 мкс достигает значений 1-5 А/см2, затем скачком ее уменьшают до значений 0,5-1 А/см2 в оставшийся период длительности импульса.
Указанная длительность анодного и катодного импульсов не позволяет полноценно использовать ту часть анодного (катодного) импульсов, при которой активно протекает процесс МДО (до 5…7 мс). Чтобы пропустить достаточный заряд, нужно или поднимать напряжение, или увеличивать длительность импульса, что выполнить проще, а оптимальная длительность, т.е. быстрый рост толщины покрытия при минимальных энергозатратах, как раз должна занимать указанная часть синусоиды.
Наиболее близким по своему техническому выполнению является устройство для нанесения покрытия микродуговым оксидированием деталей из вентильных металлов и сплавов (патент РФ N 2413040) при переменном напряжении которое содержит силовой трансформатор, связанный с ним силовой блок, соединенный с ванной для электролита и измерительным блоком, причем ванна соединена со входом силового блока, а его выход - с силовым трансформатором, при этом устройство снабжено блоком управления, а в силовой блок введен регулирующий элемент для управления напряжением, временем начала и конца и длительностью анодного и катодного циклов независимо друг от друга, выполненный в виде диодного моста, в диагональ которого помещен переключающий элемент - биполярный или полевой транзистор, и связанный с блоком управления.
Недостатком предложенного устройства является невозможность регулирования амплитуд, длительностей и количества импульсов во время анодного и катодного импульсов, не позволяющая оптимизировать процесс покрытия по необходимым параметрам воздействий и расходу электроэнергии.
Задача, на решение которой направлено заявляемое изобретение, заключается в получении качественных твердых покрытий путем создания оптимальных условий формирования покрытия при максимальной экономии электроэнергии.
Технический результат, получаемый при реализации предлагаемого способа, заключается в расширении технологических возможностей микродугового оксидирования, повышении сцепления покрытия с подложкой, что практически исключает его отслаивание при эксплуатации, достижении высокой твердости покрытия при регулируемой его пористости и снижении расхода электроэнергии.
Также достигаются следующие преимущества:
- возможность нанесения покрытия на сложнопрофильные изделия, внутренние поверхности и скрытые полости;
- получение покрытий толщиной от 0,05-0,2 мм до 0,3-0,8 мм с адгезией, сопоставимой с прочностью материала подложки;
- возможность полной автоматизации процесса;
- широкие возможности регулирования скорости процесса.
Раскрытие изобретения
Цель достигается тем, что в устройстве для микродугового оксидирования, содержащем источник силового питания, связанный с ним силовой блок управления, соединенный с ванной с электролитом с погруженной в нее деталью и измерительным блоком, причем силовой блок содержит регулирующий элемент, обеспечивающий управление напряжением, временем начала и конца и длительности анодного и катодного циклов и в течение длительности анодного и катодного циклов, регулирующий элемент подает импульсы регулируемой частоты и длительности, причем импульсы расположены между началом и окончанием длительности анодного и катодного циклов.
Цель достигается также тем, что силовой блок выполнен в виде диодного моста, в диагональ которого помещен переключающий регулирующий элемент - биполярный транзистор с изолированным затвором, связанным с блоком управления.
Цель достигается также тем, что источник силового питания выполнен в виде силового трансформатора и/или трехфазной силовой сети.
Цель достигается также тем, что в течение длительности анодного и катодного циклов регулирующий элемент подает импульсы переменной регулируемой частоты и длительности.
Цель достигается также тем, что регулирующий элемент обеспечивает управление напряжением с использованием широтно-импульсной модуляции и/или амплитудно-импульсной модуляции.
Краткое описание чертежей
Изобретение поясняется чертежами, где на фиг. 1 показана принципиальная схема устройства с автоматизированным процессом управления нанесения покрытия, на фиг. 2 даны зависимости напряжения от времени на детали в катодном и анодном режимах.
Устройство (фиг. 1) содержит источник силового питания 1, силовой блок 2, служащий источником технологического тока, ванну 3 с электролитом 4, погруженной в него деталью 5, а также сенсоры 6, измерительный блок 7 для измерения напряжения, тока и сигналов сенсоров с гальванической развязкой на выходе, платой ввода-вывода 8, соединенной с персональным компьютером и/или контроллером 9 и блоком управления 10, узлом 11 гальванической развязки с силовым блоком 2. Силовой блок 2 содержит силовые диоды 12 и регулирующий элемент, например биполярный транзистор с изолированным затвором 13.
Электролит содержит, например, водный раствор технического жидкого стекла с концентрацией 2-110 г/л и модулем от 2 до 4, раствор щелочи с концентрацией 1-12 г/л и может иметь другие добавки соответственно материалу детали.
Варианты осуществления изобретения
Пример 1. Деталь 5 размещают в электролите 4, содержащем, например, водный раствор технического жидкого стекла с концентрацией 4 г/л и модулем 3 и раствор щелочи с концентрацией 2 г/л, и соединяют с анодом силового блока 2 (Фиг. 1). С измерительного блока 7 значения напряжения, тока, температуры и т.д. посредством платы ввода-вывода 8 подаются на персональный компьютер или процессор 9, где обрабатываются. Персональный компьютер и/или контроллер 9 формирует потребные команды управления, которые передает на блок управления 10, а затем на силовой блок 2 и регулирующий элемент 13. Регулирующий элемент 13 включает анодное UA (Фиг. 2) и катодное UK напряжение на детали 5 в момент достижения им необходимого для процесса уровня UN (времена tAS и tKS) и обрезает импульсы тока в момент прекращения процесса при длительности импульсов tA и tK. Устанавливают также время задержки между катодным и анодным циклами tKA и tAK.
В течение анодного цикла tA он заполняется импульсами t1, t3, tm регулируемой частоты и длительности (промежутки между импульсами) t2, tn при помощи подачи команд от блока управления 10 на силовой блок 2 и регулирующий элемент 13.
В течение катодного цикла tK он заполняется импульсами tk1, tk3 регулируемой частоты и длительности (промежутки между импульсами) tk2 при помощи подачи команд от блока управления 10 на силовой блок 2 и регулирующий элемент 13.
Количество импульсов может изменяться от одного до пачки импульсов, заполняющих tA и tK.
Импульсы и промежутки между импульсами имеют продолжительность по времени от 80 мксек до 5 мсек. Регулирующий элемент 13 может обеспечивать управление напряжением с использованием широтно-импульсной модуляции и/или амплитудно-импульсной модуляции.
Пример 2. Все так же, как по примеру 1, но перед помещением детали 5 в электролит 4, деталь 5 покрывают тонким слоем (до 60 микрометров) непроводящего вещества, например клея, путем опускания в раствор или распылением с последующей сушкой с выдержкой температурного режима. Это позволяет сформировать непроводящее покрытие на детали и соответственно поднять пробивное напряжение, что приводит к уменьшению времени процесса нанесения керамического покрытия и экономии электроэнергии.
Заполнение импульсами анодного и катодного циклов позволяет оптимизировать процесс покрытия. Достигается также мягкое начало процесса, полное использование полезной части импульсов тока и, тем самым, минимальный расход электроэнергии и высокое качество покрытия.
Источник силового питания 1 может быть выполнен в виде силового трансформатора, и/или трехфазной силовой сети, или с использованием двух фаз силовой сети для однофазного питания.
Например, катодный импульс, подготавливающий работу анодного, должен лежать в пределах 0,5…1,1 по амплитуде от анодного, быть короче его и расположен ближе к анодному (фиг. 2).
Предлагаемое техническое решение дает возможность полного регулирования процессом нанесения, так, повышение качества нанесения покрытия достигается, например, тем, что в начале процесса нанесения покрытия, т.е. tK=0, процесс идет полностью в анодном режиме.
Промышленная применимость
При анализе изобретения на соответствие критерию «новизна» выявлено, что часть признаков заявленной совокупности является новой, следовательно, изобретение соответствует критерию «новизна».
При анализе изобретения на соответствие критерию «изобретательский уровень» выявлено, что техническое решение анализируемого объекта ново, следовательно, признаки соответствуют критерию «изобретательский уровень», поскольку оно представляет собой новую совокупность признаков как сочетание известных признаков и нового технического свойства, а также представляет собой новую структуру и связи элементов. Кроме того, посредством предлагаемого устройства достигнут результат, удовлетворяющий давно существующим потребностям (расширение технологических возможностей микродугового оксидирования, повышение сцепления покрытия с подложкой, снижение расхода электроэнергии и т.п.).
Изобретение может использоваться в промышленности, может быть тиражировано и, следовательно, соответствует критерию «промышленная применимость».
Достоинства заявляемого технического решения заключаются в создании оптимальных параметров нанесения керамических покрытий, позволяющих достигнуть высоких эксплуатационных параметров.

Claims (4)

1. Устройство для микродугового оксидирования, содержащее источник силового питания, связанный с ним силовой блок управления, соединенный с ванной с электролитом с погруженной в нее деталью и измерительным блоком, причем силовой блок содержит регулирующий элемент, обеспечивающий управление напряжением, временем начала и конца и длительности анодного и катодного циклов, отличающееся тем, что регулирующий элемент выполнен с возможностью подачи импульсов с промежутками между ними продолжительностью от 80 мксек до 5 мсек в течение анодного и катодного циклов с импульсами регулируемой частоты и длительности, при этом использован регулирующий элемент, обеспечивающий управление напряжением с широтно-импульсной и/или амплитудно-импульсной модуляцией.
2. Устройство по п. 1, отличающееся тем, что силовой блок выполнен в виде диодного моста, в диагональ которого помещен переключающий регулирующий элемент в виде биполярного транзистора с изолированным затвором, связанным с блоком управления.
3. Устройство по п. 1, отличающееся тем, что источник силового питания выполнен в виде силового трансформатора и/или трехфазной силовой сети.
4. Устройство по п. 1, отличающееся тем, что в течение длительности анодного и катодного циклов регулирующий элемент подает импульсы переменной регулируемой частоты и длительности.
RU2014125451A 2014-06-24 2014-06-24 Устройство для микродугового оксидирования RU2613250C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014125451A RU2613250C2 (ru) 2014-06-24 2014-06-24 Устройство для микродугового оксидирования

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014125451A RU2613250C2 (ru) 2014-06-24 2014-06-24 Устройство для микродугового оксидирования

Publications (2)

Publication Number Publication Date
RU2014125451A RU2014125451A (ru) 2015-12-27
RU2613250C2 true RU2613250C2 (ru) 2017-03-15

Family

ID=55023325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014125451A RU2613250C2 (ru) 2014-06-24 2014-06-24 Устройство для микродугового оксидирования

Country Status (1)

Country Link
RU (1) RU2613250C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2736943C1 (ru) * 2020-04-24 2020-11-23 Акционерное общество «МАНЭЛ» Способ нанесения покрытия на изделия из вентильного металла или его сплава
RU2803717C1 (ru) * 2022-12-07 2023-09-19 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Установка для формирования защитных декоративных покрытий на титане

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2206642C2 (ru) * 2000-01-31 2003-06-20 Мамаев Анатолий Иванович Способ модифицирования поверхности медицинских изделий (варианты)
CN1619021A (zh) * 2004-09-21 2005-05-25 沈阳黎明航空发动机(集团)有限责任公司 大容量钛合金脉冲微弧阳极氧化动态控制电源
RU2413040C2 (ru) * 2008-09-04 2011-02-27 Борис Михайлович Клименко Устройство для нанесения покрытия микродуговым оксидированием вентильных металлов и сплавов
RU2466218C1 (ru) * 2011-07-22 2012-11-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский Государственный Технический Университет (Новочеркасский Политехнический Институт) Способ микродугового получения композиционного покрытия на алюминии и его сплавах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2206642C2 (ru) * 2000-01-31 2003-06-20 Мамаев Анатолий Иванович Способ модифицирования поверхности медицинских изделий (варианты)
CN1619021A (zh) * 2004-09-21 2005-05-25 沈阳黎明航空发动机(集团)有限责任公司 大容量钛合金脉冲微弧阳极氧化动态控制电源
RU2413040C2 (ru) * 2008-09-04 2011-02-27 Борис Михайлович Клименко Устройство для нанесения покрытия микродуговым оксидированием вентильных металлов и сплавов
RU2466218C1 (ru) * 2011-07-22 2012-11-10 Государственное образовательное учреждение высшего профессионального образования "Южно-Российский Государственный Технический Университет (Новочеркасский Политехнический Институт) Способ микродугового получения композиционного покрытия на алюминии и его сплавах

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2736943C1 (ru) * 2020-04-24 2020-11-23 Акционерное общество «МАНЭЛ» Способ нанесения покрытия на изделия из вентильного металла или его сплава
WO2021215962A1 (ru) * 2020-04-24 2021-10-28 Акционерное общество "МАНЭЛ" Способ нанесения покрытия на изделия из вентильного металла или его сплава
RU2803717C1 (ru) * 2022-12-07 2023-09-19 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Установка для формирования защитных декоративных покрытий на титане

Also Published As

Publication number Publication date
RU2014125451A (ru) 2015-12-27

Similar Documents

Publication Publication Date Title
CN100482867C (zh) 在金属表面获得陶瓷涂层的氧化电解方法
US4517059A (en) Automated alternating polarity direct current pulse electrolytic processing of metals
US9018802B2 (en) Pulsed power supply for plasma electrolytic deposition and other processes
EP2077343A1 (en) Ceramic coated metal material and production method thereof
US4478689A (en) Automated alternating polarity direct current pulse electrolytic processing of metals
RU2002128612A (ru) Способ электролитического окисления для получения керамического покрытия на поверхности металла
TW201241240A (en) Non-metallic coating and method of its production
JP2006348320A (ja) セラミックス被覆金属材およびその製造方法
EA012825B1 (ru) Способ формирования на поверхности металлических изделий защитного керамического покрытия
KR101356230B1 (ko) 양극 산화 피막의 형성 방법
EP2045366B8 (en) Method for vacuum-compression micro-plasma oxidation and device for carrying out said method
RU2613250C2 (ru) Устройство для микродугового оксидирования
KR20100099904A (ko) 양극산화용 전원공급장치, 양극산화법 및 양극산화막
RU2149929C1 (ru) Способ микроплазменной электролитической обработки поверхности электропроводящих материалов
WO2019143270A2 (ru) Способ формирования защитного оксидно-керамического покрытия на поверхности вентильных металлов и сплавов
RU2000102425A (ru) Способ модифицирования поверхности медицинских изделий (варианты)
US20080087551A1 (en) Method for anodizing aluminum alloy and power supply for anodizing aluminum alloy
RU2008140044A (ru) Способ модифицирования поверхности имплантатов из титана и его сплавов
RU2389830C2 (ru) Способ микродугового оксидирования
RU2413040C2 (ru) Устройство для нанесения покрытия микродуговым оксидированием вентильных металлов и сплавов
RU80166U1 (ru) Устройство для микродугового оксидирования металлов и сплавов
RU2764042C2 (ru) Способ удаления жаростойких покрытий с металлической подложки из твёрдых сплавов
RU2773771C1 (ru) Устройство для плазменно-электролитной обработки изделий из вентильных металлов и их сплавов
RU102619U1 (ru) Устройство для микродугового оксидирования металлических изделий
KR101191957B1 (ko) 플라즈마전해 양극산화방법

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20160901

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20160901

HE9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170402