RU2612478C2 - Способ изготовления конструктивного элемента из стали горячим формованием - Google Patents

Способ изготовления конструктивного элемента из стали горячим формованием Download PDF

Info

Publication number
RU2612478C2
RU2612478C2 RU2014143828A RU2014143828A RU2612478C2 RU 2612478 C2 RU2612478 C2 RU 2612478C2 RU 2014143828 A RU2014143828 A RU 2014143828A RU 2014143828 A RU2014143828 A RU 2014143828A RU 2612478 C2 RU2612478 C2 RU 2612478C2
Authority
RU
Russia
Prior art keywords
temperature
plate
molding
carried out
coating
Prior art date
Application number
RU2014143828A
Other languages
English (en)
Other versions
RU2014143828A (ru
Inventor
Фридрих ЛУТЕР
Томас ЭВЕРТЦ
Стефан МЮТЦЕ
Михаель БРАУН
Original Assignee
Зальцгиттер Флахшталь Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зальцгиттер Флахшталь Гмбх filed Critical Зальцгиттер Флахшталь Гмбх
Publication of RU2014143828A publication Critical patent/RU2014143828A/ru
Application granted granted Critical
Publication of RU2612478C2 publication Critical patent/RU2612478C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Изобретение относится к области машиностроения. Для повышения прочности и коррозионной стойкости способ изготовления конструктивного элемента из стали, поддающейся преобразованию при горячем формовании, включает нагрев вырезанной из стального листового проката пластины до температуры аустенитизации, формование с обеспечением после формования по меньшей мере частично мартенситной структуры, при этом осуществляют ускоренное охлаждение листа или пластины после нагрева до температуры аустенитизации с получением кондиционированной пластины с по меньшей мере частично мартенситной структурой, затем проводят повторный нагрев до температуры ниже Ас1-температуры преобразования и формование при этой температуре. 16 з.п. ф-лы.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу изготовления конструктивного элемента из стали горячим формованием согласно п. 1 формулы изобретения.
Уровень техники
Такого рода конструктивные элементы применяются преимущественно в автомобильной промышленности, но возможности их использования имеются также в машиностроении или строительстве.
Характеризующийся высокой степенью конкуренции рынок вынуждает производителей автомобилей постоянно искать решения, направленные на снижение среднего расхода топлива их автомобилями при сохранении максимально возможного комфорта и защиты пассажиров. При этом решающую роль, с одной стороны, играет снижение веса всех компонентов транспортного средства, но должна достигаться также высокая степень пассивной защиты пассажиров, которая соответственно требует высоких прочностей в статическом и динамическом отношении. В аварийном случае, кроме того, стремятся гасить энергию столкновения, что требует пластичного поведения при отказе.
Отдавать должное этой необходимости поставщики исходных материалов стремятся таким образом, чтобы за счет предоставления высокопрочных и в высшей степени прочных сталей могла уменьшаться толщина стенок при одновременно улучшенных технологических и эксплуатационных свойствах конструктивных элементов.
Эти стали должны, поэтому, отвечать относительно высоким требованиям к прочности, растяжимости, вязкости, поглощению энергии и устойчивости к коррозии, а также обрабатываемости, например, при холодном формовании и при соединении.
Среди вышеперечисленных аспектов возрастает значение изготовления конструктивных элементов из пригодных для горячего формования сталей, поскольку таковые при уменьшенном расходе материала идеально отвечают повышенным требованиям к свойствам конструктивных элементов.
Изготовление конструктивных элементов посредством быстрого охлаждения заготовок из отверждающихся при прессовании сталей путем горячего формования в формующем устройстве известно из DE 601 19 826 Т2. В данном случае предварительно нагретая выше температуры аустенитизирования до 800-1200°С и, при необходимости, покрытая металлическим покрытием из цинка или на основе цинка листовая пластина в охлаждаемом от случая к случаю устройстве подвергается горячему формованию в конструктивный элемент, причем во время формования вследствие быстрого отвода тепла лист или конструктивный элемент в формующем устройстве претерпевает упрочнение при быстром охлаждении (упрочнение при прессовании) и приобретает вследствие образующейся мартенситной твердой структуры требующиеся прочностные свойства.
Изготовление конструктивных элементов посредством быстрого охлаждения покрытых легирующим алюминием заготовок из отверждающихся при прессовании сталей путем горячего формования в устройстве для формования известно из DE 699 33 751 Т2. В данном случае покрытый легирующим алюминием лист перед формованием нагревается до температуры выше 700°С, причем на поверхности образуется интерметаллически легированное соединение на основе железа, алюминия и кремния, и впоследствии лист формуется и охлаждается со скоростью выше критической скорости отверждения.
Металлическое покрытие наносится обычно в непрерывном процессе погружения в расплав на горяче- или холоднокатаную полосу, например, путем горячего оцинковывания или горячего алюминирования при температурах примерно 460°С (горячее оцинковывание) и примерно 680°С (горячее алюминирование).
Нанесение металлического покрытия на подлежащую формованию заготовку (полоса, пластина) перед горячим формованием является преимуществом, так как благодаря покрытию может эффективно предотвращаться образование окалины на основном материале.
В последующем пластина вырезается соответственно формующему устройству для горячего формования.
Известными поддающимися горячему формованию сталями для этой области использования являются, например, марганцево-борная сталь «22MnB5» и в последнее время также улучшаемые на воздухе стали согласно еще не опубликованной патентной заявке заявителя.
Изготовление конструктивного элемента путем отверждения в пресс-форме с применением известного способа имеет ряд недостатков.
При этом способе пластина нагревается до высоких температур выше Ас3, так что происходит полное аустенитизирование материала, и после прессования охлаждается так быстро, что устанавливается мартенситная структура.
Во-первых, этот способ вследствие нагревания заготовки до температуры аустенитизирования, а также преобразования феррита в аустенит требует очень много энергии, что делает способ дорогим, а также приводит к выделению больших количеств СО2 и, следовательно, не отвечает требованиям к энергетически более эффективным способам.
При использовании листов с защищающим от образования окалины слоем, к тому же, предъявляются экстремально высокие требования к покрытию в отношении устойчивости к температуре, так как формование при температурах выше Ас3-температуры происходит, как правило, явно выше 800°С. Следствием этого является то, что имеющиеся в наличии процессные окна в ходе отверждения прессованием являются значительно меньшими, чем при использовании материала без защиты от образования окалины. Например, не должны превышаться определенные периоды пребывания в печи. Кроме того, при применении пленок на основе цинка существует опасность охрупчивания жидкого металла в этих диапазонах температуры. Кроме того, при высоких рабочих температурах происходит сильное обогащение металлического слоя железом, вследствие чего защищающее от коррозии действие у готового конструктивного элемента ослабляется.
Наряду с описанными недостатками следует отметить, что известный способ является энергетически интенсивным, что приводит к высоким ценам на компоненты, и интенсивным в отношении СО2, что сверх меры увеличивает нагрузку на окружающую среду.
Из ЕР 1 783 234 А1 известен способ для изготовления изделий путем формования при повышенных температурах, при котором оцинкованный стальной лист нагревается до температуры формования от 450°С до 700°С, затем формуется и нерегулируемо медленно охлаждается. Таким путем должно предотвращаться возникновение чрезмерных напряжений при горячем формовании. Обычно отмечают, что должно достигаться улучшение механических свойств по сравнению с холодным формованием.
Раскрытие изобретения
Задачей изобретения является создание способа изготовления конструктивного элемента путем горячего формования, который менее затратен и за счет применения которого достигаются сопоставимые или улучшенные свойства формованного конструктивного элемента относительно известного горячего формования путем отверждения прессованием.
Эта задача решается в способе изготовления конструктивного элемента из поддающейся преобразованию стали путем горячего формования, при котором сначала из полосы или листа в качестве исходного материала вырезается пластина, затем нагревается до температуры формования и формуется, имея после формования по меньшей мере частично мартенситную структуру, который отличается тем, что вместо отверждения в пресс-форме по меньшей мере частично мартенситная преобразованная структура создается аустенитизированием и быстрым охлаждением уже перед формованием в исходном материале или в подлежащей формованию пластине и затем кондиционированная таким путем пластина с сохранением по меньшей мере частично мартенситной преобразованной структуры после формования нагревается повторно до температуры формования ниже Ас1-температуры преобразования и при этой температуре формуется.
Соответствующий изобретению способ по сравнению с известным из DE 601 19 826 Т2 отверждением в пресс-форме для изготовления конструктивного элемента имеет преимущество, что за счет отделения процесса формования от преобразования структуры отверждением быстрым охлаждением необходимо значительно меньшее количество энергии для нагревания пластины. Расход энергии на предшествующее преобразование структуры может не противопоставляться ему, когда частично мартенситное преобразование структуры интегрируется в одном из необходимых у изготовителя стали процессов. Другим преимуществом является то, что могут использоваться уже имеющиеся установки для отверждения в пресс-форме, которые, однако, для описанного здесь способа могут использоваться с уменьшенной в значительной степени производительностью.
Свойства конструктивного элемента определяются, следуя ему, в значительной степени кондиционированием перед формованием, те, которые можно регулировать соответствующим легирующим составом и термической обработкой исходного материала.
Кондиционирование исходного материала или вырезанной пластины для достижения по меньшей мере частично мартенситной структуры может происходить, по выбору, прерывисто или непрерывно, причем, в зависимости от потребности, используется горяче- или холоднокатаная стальная полоса.
Другое преимущество по сравнению с известным отверждением в пресс-форме состоит в том, что листы без защиты от образования окалины покрываются окалиной в значительно меньшей степени, так как нагревание проводится при значительно меньших температурах (<Ac1), чем при отверждении в пресс-форме (>Ас3). Тем самым уменьшаются затраты на дополнительную обработку покрытых окалиной поверхностей конструктивных элементов или увеличивается срок службы инструментов, что приводит к экономии затрат при использовании соответствующего изобретению способа.
Кроме того, есть еще одно преимущество по сравнению с известным отверждением в пресс-форме, что в качестве защиты от коррозии и окалины может наноситься обычное цинковое покрытие путем погружения в расплав, которая не выдержала бы известного процесса отверждения в пресс-форме вследствие низкой термостойкости. Кроме того, содержание железа в покрытии на готовом конструктивном элементе меньше, чем у конструктивных элементов с металлическими покрытиями, которые изготовлялись с проведением известного отверждения в пресс-форме. Из этого проистекает явно улучшенная защита от коррозии.
В одном из обеспечивающих преимущество осуществлений изобретения кондиционирование проводится непрерывно уже в стальной полосе во время непрерывного отжига, который при необходимости может с обеспечением преимущества комбинироваться с нанесением покрытия способом погружения в расплав, так что кондиционированная полоса уже имеет металлическое покрытие для других этапов обработки.
По выбору можно также наносить металлическое покрытие на уже вырезанную пластину или готовый конструктивный элемент. Большее преимущество обеспечивает, правда, нанесение металлического покрытия в непрерывном процессе уже на горяче- или холоднокатаную полосу.
В одном из обеспечивающих преимущество развитий изобретения после отверждения быстрым охлаждением исходного материала или пластины следует этап улучшения путем отпусков при температурах от 180°С до 680°С, или с обеспечением преимущества между 250°С и 500°С и при последующем нанесении покрытия способом погружения в расплав идеальным образом при температурах между 250°С и температурой ванны с расплавом, так что готовый исходный материал/готовая пластина имеет улучшенное состояние, которое предоставляет идеальные условия для последующего формования при температурах <Ас1. Процесс отпуска может происходить или в исходном материале или в пластине. Если исходный материал, например стальная полоса, должен подвергаться непрерывному отжигу и затем нанесению покрытия способом погружения в расплав, предлагается проводить относящиеся к способу этапы аустенитизирования, быстрого охлаждения при стартовой температуре мартенсита, повторного нагревания или отпуска до температуры в ванне с расплавом и нанесения покрытия способом погружения в расплав внутри сплошной установки для нанесения покрытий способом погружения в расплав. Наряду с этим, предлагается повторное нагревание по меньшей мере частично мартенситной полосы проводить способом индуктивного нагрева непосредственно перед ванной для оцинковывания.
Изобретение в принципе применимо для конструктивных элементов из высоко- или в высшей степени прочных сталей, например, с пределами текучести от 280 МПа до 1200 МПа или еще выше в зависимости от выбранной концепции легирования. В качестве сталей повышенной прочности для использования пригодны все однофазные, а также многофазные сорта стали. К ним относятся микролегированные сорта стали повышенной прочности, в одинаковой степени бейнитные или мартенситные сорта и двух- или многофазные стали.
Вследствие относительно малых количеств тепла можно обойтись без больших агрегатов для повторного нагрева, как, например, туннельных печей или камерных печей, отдав предпочтение быстро и прямо действующим системам (индуктивным, кондуктивным и, в частности, излучению).
Кроме того, описанный новый способ обходится значительно меньшим количеством тепловой энергии, или энергетический коэффициент полезного действия выше, чем при отверждении прессованием. Как следствие, меньше издержки производства и уменьшается выброс СО2.
Предпочтительно повторный нагрев происходит перед формованием с подогревом посредством излучения, так как в этом случае коэффициент полезного действия значительно выше, чем при нагреве в печи или при кондуктивном нагреве, и поступление энергии в материал в зависимости от свойств поверхности происходит быстрее и эффективнее.
Путем использования излучателей можно также целенаправленно нагревать отдельные области подлежащей формованию заготовки, чтобы получить оптимизированные в отношении нагрузки конструктивные элементы.
Для перемещения между источником тепла и формующим устройством может быть, кроме того, целесообразным, особенно при очень тонких листах (например, <0,8 мм) предусматривать профилирование вырезанных пластин для повышения локальной жесткости. При обычном отверждении прессованием это невозможно, так как прочность, которая должна быть достигнута, требует резкого охлаждения, которое по причине профилирования через окна в инструменте исключается.
При соответствующем изобретению способе пластина нагревается до температуры ниже Ac1, с обеспечением преимущества ниже 700°С, с обеспечением еще большего преимущества в температурном диапазоне 400-700°С и в последующем формуется в конструктивный элемент. Оптимальная температура формования зависит от требующейся прочности конструктивного элемента и находится предпочтительно примерно между 460°С и 700°С.
Также при этом способе преимущество обеспечивается тем, что путем соответствующего изобретению формования при температурах <Ac1 в конструктивный элемент вводятся дислокации, посредством которых может достигаться дополнительное увеличение прочности, так как температура для полного гашения дислокаций в смысле рекристаллизации или отдыха при используемых в промышленности продолжительностях тактов максимум 15 с или значительно меньше в расчете на один конструктивный элемент не достигается.
В комбинации с ограничением дислокаций интерстициально растворенными элементами (например, С, В, N) во время процесса прессования и последующего охлаждения становится возможным дальнейшее повышение прочности вследствие так называемого «эффекта отверждения термообработкой» или вследствие дополнительного образования осадка, например, VC. В качестве альтернативы повышение прочности может происходить посредством регулируемого охлаждения или проведения спустя некоторое время термической обработки (например, вжигания лака или отжига для снятия напряжений).
В одном из обеспечивающих преимущество осуществлений изобретения при нагревании заготовки до температуры формования предпринимается локальное превышение температурного диапазона формования с подогревом в диапазон аустенизирования, чтобы целенаправленно осуществить локальные изменения свойств (например, локальное отверждение), которые в комбинации с повышением прочности остального материала адаптированы к действующим в последующем на конструктивный элемент нагрузкам.
Важные преимущества изобретения можно обобщить следующим образом:
- Уменьшенная потребность в энергии у переработчика.
- Могут использоваться уже имеющиеся в промышленности нагревательные и формующие агрегаты.
- Свойства конструктивного элемента могут изменяться в широких пределах уже посредством предварительного кондиционирования у изготовителя стали.
- В качестве защиты от коррозии и образования окалины могут использоваться стандартные цинковые покрытия, которые не выдерживали бы обычного процесса отверждения прессованием из-за невысокой термической устойчивости.
- Содержание железа в покрытии на готовом конструктивном элементе меньше, чем у имеющих металлические покрытия конструктивных элементов, которые изготавливались посредством известного отверждения в пресс-форме. Следствием этого является значительно лучшая защита от коррозии.
- При использовании оцинкованных листов вследствие более низких температур формования нет опасности охрупчивания жидкого металла.
- При использовании неоцинкованных листов значительно меньше выражено образование окалины по сравнению с известным процессом отверждения прессованием, вследствие чего уменьшаются затраты на дополнительную обработку покрытых окалиной поверхностей конструкционного элемента и увеличивается срок службы инструментов.
- Прочность можно дополнительно увеличивать посредством «отверждения термообработкой» во время процесса подогрева.

Claims (17)

1. Способ изготовления конструктивного элемента из стали, поддающейся преобразованию при горячем формовании, включающий нагрев вырезанной из стального листового проката пластины до температуры аустенитизации, формование с обеспечением после формования по меньшей мере частично мартенситной структуры, отличающийся тем, что осуществляют ускоренное охлаждение пластины после нагрева до температуры аустенитизации с получением кондиционированной пластины с по меньшей мере частично мартенситной структурой, затем проводят повторный нагрев до температуры ниже Ас1-температуры преобразования и формование при этой температуре.
2. Способ по п. 1, отличающийся тем, что формованию подвергают пластину, имеющую металлическое покрытие.
3. Способ по п. 1 или 2, отличающийся тем, что для получения кондиционированной пластины с по меньшей мере частично мартенситной структурой осуществляют непрерывный или прерывистый отжиг путем нагрева до температуры аустенитизации и ускоренного охлаждения.
4. Способ по п. 3, отличающийся тем, что непрерывный отжиг проводят при непрерывном прокаливании.
5. Способ по п. 4, отличающийся тем, что после непрерывного отжига пластины осуществляют нанесение покрытия методом погружения в расплав.
6. Способ по п. 3, отличающийся тем, что после ускоренного охлаждения пластины проводят отпуск.
7. Способ по п. 5, отличающийся тем, что перед нанесением покрытия проводят отпуск пластины.
8. Способ по п. 5, отличающийся тем, что после нанесения покрытия проводят отпуск пластины.
9. Способ по любому из пп. 6-8, отличающийся тем, что отпуск проводят в диапазоне температур от 250 до 680°C.
10. Способ по любому из пп. 6-8, отличающийся тем, что отпуск проводят в диапазоне температур от 430 до 490°C.
11. Способ по п. 5, отличающийся тем, что при нанесении покрытия методом погружения в расплав проводят отпуск при температуре расплава.
12. Способ по п. 1 или 2, отличающийся тем, что формование проводят при температуре ниже 700°C.
13. Способ по п. 12, отличающийся тем, что формование проводят при температуре между 400 - 700°C.
14. Способ по п. 13, отличающийся тем, что формование проводят при температуре между 460 - 700°C.
15. Способ по п. 2, отличающийся тем, что формованию подвергают пластину, имеющую металлическое покрытие, наносимое методом погружения в расплав, содержащий Zn, и/или Mg, и/или Al, и/или Si, или легирующие системы из этих элементов.
16. Способ по п. 12, отличающийся тем, что осуществляют повторный нагрев пластины индуктивным или кондуктивным путем или посредством излучения.
17. Способ по п. 1, отличающийся тем, что в качестве листового проката используют холоднокатаный или горячекатаный листовой прокат.
RU2014143828A 2012-03-30 2013-02-27 Способ изготовления конструктивного элемента из стали горячим формованием RU2612478C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012006941.3 2012-03-30
DE102012006941A DE102012006941B4 (de) 2012-03-30 2012-03-30 Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen
PCT/DE2013/000126 WO2013143519A1 (de) 2012-03-30 2013-02-27 Verfahren zur herstellung eines bauteils aus stahl durch warmumformen

Publications (2)

Publication Number Publication Date
RU2014143828A RU2014143828A (ru) 2016-05-20
RU2612478C2 true RU2612478C2 (ru) 2017-03-09

Family

ID=48142582

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014143828A RU2612478C2 (ru) 2012-03-30 2013-02-27 Способ изготовления конструктивного элемента из стали горячим формованием

Country Status (6)

Country Link
US (1) US10246758B2 (ru)
EP (1) EP2831295B1 (ru)
KR (1) KR102038344B1 (ru)
DE (1) DE102012006941B4 (ru)
RU (1) RU2612478C2 (ru)
WO (1) WO2013143519A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787134C1 (ru) * 2019-10-14 2022-12-28 Аутотек Инжиниринг С.Л. Системы и способы прессования

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014016614A1 (de) * 2014-10-31 2016-05-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine aus Stahl
DE102016201237A1 (de) 2015-02-11 2016-08-11 Volkswagen Aktiengesellschaft Verfahren und Anordnung zur Herstellung eines Blechumformteils
EP3173504A1 (en) 2015-11-09 2017-05-31 Outokumpu Oyj Method for manufacturing an austenitic steel component and use of the component
DE102016102504A1 (de) 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminiumbasierte Beschichtung für Stahlbleche oder Stahlbänder und Verfahren zur Herstellung hierzu
DE102016107152B4 (de) 2016-04-18 2017-11-09 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
KR101819345B1 (ko) 2016-07-07 2018-01-17 주식회사 포스코 균열전파 저항성 및 연성이 우수한 열간성형 부재 및 이의 제조방법
ES2824461T3 (es) 2017-02-10 2021-05-12 Outokumpu Oy Componente de acero fabricado por conformado en caliente, método de fabricación y uso del componente

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034048C1 (ru) * 1991-01-18 1995-04-30 Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара Способ обработки высокопрочных коррозионностойких сталей
US6296805B1 (en) * 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
DE60119826T2 (de) * 2000-04-07 2006-12-14 Arcelor France Verfahren zum Herstellen eines Bauteils mit sehr guten mechanischen Eigenschaften, Umformung durch Tiefziehen, aus gewalztem insbesondere warmgewalztem und beschichtetem Stahlblech
DE102009016027A1 (de) * 2009-04-02 2010-10-07 Volkswagen Ag Verfahren zur Herstellung eines Bauteils, insbesondere eines Karosserieteiles, sowie Fertigungsstraße zur Durchführung des Verfahrens
RU2009137930A (ru) * 2007-03-14 2011-04-20 Арселормитталь Франс (Fr) Сталь для горячей штамповки или закалки в инструменте, обладающая улучшенной пластичностью

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088511A (en) * 1976-07-29 1978-05-09 Lasalle Steel Company Steels combining toughness and machinability
US4720307A (en) * 1985-05-17 1988-01-19 Nippon Kokan Kabushiki Kaisha Method for producing high strength steel excellent in properties after warm working
JP3496289B2 (ja) * 1994-09-30 2004-02-09 大同特殊鋼株式会社 マルテンサイト系析出硬化型ステンレス鋼高強度部材の製造方法
FR2787735B1 (fr) * 1998-12-24 2001-02-02 Lorraine Laminage Procede de realisation d'une piece a partir d'une bande de tole d'acier laminee et notamment laminee a chaud
EP1783234A3 (de) * 2002-09-26 2007-08-08 ThyssenKrupp Steel AG Verfahren zum Herstellen von Produkten durch Umformen bei erhöhten Temperaturen
JP4987272B2 (ja) * 2004-09-15 2012-07-25 新日本製鐵株式会社 高強度部品の製造方法および高強度部品
JP3816937B1 (ja) * 2005-03-31 2006-08-30 株式会社神戸製鋼所 熱間成形品用鋼板およびその製造方法並びに熱間成形品
WO2007058364A1 (ja) * 2005-11-21 2007-05-24 National Institute For Materials Science 温間加工用鋼、その鋼を用いた温間加工方法、およびそれにより得られる鋼材ならびに鋼部品
EP1867748A1 (fr) * 2006-06-16 2007-12-19 Industeel Creusot Acier inoxydable duplex
DE102006054300A1 (de) 2006-11-14 2008-05-15 Salzgitter Flachstahl Gmbh Höherfester Dualphasenstahl mit ausgezeichneten Umformeigenschaften
DE102008061141B4 (de) 2008-12-09 2012-08-30 Sumitomo Metal Industries, Ltd. Verfahren zur Herstellung nahtloser Rohre mittels eines Drei-Walzen-Stangenwalzwerks
DE102009015013B4 (de) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Verfahren zum Herstellen partiell gehärteter Stahlbauteile
DE102009025821B4 (de) 2009-05-18 2011-03-31 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines Metallbauteils
DE102010024664A1 (de) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil
DE102010034161B4 (de) 2010-03-16 2014-01-02 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Werkstücken aus Leichtbaustahl mit über die Wanddicke einstellbaren Werkstoffeigenschaften
DE102010052084B3 (de) 2010-11-16 2012-02-16 V&M Deutschland Gmbh Verfahren zur wirtschaftlichen Herstellung von nahtlos warmgewalzten Rohren in Rohrkontiwalzwerken
DE102011117135A1 (de) 2010-11-26 2012-05-31 Salzgitter Flachstahl Gmbh Energie speicherndes Behältnis aus Leichtbaustahl
DE102011108162B4 (de) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034048C1 (ru) * 1991-01-18 1995-04-30 Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара Способ обработки высокопрочных коррозионностойких сталей
US6296805B1 (en) * 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
DE60119826T2 (de) * 2000-04-07 2006-12-14 Arcelor France Verfahren zum Herstellen eines Bauteils mit sehr guten mechanischen Eigenschaften, Umformung durch Tiefziehen, aus gewalztem insbesondere warmgewalztem und beschichtetem Stahlblech
RU2009137930A (ru) * 2007-03-14 2011-04-20 Арселормитталь Франс (Fr) Сталь для горячей штамповки или закалки в инструменте, обладающая улучшенной пластичностью
DE102009016027A1 (de) * 2009-04-02 2010-10-07 Volkswagen Ag Verfahren zur Herstellung eines Bauteils, insbesondere eines Karosserieteiles, sowie Fertigungsstraße zur Durchführung des Verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787134C1 (ru) * 2019-10-14 2022-12-28 Аутотек Инжиниринг С.Л. Системы и способы прессования

Also Published As

Publication number Publication date
EP2831295B1 (de) 2018-05-02
EP2831295A1 (de) 2015-02-04
KR102038344B1 (ko) 2019-10-30
US20150047753A1 (en) 2015-02-19
WO2013143519A1 (de) 2013-10-03
DE102012006941B4 (de) 2013-10-17
US10246758B2 (en) 2019-04-02
KR20140147107A (ko) 2014-12-29
DE102012006941A1 (de) 2013-10-02
RU2014143828A (ru) 2016-05-20

Similar Documents

Publication Publication Date Title
RU2612478C2 (ru) Способ изготовления конструктивного элемента из стали горячим формованием
RU2539883C2 (ru) Способ изготовления конструктивного элемента из стали, способной к самозакаливанию на воздухе, и конструктивный элемент, изготовленный этим способом
US20110300407A1 (en) Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof
KR102477323B1 (ko) 열간 성형 물품 제조 방법 및 획득 물품
WO2016131218A1 (zh) 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件
CN109371325A (zh) 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法
KR101568549B1 (ko) 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
JP5054378B2 (ja) 薄鋼板製造方法
KR20160014658A (ko) 강으로 제조된 반제품을 열간 성형함으로써 부품을 제조하는 방법
KR102006963B1 (ko) 강 반제품의 열간성형에 의해 부품을 생산하기 위한 방법
JP6161597B2 (ja) 非常に高い降伏点を有するマルテンサイト鋼およびこのように得た鋼板または部品の製造方法
KR20100037147A (ko) 높은 인장강도 및 연성을 갖는 강판의 제조 공정, 및 이렇게 제조된 판
CN109365606A (zh) 一种耐腐蚀性优良的锌系镀层钢板或钢带的成形方法
KR20160049540A (ko) 열간 성형 다이 담금질로 고온에서 부품을 제조하기 위한 강판을 위한 아연계 부식 방지 코팅
KR20090089311A (ko) 상대적으로 고강도의 2상 강을 포함하는 강 스트립의 제조방법
CN110423945B (zh) 一种抗拉强度1800MPa级以上的冷弯性能优良的含锌涂覆层热成形构件及其制备方法
KR101482336B1 (ko) 이종 강도 영역을 갖는 열간 성형품의 제조방법
CN106282912A (zh) 一种高强度预渗铝低碳马氏体钢板加压硬化成型方法
KR20200076072A (ko) 알루미늄 도금부재의 제조 방법
JP6056826B2 (ja) 熱間プレス成形品の製造方法
KR20100047011A (ko) 용접 및 충격특성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2019117832A2 (en) Method of obtaining dual-phase parts with press hardening method
KR20190074842A (ko) 초고강도 고항복비 강판 및 그 제조방법
CN107604142A (zh) 一种变强度钢复合材料