RU2608082C2 - Двухфлюидный реактор - Google Patents

Двухфлюидный реактор Download PDF

Info

Publication number
RU2608082C2
RU2608082C2 RU2014115465A RU2014115465A RU2608082C2 RU 2608082 C2 RU2608082 C2 RU 2608082C2 RU 2014115465 A RU2014115465 A RU 2014115465A RU 2014115465 A RU2014115465 A RU 2014115465A RU 2608082 C2 RU2608082 C2 RU 2608082C2
Authority
RU
Russia
Prior art keywords
reactor
liquid
fuel
nuclear
circuit
Prior art date
Application number
RU2014115465A
Other languages
English (en)
Other versions
RU2014115465A (ru
Inventor
Армин ХУКЕ
Гетц РУПРЕХТ
Ахмед ХУССЕЙН
Конрад ЧЕРСКИ
Штефан ГОТТЛИБ
Original Assignee
Армин ХУКЕ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201210007933 external-priority patent/DE102012007933A1/de
Application filed by Армин ХУКЕ filed Critical Армин ХУКЕ
Publication of RU2014115465A publication Critical patent/RU2014115465A/ru
Application granted granted Critical
Publication of RU2608082C2 publication Critical patent/RU2608082C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/22Heterogeneous reactors, i.e. in which fuel and moderator are separated using liquid or gaseous fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/28Selection of specific coolants ; Additions to the reactor coolants, e.g. against moderator corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/44Fluid or fluent reactor fuel
    • G21C3/54Fused salt, oxide or hydroxide compositions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D5/00Arrangements of reactor and engine in which reactor-produced heat is converted into mechanical energy
    • G21D5/04Reactor and engine not structurally combined
    • G21D5/08Reactor and engine not structurally combined with engine working medium heated in a heat exchanger by the reactor coolant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • G21C15/247Promoting flow of the coolant for liquids for liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

Изобретение относится к ядерным реакторам с контуром циркуляции жидкого ядерного топлива, в которых не используется контур циркуляции топлива для одновременного отвода тепла. Охлаждение осуществляется посредством дополнительного контура теплоносителя, который находится в непосредственном тепловом контакте с каналом для жидкого топлива. Это позволяет полностью исчерпать преимущества жидкого топлива и одновременно оптимизировать контур теплоносителя. Технический результат - улучшенная нейтронная экономика реактора, позволяющая дезактивировать собственные долгоживущие продукты распада, чтобы нужно было хранить только радиоактивные отходы с коротким периодом полураспада. Более того, используя избыток нейтронов, можно дезактивировать радиоактивные составляющие в отработанных тепловыделяющих элементах или производить медицинские радиоизотопы. 3 н. и 15 з.п. ф-лы, 3 ил.

Description

Изобретение представляет собой ядерный реактор с контуром циркуляции жидкого топлива.
Уровень техники
Практически все современные коммерческие реакторы работают на тепловых нейтронах с водяным охлаждением и водяным замедлителем, а также с твердыми тепловыделяющими элементами. Они имеют выгорание природного урана менее чем 1% и требуют обогащения, а также внешней переработки ядерного топлива. Даже концепции четвертого поколения используют тепловыделяющие элементы и поэтому по-прежнему нуждаются в предприятиях ядерного топливного цикла. Единственное исключение представляет собой жидкосолевой реактор (ЖСР), в котором топливо циркулирует в жидком виде и подвергается переработке при перерывах в работе. Жидкое топливо используется в ЖСР одновременно как теплоноситель, что, в принципе, имеет следующие преимущества:
А. Преимущества жидкого циркулирующего топлива
Жидкосолевая или любая другая форма жидкого топлива делает возможной непрерывную переработку в рабочем режиме непосредственно в активной зоне, что значительно сокращает периоды простоя. Возможность непрерывного удаления радиоактивных продуктов деления исключает вероятность возникновения возможных аварии по причине остаточного тепловыделения. Также исключено расплавление активной зоны реактора, т.к. активная зона находится в уже расплавленной форме. Более того, в случае перегрева или в целях обслуживания активную зону можно слить с помощью пассивной расплавляющейся пробки. Для высокой удельной мощности и эффективного обогащения температура жидкого топлива должна быть максимально возможной.
Б. Преимущества охлаждения с высокой температурой кипения
Соль или любая другая форма теплоносителя с высокой температурой кипения делает возможной работу при нормальном давлении в активной зоне. Это, в свою очередь, позволяет применять более компактный дизайн; отпадает нужда в дорогом корпусе высокого давления. Концепция высоких температур кипения также реализована в конструкциях четвертого поколения реакторов на быстрых нейтронах со свинцовым теплоносителем (LFR) и реакторов на быстрых нейтронах с натриевым теплоносителем(SPR).
Одновременное использование жидкого топлива в качестве теплоносителя имеет некоторые преимущества как по отношению к (А), так и (Б), но они не могут быть использованы в полной мере. К примеру, не существует материалов, которые одновременно выполняли бы оптимально оба условия. Циркулирующий материал, по существу, ограничен солевым расплавом, который представляет собой компромисс между высокой температурой топлива, хорошим охлаждением и приемлемой теплоемкостью. Результат - ЖСР. Он не позволяет приводить себя в действие ни на тепловых нейтронах, ни в недавно предложенном варианте на быстрых нейтронах при температурах, которые являются достаточно высокими для химии процесса, например для производства водорода, или высокого электрического коэффициента полезного действия.
Существуют следующие концепции для обогащения топлива:
В. Переработка вне здания реактора
Обычные химические технологии, как например, пьюрекс-процесс и производные, являются внешними. Они обладают следующими свойствами.
- Они требуют многолетнего промежуточного хранения, в противном случае слишком быстро разрушатся дорогие органические растворы из-за радиолиза.
- Малая точность разделения для многих элементов.
- Низкая скорость реакций при нормальной температуре.
- Производится большое количество использованных вспомогательных химикалий со средней и низкой радиоактивностью, которые нужно утилизировать.
По этим причинам данные технологии не подходят для переработки топлива в рабочем режиме
Г. Наработка внутри здания реактора.
Интегральный реактор на быстрых нейтронах (IFR) использует электролитическую очистку отработанного топлива для удаления части продуктов распада без разделения элементов, что является достаточным для восстановления критичности в реакторе на быстрых нейтронах с подвергнутыми переработке металлическими тепловыделяющими элементами. Этот метод проводится на площадке реактора, но не в рабочем режиме.
Д. Переработка в рабочем режиме
Переработка топлива в ЖМР, как это обеспечивает концепция четвертого поколения, возможна только в периодическом режиме. Для этого нужно остановить реактор и перевести топливо в систему для переработки. Непрерывная переработка не совместима с одновременным охлаждением. Для сокращения времени простоя необходима система переработки с большой производительностью. Однако такие системы для пирохимической переработки относительно малы. Главная составляющая - установка дистилляции для паров соли фтора, в которой разделяются соли металлов по их температурам кипения. У многих солей фтора эти температуры настолько высоки, что требуется дополнительное фторирование, после чего еще остаются соли фтора в месиве, которое нужно дополнительно обрабатывать.
Тем не менее, периодический режим в основном совместим с непрерывной циркуляцией топлива, если перед и/или после системы переработки находятся небольшие буфера, которые хранят часть топлива до тех пор, пока другая часть перерабатывается. Ни одна из концепций четвертого поколения не предусматривает переработку в рабочем режиме без прерывания работы реактора, так что все преимущества, названные в (А), никогда не будут исчерпаны.
Чем дальше от переработки топлива в рабочем режиме, тем большие запасы реактивности необходимы для длительной стабильной работы реактора. Чтобы поддерживать нейтронную экономику на постоянном уровне, нужно добавлять поглотитель нейтронов (сжигаемый нейтронный яд) в свежее топливо, который сильно ухудшает эту экономику. Это особенно значимо для подкритичных систем, приводимых в действие ускорителем (ADS). Чем больше запасы реактивности, тем больше должен быть ускоритель для производства недостающих нейтронов. Поэтому не найдется ни одной ADS-системы с маленьким ускорителем.
Дополнительные проблемы возникают при передаче тепла рабочему газу вследствие высокой удельной мощности. На обычных атомных электростанциях в контуре паровой турбины применяют непрямые теплообменники, чаще всего в виде парогенераторов, в которых первичный теплоноситель отдает свое тепло. То же самое применяется на электростанциях четвертого поколения, которые используют сверхкритичный углекислый газ в качестве вторичного теплоносителя. Проблема в том, что теплообменник занимает много места на ядерном реакторе электростанции. В то время, так как на обычных водо-водяных реакторах теплообменник занимает приблизительно столько же места, сколько и сам корпус реактора, то реакторам высокой мощности нужны теплообменники в десять раз больше. С этим были бы связаны высокие затраты на производство, что снижает высокую экономическую эффективность такого реактора.
Главная задача состоит в том, чтобы создать использующий жидкое топливо ядерный реактор, который будет охлаждаться так, чтобы все названые в (А) и (Б) преимущества могли быть полностью исчерпаны. Следующая задача состоит в том, чтобы сделать возможной переработку в рабочем режиме реактора без необходимости прерывать работу реактора (как в Г). Еще одна задача состоит в том, чтобы сделать возможной работу ADS-системы с компактным внешним источником нейтронов. Помимо этого желательна высокая температура для обеспечения применений химических процессов и высокого электрического коэффициента полезного действия. Также следует оптимизировать теплообмен, чтобы снизить стоимость производства.
Решение посредством двух циклов
Настоящее изобретение решает эти задачи посредством отделения контура циркуляции топлива от контура циркуляции теплоносителя. В дальнейшем оно будет называться «Двухфлюидный Реактор» или сокращенно DFR. DFR может быть объединен с химической системой переработки, которая действует в рабочем режиме при высокой температуре внутри контура циркуляции топлива. DFR может работать вместе с компактным ускорителем в подкритичном состоянии.
Отделение функции охлаждения от топлива освобождает реактор от вышеназванных ограничений. Теперь можно полностью исчерпать все преимущества топлива с высокой температурой (А) и теплоносителя с высокой температурой кипения (Б). Так как для теплоносителя нет ограничений по материалу, связанных с функцией топлива, то можно применять жидкометаллический теплоноситель, что позволяет DFR работать при очень высоких температурах и с высокой удельной мощностью. Это открывает новые высокоэффективные возможности для фактической переработки в рабочем режиме без необходимости прерывания работы реактора. Как и у любого другого высокотемпературного реактора можно производить электричество с высоким коэффициентом полезного действия и эффективно использовать технологическое тепло, например, для производства водорода. Высокая плотность носителей заряда у жидких металлов позволяет эффективное использование магнитогидродинамических генераторов (МГД) в первичном или вторичном контуре для производства электричества. Также можно применять МГД насосы для прокачки теплоносителя.
Скорость циркуляции жидкого топлива можно отрегулировать для любых ядерных назначений, например, для максимального выгорания, сжигания трансурановых элементов, производства (медицинских) изотопов, наработки расщепляющихся материалов или особой деактивации продуктов деления (трансмутации).
Работа DFR с жидкометаллическим теплоносителем влечет за собой (жесткий) спектр быстрых нейтронов, который следует из всех ядерных реакций с низким эффективным ядерным сечением. Это требует компактного устройства с концентрированным (неразбавленным) топливом, что, в свою очередь, приводит к высокой удельной мощности. Как и жидкосолевое топливо, так и жидкометаллический теплоноситель оба имеют хорошие свойства теплопередачи, которые особенно хорошо подходят для применения в активной зоне с высокой удельной мощностью. Материал, разделяющий обе жидкости, должен обладать достаточной теплопроводностью и, кроме того, быть устойчивым к коррозии от соли и жидкого металла. По сравнению с условиями реактора на тепловых нейтронах открывается широкий выбор изотопов для конструкционного материала стен из-за низкого ядерного эффективного сечения для быстрых нейтронов. Соответствующие материалы уже разработаны за последние десятилетия, несмотря на то что они содержат редкие и, следовательно, дорогие элементы. В отличие от твердых тепловыделяющих элементов, которые нужно регулярно заменять, они остаются постоянно в DFR, так что можно применять редкие добавки в сплавы без особого влияния на стоимость установки.
Не следует путать DFR с «Двухфлюидным реактором», который обсуждался в национальной лаборатории «Оук Ридж» в рамках эксперимента с жидкосолевым реактором MSRE. Для решения проблемы отделения солей тория от солей лантаноидов, производимых при делении ядер, связанной с близкими высокими температурами кипения, была рассмотрена прокладка трубопроводов, подлежащих заполнению насыщенной солью тетрафторида тория, внутри активной зоны с расплавленной солью урана 233 для наработки тория. Но это не было реализовано, т.к. не был подобран подходящий для спектра термических нейтронов материал трубопроводов.
Фактическая переработка топлива в рабочем режиме DFR
Настоящее изобретение делает возможным применение улучшенных методов сухой высокотемпературной переработки, которую в данном случае можно особенно эффективно скомбинировать с топливным циклом. В основном для этого подходят все методы разделения, в частности разделение за счет термических свойств (дистилляция, ректификация), различий по плотности (центрифугирование), по химическому составу и подвижности электрических зарядов (электролиз). Из-за ионной природы связи отработавшее топливо невосприимчиво к радиолизу и подходит как таковое для физико-химических методов разделения при высоких температурах. Два таких метода зарекомендовали себя в прошлом: способ электролиза солевого расплава в IFR (см. Г) и высокотемпературная дистилляция в ЖСР (см. Д). Оба применимы к DFR. Благодаря непрерывной переработке в рабочем режиме такая пирохимическая установка в DFR может быть спроектирована под меньшую производительность. В простом варианте применим способ электролитической очистки, чтобы очистить топливную соль с помощью осаждения смеси продуктов распада. Для специального применения трансмутации необходимы более точные способы разделения, которые могут быть достигнуты путем дробной дистилляции/ректификации, что, однако, выходит за рамки метода ЖСР.
Фториды обладают значительным качеством замедлителя, из-за которого смягчается спектр нейтронов и ухудшается нейтронная экономика. Это свойство и высокая температура кипения многих участвующих солей металлов делают фториды непригодными. Высшие галогены более пригодны относительно обоих свойств. Для металлов в смеси отработанного топлива хлориды имеют достаточно низкие температуры кипения, что делает возможным разделение только путем дробной перегонки.
Двухфлюидная ADS-Система
Фактическая переработка в рабочем режиме делает DFR выдающимся кандидатом для подкритической системы с ускорителем (ADS). Нейтронные яды постоянно отводятся из топлива, что позволяет реактору работать близко к 0,1% ниже уровня критичности. Небольшой ускоритель ионов, направляющий свой луч на мишени в активной зоне, может производить достаточно высокое число нейтронов, чтобы привести систему в критичное состояние. Таким образом, DFR можно полностью управлять через ускоритель с возможностью быстрой остановки реактора.
Теплообменник прямого контакта
При отборе тепла из реактора высокой удельной мощности и высокой рабочей температуры появляется особая проблема в том, что, хотя рабочая температура достаточно высока для выгодного применения газовых турбин, однако, даже работа турбины со сверхкритическим потоком зря тратила бы мощностной потенциал. К тому же, у DFR настолько высокая удельная мощность, что жидкий металл обладает самой высокой теплопроводностью, тогда как у газовой среды в контуре турбины теплопроводность самая низкая. Это влечет за собой то, что непрямой теплообменник имел бы объем на порядок больше объема активной зоны, из-за чего стоимость теплообменника стала бы преобладающей частью капитальных затрат. Поэтому, чтобы значительно снизить затраты на производство, выгодно применять теплообменник прямого контакта. Теплообменники прямого контакта широко применяются преимущественно в технологиях кондиционирования и в градирнях. Под прямым контактом имеется в виду отсутствие конструкционных элементов между первым и вторым теплоносителем. При этом тепло переносится преимущественно от водяных капель к воздуху, который в основном находится в условиях окружающей среды.
Принцип теплообменника прямого контакта
Согласно изобретению в теплообменнике прямого контакта в поток газа высокого давления в смешивающей камере впрыскивается жидкометаллический теплоноситель в виде распыленных капелек, чтобы с помощью результирующей большой площади прямого контакта нагреть газ в маленьком объеме. Перед турбиной находится сепаратор для отделения жидкого металла из потока газа высокого давления по принципу центробежной силы.
Использование теплообменника прямого контакта в DFR имеет преимущества, т.к. существенно улучшает экономическую эффективность реактора. С такой же целью можно использовать теплообменник прямого контакта и в других типах реакторов четвертого поколения. Применение в LFR было бы выгодным, если бы принципиально было бы достигнуто повышение рабочей температуры. При сегодняшнем состоянии техники LFR ограничены рабочей температурой в 700°С, т.к. вследствие экономических причин сталь должна применяться в качестве структурного материала и для оболочки. Также возможно использование в ВТР (высокотемпературный реактор), если таковые применяют солевые расплавы в качестве теплоносителя. Использование также было бы возможным. Тем не менее, из-за низкой температуры кипения натрия реакторы с натриевым теплоносителем (SFR) работают при таких низких температурах, что применение газовой турбины не является рациональным.
Пример варианта осуществления
На рисунке 1 показано предпочтительное осуществление активной зоны реактора, на рисунке 2 - различные формы топливного трубопровода, а на рисунке 3 - вся система с контурами циркуляции теплоносителя и топлива.
Активная зона реактора
Показанная на рисунке 1 активная зона содержит заполненный теплоносителем корпус активной зоны (1) и топливный трубопровод (7), через который прокачивают жидкое топливо. Топливному трубопроводу (7) придана такая форма, что он по возможности компактно заполняет объем активной зоны, а теплоноситель в состоянии в достаточной степени и равномерно забирать тепло.
Вид сверху одного уровня топливного трубопровода (7) показан на рисунке 2 в разных возможных вариантах осуществления. Проще всего реализовать форму трубопровода, как показано на (7а). Для системы ADS средний уровень имеет другую форму (7b), чтобы иметь возможность направлять поток частиц (10) от внешнего ускорителя в центре активной зоны реактора на мишень (12), излучающую нейтроны. Вместо мишени (12) могут быть также установлены источники нейтронов, которые работают без внешнего ускорителя. Также можно сделать топливный трубопровод спиралевидным, как показано на (7с), что позволяет применить цилиндрическую форму корпуса.
В этом предпочтительном варианте осуществления в качестве теплоносителя применяется жидкий свинец, который циркулирует при температуре 1000°С и атмосферном давлении. Втекающий из теплообменника (22) свинец имеет более низкую температуру, поэтому пространство активной зоны (4) окружено перегородкой (3а) с хорошей теплопроводностью. Между перегородкой и внешней стеной реактора (1) образуется дополнительное пространство - пространство отражателя (3). Втекающий в точках (2) в полость отражателя «холодный» свинец, проходит сначала вниз, где он нагревается посредством теплопроводности от перегородки (3а). Там он также служит отражателем нейтронов, чтобы уменьшить их потерю. Внизу предварительно нагретый свинец продвигается в пространство активной зоны (4). Продвигаясь наверх, он забирает тепло от стен топливного трубопровода (7) и выходит из корпуса активной зоны с более высокой температурой на верхнем конце (5).
В этом предпочтительном варианте осуществления жидкая соль применяется в качестве топлива, которое циркулирует при температуре 1000°С и нормальном давлении. Жидкое топливо входит через нижний впуск (8) в пространство активной зоны (4). Большой поток нейтронов вызывает соответствующее число событий ядерного распада актинидов, находящихся в топливе. Выделяемая энергия деления нагревает топливо, которое отдает тепло теплоносителю через стенки топливного канала. События ядерного распада генерируют быстрые нейтроны с необходимой скоростью, чтобы поддерживать цепную реакцию внутри пространства активной зоны. В то время как топливо медленно циркулирует по каналам, распадается все больше и больше актинидов, так что оно выходит из пространства активной зоны (4) в верхнем выпуске (9) с измененным химическим составом и направляется к установке (28) для пирохимической переработки (PPU).
Цикл охлаждения и топливный цикл
Рисунок 3 показывает внешнюю конструкцию, топливный цикл и цикл охлаждения. Первый контур в ядерном реакторе, который также называется топливным контуром, содержит в себе два насоса (30, 34), установку (28) для пирохимической переработки, предбуферный резервуар (27), послебуферный резервуар (29), охлаждаемую расплавляющуюся пробку (32), три подкритичных топливных емкости хранения жидкого ядерного топлива (33) и два электромагнитных клапана (31, 35), причем упомянутый первый контур входит в блок активной зоны (1) через впуск (8), проходит через топливный трубопровод для ядерного топлива (7) по пространству активной зоны (4) и снова выходит из корпуса активной зоны через выпуск (9). Второй контур, который также называется контуром теплоносителя или контуром охлаждения, содержит в себе насос (24), многоканальный вентиль (23), временный резервуар (26) для теплоносителя и теплообменник (22), причем упомянутый второй контур входит через по меньшей мере один впуск (2) в корпус активной зоны (1), проходит через пространство рефлектора (3) между теплопроводящей перегородкой (3а) и внешней стеной корпуса активной зоны (1) и далее через пространство активной зоны (4), омывая топливный контур (7), и выходит из корпуса активной зоны (1) через выпуск (5).
После того как нагретый жидкий свинец вышел из реактора, он входит в теплообменник (22). Там в зависимости от энергетической потребности отбирается часть тепла для производства электричества или технологических задач. Свинец выходит из теплообменника при более низкой температуре и после прохода через многоканальный вентиль (23) закачивается (24) обратно в активную зону. Для технологического обслуживания можно слить жидкий свинец через клапан (6) в нижней части корпуса реактора во временный резервуар для теплоносителя (26), откуда его можно снова закачать в корпус реактора, проходя клапан многоканального вентиля (23) снизу.
В качестве теплообменника в предпочтительном исполнении используется теплообменник прямого контакта. При этом теплообменник прямого контакта занимает место камеры сгорания в газовой турбине, причем теплоперенос происходит путем распыления жидкого теплоносителя, предпочтительно жидкого металла и, в частности, свинца, в газовую струю из турбокомпрессора в камеру, сформированную под динамические потоки, а затем капли отделяются в центробежном сепараторе, прежде чем разогретый газ войдет в турбину.
В предпочтительной конструкции скорость потока жидкого металла замедляется в бассейне и выравнивается с рабочими скоростями насосов впрыска для равномерной подачи в смесительную камеру. Смесительная камера состоит из группы форсунок, которые распыляют с помощью впрыскивающих насосов находящийся под высоким давлением жидкий металл в виде дождя с каплями требуемого размера в газовый поток высокого давления. Для работы с неполной мощностью можно отключить равномерные подгруппы форсунок и изменить размер капель с помощью конических шипов в форсунках. Так можно при уменьшенном потоке газа сохранить эффективность сепаратора, т.к. масса капель увеличилась. Смесительная камера в поперечном разрезе конгруэнтна и находится рядом с входом последующего сепаратора. Жидкий металл, в частности свинец, может служить смазкой во впрыскивающем насосе. Согласно изобретению свинец - предпочтительный теплоноситель.
К смесительной камере подключен сепаратор, в котором разогретый газ отделяется от металлических капель. Т.к. газ движется с высокой скоростью и давлением, то подходящими являются сепараторы с центробежным принципом действия, такие как циклон или вихревая труба. Чтобы достичь высокой интенсивности разделения, их можно расположить как ступени или как множество параллельных единиц. Очищенный газ входит через форсунки для преобразования внутренней энергии на турбину.
Расположение ступеней циклона такое, что за сепаратором большего диаметра следует несколько сепараторов меньшего диаметра и, следовательно, с большей центробежной силой, поэтому газ распределяется на подходящее число меньших циклонов. Таким образом, можно отделить капельки меньшего размера.
Из циклонов отделенный жидкий металл транспортируется в коллектор с помощью зубчатых шлюзов, которые одновременно служат для трансформации высокого давления в давление окружающей среды в области турбины. Из коллектора жидкий металл перекачивается насосом в активную зону реактора. Благодаря компактному устройству, которое стало возможным, коллектор может быть размещен непосредственно рядом с резервуаром для впрыскивающих насосов или использовать резервуар с механически убираемой перегородкой, чтобы в случае аварии (отключение электроснабжения) перегородка удалялась самостоятельно и позволяла бы естественную конвекцию восстановленного контура теплоносителя.
Ранее описанные процессы теплообмена капель, отделения и отвода металла работали бы дальше, если капли бы охладились ниже температуры плавления и затвердели. В этом случае нужно только совершать подогрев в коллекторе, например, от потока жидкого металла для расплавления частичек металла.
Газ должен быть достаточно химически инертным по отношению к жидкому металлу, чтобы не могло получиться стабильного химического соединения между ними. Азот является удовлетворительным для многих металлов. Однако газовые турбины работают по термодинамическому циклу Брайтона-Джоуля, в котором применение одноатомных газов значительно повышает коэффициент полезного действия по показателю адиабаты, т.к. никакие внутренние степени свободы молекул газа не поглощают энергию. Поэтому для высокотемпературных реакторов применяется предпочтительно гелий, который также предпочтителен и из-за его нейтронных свойств. Кроме того, теплопроводность гелия вдвое выше чем, например, у аргона, что вдвое уменьшает площадь теплообмена. В непрямом теплообменнике с описанными большими габаритами и связанным с ними высоким расходом материала применение гелия было бы выгоднее, чем аргона. Согласно изобретению это неважно для применяемого теплообменника прямого контакта. К тому же аргон гораздо дешевле в отличие от гелия. Так можно заметно снизить потребность в материале и вместе с этим и стоимость постройки, а также применять аргон, что существенно снизило бы общие затраты. В предложенной конструкции DFR со свинцом в качестве теплоносителя предпочтительной является комбинация свинца и аргона.
Обычно сепарация перед турбиной возможна не полностью. Современные газовые турбины уже состоят из устойчивых материалов и в состоянии справиться с серной кислотой и частичками пыли. Новейшие разработки для увеличения коэффициента полезного действия пришли к тому, чтобы применять прямое сжигание угольной пыли, причем турбина должна выдержать большое количество пепла. По сравнению с этим капельки свинца менее проблематичны, к тому же температура газа остается и после турбины выше температуры плавления свинца. Однако и свинец, который осаждается на лопасти ротора и статора, создавал бы неравновесие, которое приводит к вибрациям лопастей относительно потока газа, что вызывает стряхивание свинца. Это также применимо и для турбокомпрессора. Оставшиеся в потоке газа капли свинца далее замерзали бы в теплообменнике, где рабочий газ отдает свое тепло. Т.к. свинец обладает хорошей теплопроводностью, функция теплообменника от этого не пострадала бы, кроме постоянного заполнения свинцом, что требует регулярного обслуживания. Чтобы растянуть эти интервалы, в комбинации с теплообменником желательно установить отделители, такие как отделитель с ламеллами, пылеуловитель, камерный отделитель или паросушилка, которые действуют на сильно замедленный газ.
Выходящее (9) из активной зоны реактора жидкое топливо сначала собирают в предбуферном пространстве (27). Оттуда некоторый объем, который может быть переработан, отводится в PPU (28). Этот переработанный объем собирают в послебуферном пространстве (29) и оттуда закачивают (30) обратно в пространство активной зоны (4) через электромагнитный клапан (31) и через впуск (8) в нижней части активной зоны реактора. Буферные резервуары (27), (29) служат для компенсации временных скачков скорости протока в реакторе и в PPU (28); с той же целью можно включить в контур и подкритичные резервуары (33). Это будет необходимо, если будет применен последовательный способ, такой как, например, электрорафинирование. Предбуферный резервуар (27) можно применять для очистки топлива от инертных газов.
В режиме с ADS топливная смесь поддерживается слегка ниже критичности с помощью PPU (28), поэтому ускорителю-источнику нейтронов нужно предоставлять лишь несколько промиле от целого потока нейтронов, чтобы позволить реактору стать критичным. Таким образом, достаточно маленького ускорителя вместо высокоэнергичного ускорителя с источником расщепления.
Для технического обслуживания или в случае аварии предусмотрен подкритичный топливный резервуар (33). Он состоит из нескольких баков, емкость каждого из которых составляет глубоко подкритичную массу жидкого топлива. Баки можно наполнить через расплавляющуюся пробку (32) на дне корпуса реактора или через многоканальный вентиль (31) из послебуферной емкости (29) с помощью насоса (30).
Активно охлаждаемую расплавляющуюся пробку (32), которую также применили при эксперименте MSRE в лаборатории «Оук Ридж», можно использовать и для штатной остановки системы. По сути, это кусок трубы, охлаждаемый постоянным теплоотводом. Из-за не минимальной теплопроводности жидкосолевого топлива тепло, произведенное в пространство активной зоны (4), распространяется и до расплавляющейся пробки (32). Непрерывный теплоотвод отрегулирован так, что соль еще не плавится, если в пространстве активной зоны (4) температура 1000°С. При более высоких температурах или при отключении электричества тепло, подведенное через жидкую соль, расплавит соль в пробке так, что она откроется и топливо стечет в подкритичные резервуары (33). Оттуда его можно закачать (34) через еще один многоканальный вентиль (35) в предбуферный (27) или в послебуферный резервуар (29).
Жидкосолевое топливо представляет собой смесь из делящейся и расщепляющейся соли актинидов. Это может быть комбинацией 238U/239PU или 232Th/233U. Для цикла уран/плутоний реактору необходимо начальное количество плутония (можно применить и высокообогащенный U-235 в качестве альтернативы, если плутоний недоступен). Доля плутония зависит от размеров активной зоны вследствие различных нейтронных потерь на поверхности. Максимальная доля плутония, которая требуется самой маленькой пригодной к использованию системе, составляет 35%, тогда как более крупные конструкции обходятся и меньшими долями плутония. Остаток состоит из соли U-238. В качестве соли предпочитаются трихлориды, т.е. UCl3 и PuCl3, которые находятся в жидком состоянии в подходящем температурном интервале. Для уменьшения нейтронных потерь, чаще всего происходящих из-за захвата изотопом CI-35, который порождает радиоизотоп CI-36, следует использовать CI-37.
Отрицательный температурный коэффициент
PPU (28) производит топливную смесь, которая критична внутри реактора при требуемой температуре 1000°С. Существует главным образом три эффекта, которые приводят к отрицательной обратной связи с интенсивностью ядерного распада, ослабляя поток нейтронов при растущей температуре:
- Доплеровское расширение резонансов в эффективном ядерном сечении захвата нейтронов увеличивает макроскопическое сечение
- Уменьшение плотности жидкосолевого топлива уменьшает концентрацию распадающихся нуклидов
- Уменьшение плотности жидкого свинца уменьшает концентрацию ядер свинца отражающих нейтроны.
Благодаря своей высокой массе и многим стабильным изотопам из-за заполнения оболочки ядра, свинец - выдающийся нейтронный отражатель с маленькой способностью замедления и низким эффективным ядерным сечением захвата нейтронов. Вместе эти эффекты способствуют глубоко отрицательному температурному коэффициенту в спектре быстрых нейтронов. Это противоположно натриевому теплоносителю, который обладает неравно высоким эффективным ядерным сечением захвата нейтронов, сильнее замедляет и слабее отражает, и, следовательно, способствует более сильному потоку нейтронов, т.е. обладает положительным температурным коэффициентом. Следовательно, меньшая активация свинца делает лишней промежуточное кольцо теплоносителя, в отличие от натриевого теплоносителя.
Включение реактора
Для запуска систему прогревают до тех пор, пока топливо и свинец не станут жидкими. Одновременно включают охлаждение расплавляющейся пробки (32). Из подкритичных топливных резервуаров (33) закачивают топливо в пространство активной зоны (4). Немного жидкого топлива ответвляется через тройник в нижней части реактора в расплавляющуюся пробку (32), где оно застывает и закупоривает ее. В пространстве активной зоны (4) топливо становится критичным.
Теперь реактором управляют описанные физические системы управления. Сначала скорость расщепления и соответствующее выделение энергии минимально. При включении насоса для теплоносителя (24) начинается циркуляция свинца. Благодаря теплоотводу в теплообменнике (22) (он, в свою очередь, разумеется, должен быть способным к отводу тепла) температура в активной зоне реактора падает. Системы управления делают реактор надкритичным до тех пор, пока не достигнута и не выровнена номинальная температура. Этот процесс может продолжаться до тех пор, пока не достигнута номинальная мощность реактора. В обратном случае, если замедляется циркуляция свинца (в том числе и в случае неисправности), растет температура активной зоны, из-за чего она становится подкритичной и производит меньше тепла до тех пор, пока не будет достигнута номинальная температура. Таким образом, скорость расщепления в реакторе всегда следует отбору энергии. Температура равновесия (номинальная температура) определяется содержанием расщепляющихся материалов (здесь содержанием плутония) в топливной соли. PPU (28) следит за тем, чтобы топливо соответствующим образом смешивалось.
Остановка реактора
Для штатной остановки прекращают циркуляцию свинца и охлаждение расплавляющейся пробки (32), чтобы жидкосолевое топливо стекло в подкритичные резервуары (33). То же самое случается и при отключении электрического питания всей установки. Если же по какой-то причине, такой как неисправность или саботаж, PPU поспособствует слишком высокому содержанию расщепляющихся материалов в топливе, то возрастет номинальная температура, что, в свою очередь, задействует расплавляющуюся пробку.
Следовательно, не существует разницы между штатным и аварийным отключением.
Возможные аварии
PPU (28) постоянно удаляет продукты деления из топливной соли и заменяет их на воспроизводящий материал, например, U-238. Остаточное тепловыделение незначительного количества продуктов деления во время одного цикла может быть легко пассивно отведено от подкритичных резервуаров. Короче говоря, во всех известных реакторных авариях, таких как отключение электричества, аварии с потерей теплоносителя, реактивностной аварии, аварии из-за остаточного тепловыделения DFR ведет себя как при штатном отключении.
Использование избытка нейтронов
При использовании цикла уран-плутоний деление плутония производит высокий избыток нейтронов. Также и после регенерации 239Pu через наработку из 238U все еще остается большой избыток нейтронов. Если в топливо подмешивать только 238U, то этот избыток нейтронов приведет к дополнительному плутонию. Интенсивность конверсии выше единицы -реактор работает в бридерном режиме. Избыток нейтронов можно применять и в других процессах трансмутации, например, в подмешивании в топливную смесь через PPU (28) долгоживущих продуктов деления. Так как и после трансмутации самообразовавшихся долгоживущих продуктов деления остается значительный избыток нейтронов, который можно использовать для трансмутации долгоживущих продуктов деления из выгоревших топливных элементов других (современных) реакторов. Только если использовать избыток нейтронов по-другому, реактор будет работать в самоподдерживающемся режиме, т.е. интенсивность конверсии равна единице.
Альтернативно PPU (28) может добавлять торий или инертные материалы, чтобы выровнять избыток нейтронов.
Выход нейтронов при расщеплении U-233 в ториево-урановом цикле существенно ниже, чем при расщеплении Pu-239 в урано-ториевом цикле.
Возможно использование DFR в качестве Th-U реактора-бридера на быстрых нейтронах с интенсивностью конверсии чуть выше единицы. Могла бы быть возможной трансмутация самообразовавшихся долгоживущих продуктов деления. Для этого PPU (28) требуется отделять 233Ра и содержать 233Ра, пока он не распадется до U-233. PPU (28) может перейти от ураново-плутониевого к ториево-урановому циклу.
К расщепляющемуся материалу в топливной соли можно добавлять трансурановые элементы из использованных (выгоревших) топливных элементов. Как и в случае трансмутации распадающихся продуктов PPU (28) переработает соли хлоридов их топливных таблеток из отработанных тепловыделяющих элементов, разделяя химические элементы по их температурам кипения. Затем PPU (28) смешивает топливную соль из требуемых актинидов таким образом, что условия критичности в активной зоне реактора будут выполнены. То есть в качестве топлива можно применять природный уран, обедненный уран, так называемые ядерные отходы и торий.
Другие варианты конструкции
Причины для выбора свинца в качестве теплоносителя - это низкое поглощение нейтронов при низком замедлении, хорошие термические свойства и хорошая способность отражать нейтроны. Другие материалы, как, например, олово или сложные сплавы могут снизить коррозийность материалов структуры, но они, возможно, имеют худшие термические и нейтронные свойства. Здесь нужно найти оптимум.
При выборе теплоносителя с низкой массой ядра атома, например литий, и замедляющий отражатель спектр нейтронов становится мягче и DFR работает с тепловыми или промежуточными (эпитермальными) нейтронами. Благодаря этому, становится возможным сконструировать очень маленький маломощный DFR, который хорошо подходит для мобильного применения. Из-за этого ухудшается нейтронная экономика, интенсивность конверсии становится меньше единицы и теряется способность к трансмутации.
Под «топливным циклом» имеется в виду «открытый топливный цикл», в котором топливо после одиночного прохода через активную зону (4) собирается в подкритичных резервуарах (33). Переработка топлива могла бы проводиться либо при неработающем реакторе, либо вне территории реактора. И этот вариант имеет преимущества для мобильного применения, т.к. из-за отсутствия PPU он менее чувствительно реагировал бы на сотрясения. В пространстве отражателя (3), где спектр нейтронов становится мягче, можно провести дополнительные контуры, чтобы транспортировать материалы, предназначенные для трансмутации, а не для деления. Они могут быть введены полностью отдельно или как продукты отведенные PPU. Интенсивность трансмутации некоторых материалов может быть там гораздо выше, чем в активной зоне, из-за захвата нейтронов.
Жидкое топливо может представлять собой и жидкометаллический сплав. Из-за повышенной теплопроводности и пониженной способности к коррозии по сравнению с солевым расплавом, можно повысить удельную теплоемкость и рабочую температуру и лучше использовать потенциал концепции DFR. Так как некоторые актиниды в топливной смеси имеют высокие температуры плавления, нужно хотя бы существенно снизить температуру солидуса, добавляя подходящие материалы с низкой температурой плавления и с достаточно выгодными нейтронными свойствами. Получающемуся многокомпонентному сплаву не обязательно находиться в эвтектике. Даже если температура ликвидуса находится выше рабочей температуры, смесь в этой кашеобразной фазе способна к прокачке. Подходящие материалы для смеси такие же как и у мягких припоев: свинец, висмут и, если нужно, также олово, которые могут составлять почти 75 мол.% топливного сплава. Плата за эти преимущества - высокие затраты при обработке топлива в PPU. Кроме того, добавляются еще два дополнительных этапа обработки, а именно: преобразование металлического сплава в солевой расплав и обратное преобразование отделенных солей в металлах, например, посредством электролиза. При этом можно применять пирохимические методы разделения уже к топливному сплаву, и только неразделимый таким способом остаток переводить в солевой расплав для дальнейшей обработки. Так можно отделять свинец, висмут и низкокипящие распадающиеся продукты из расплава металлов посредством дистилляции, а остаток надо обрабатывать дальше как соль.
Описание рисунков
Рисунок 1: Активная зона реактора DFR
Рисунок 2: Возможные формы топливного контура
Рисунок 3: Общая схема DFR
Список наименований
- (1) Корпус активной зоны
- (2) Впуск свинца
- (3) Пространство отражателя
- (3а) Перегородка
- (4) Пространство активной зоны
- (5) Выпуск свинца
- (6) Вентиль сброса свинца
- (7) Топливный контур
- (7а) Обычный уровень топливного контура
- (7b) Уровень с потоком частиц
- (7с) Вариант спирального топливного контура
- (8) Впуск топлива
- (9) Выпуск топлива
- (10) Поток частиц
- (11) Направление потока частиц
- (12) Источник или мишень, производящая нейтроны
- (22) Теплообменник
- (23) Вентиль для свинца
- (24) Насос для свинца
- (26) Резервуар для хранения свинца
- (27) Предбуферный топливный резервуар
- (28) Установка для пирохимической переработки (PPU)
- (29) Послебуферный топливный резервуар
- (30) Топливный насос
- (31) Топливный впускной вентиль
- (32) Расплавляющаяся пробка
- (33) Подкритичные топливные резервуары
- (34) Насос для отвода топлива
- (35) Вентиль для отвода топлива

Claims (20)

1. Ядерный реактор, содержащий первый контур (7) для непрерывного подвода и отвода жидкого ядерного топлива в пространство (4) активной зоны корпуса активной зоны (1) реактора и из него, причем упомянутый первый контур входит в корпус активной зоны реактора через впуск (8), проходит через пространство (4) активной зоны и выходит из корпуса активной зоны (1) реактора через выпуск (9), и
второй контур для жидкого теплоносителя, при этом теплоноситель входит через выпуск (2) в упомянутый корпус активной зоны (1) реактора, проходит и омывает первый контур (7) и выходит из корпуса активной зоны (1) реактора через выпуск (5).
2. Ядерный реактор по п. 1, при этом первый контур (7) для жидкого ядерного топлива содержит по меньшей мере один насос (30) для циркуляции жидкого ядерного топлива, по меньшей мере одну установку (28) для пирохимической переработки, по меньшей мере один буферный резервуар (27), (29), охлаждаемую расплавляющуюся пробку, по меньшей мере один резервуар (33) для хранения и обеспечения жидкого ядерного топлива и по меньшей мере один вентиль (31) для управления жидким ядерным топливом, и
при этом второй контур для жидкого теплоносителя содержит по меньшей мере один насос (24) для циркуляции жидкого теплоносителя, по меньшей мере один вентиль (23) для управления жидким теплоносителем и по меньшей мере один резервуар (26) для хранения, обеспечения или выравнивания объема жидкого теплоносителя, и при этом ядерный реактор необязательно может работать как подкритичная система, причем конструкция ядерного реактора также позволяет использовать МГД-генератор.
3. Ядерный реактор по п. 1, при этом в качестве жидкого ядерного топлива используется солевой расплав.
4. Ядерный реактор по п. 1, при этом в качестве жидкого ядерного топлива используются галогениды.
5. Ядерный реактор по п. 1, при этом в качестве жидкого ядерного топлива используются хлориды.
6. Ядерный реактор по п. 1, при этом в качестве жидкого ядерного топлива используется расплав металлов с актинидами.
7. Ядерный реактор по п. 6, при этом в расплав металлов добавлены элементарные металлы с низкой температурой плавления в количестве, достаточном для понижения температуры солидуса расплава металлов ниже рабочей температуры, чтобы расплав в достаточной степени поддавался перекачиванию с помощью насосов.
8. Ядерный реактор по п. 7, при этом упомянутые металлы выбираются из группы, состоящей из свинца, висмута и олова.
9. Ядерный реактор по п. 1, при этом жидкий теплоноситель представляет собой жидкий металл.
10. Ядерный реактор по п. 1, при этом жидкий теплоноситель представляет собой свинец.
11. Теплообменник прямого контакта в ядерном реакторе для переноса тепла от жидкого теплоносителя газу, который в газовой турбине занимает место камеры сгорания, при этом теплоперенос обеспечивается посредством распыления жидкого теплоносителя в струе газа из турбокомпрессора в камеру, сформированную под динамические потоки, с дальнейшим отделением в присоединенном сепараторе перед тем, как разогретый газ входит в турбину.
12. Теплообменник прямого контакта по п. 11, при этом сепаратор работает на принципе центробежной силы.
13. Теплообменник прямого контакта по п. 11, при этом жидкий теплоноситель представляет собой металл.
14. Теплообменник прямого контакта по п. 11, при этом жидкий теплоноситель представляет собой свинец.
15. Теплообменник прямого контакта по п. 11, при этом применяемый газ представляет собой благородный газ.
16. Теплообменник прямого контакта по п. 11, при этом применяемый газ представляет собой аргон.
17. Ядерный реактор по п. 1, при этом ядерный реактор содержит теплообменник прямого контакта по п. 11.
18. Способ переработки подводимого и отводимого жидкого ядерного топлива в ядерном реакторе, при этом жидкое ядерное топливо входит в первый контур (7) корпуса активной зоны (1) реактора через впуск (8), проходит через пространство (4) активной зоны внутри корпуса активной зоны (1) реактора и выходит через выпуск (9) корпуса активной зоны (1) реактора, где цепная реакция происходит критично или подкритично, образующееся тепло внутри корпуса активной зоны (1) реактора переносится через стенку первого контура (7) к теплоносителю, который проходит и омывает во втором контуре первый контур (7), и при этом жидкое ядерное топливо в первом контуре (7) отводится к и перерабатывается в установке (28) для пирохимической переработки.
RU2014115465A 2011-09-21 2012-09-21 Двухфлюидный реактор RU2608082C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102011114342.8 2011-09-21
DE102011114342 2011-09-21
DE102012007933.8 2012-04-17
DE201210007933 DE102012007933A1 (de) 2012-04-17 2012-04-17 Dual Fluid Reaktor
PCT/DE2012/000957 WO2013041085A2 (de) 2011-09-21 2012-09-21 Dual fluid reaktor

Publications (2)

Publication Number Publication Date
RU2014115465A RU2014115465A (ru) 2015-10-27
RU2608082C2 true RU2608082C2 (ru) 2017-01-13

Family

ID=47191453

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014115465A RU2608082C2 (ru) 2011-09-21 2012-09-21 Двухфлюидный реактор

Country Status (10)

Country Link
US (1) US10878969B2 (ru)
EP (1) EP2758965B1 (ru)
JP (1) JP6326369B2 (ru)
KR (1) KR102086453B1 (ru)
CA (1) CA2849175A1 (ru)
HU (1) HUE036705T2 (ru)
LT (1) LT2758965T (ru)
PL (1) PL2758965T3 (ru)
RU (1) RU2608082C2 (ru)
WO (1) WO2013041085A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091911A1 (en) * 2018-10-31 2020-05-07 TERRESTRIAL ENERGY USA, Inc. Power plant
RU2811776C2 (ru) * 2018-11-01 2024-01-17 Дьюэл Флюид Энерджи Инк. ДВУХЖИДКОСТНЫЙ РЕАКТОР - ВАРИАНТ С ЖИДКИМ МЕТАЛЛИЧЕСКИМ ДЕЛЯЩИМСЯ МАТЕРИАЛОМ (DFR/m)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366838B (zh) * 2013-07-17 2015-08-12 中国科学院上海应用物理研究所 一种熔盐堆缓冲盐自然循环冷却系统
RU2545170C1 (ru) * 2013-12-10 2015-03-27 Открытое Акционерное Общество "Акмэ-Инжиниринг" Реактор на быстрых нейтронах и блок отражателя нейтронов реактора на быстрых нейтронах
KR101620968B1 (ko) * 2013-12-20 2016-05-13 한국생산기술연구원 액체 금속을 이용한 순산소 직접 연소 시스템
CA2967473A1 (en) 2014-12-29 2016-07-07 Terrapower, Llc Nuclear materials processing
US11276503B2 (en) 2014-12-29 2022-03-15 Terrapower, Llc Anti-proliferation safeguards for nuclear fuel salts
US10665356B2 (en) 2015-09-30 2020-05-26 Terrapower, Llc Molten fuel nuclear reactor with neutron reflecting coolant
US10867710B2 (en) 2015-09-30 2020-12-15 Terrapower, Llc Molten fuel nuclear reactor with neutron reflecting coolant
CA2999894A1 (en) 2015-09-30 2017-04-06 Terrapower, Llc Neutron reflector assembly for dynamic spectrum shifting
GB201604968D0 (en) * 2016-03-23 2016-05-04 Thoria As Molten salt reactor
US10991468B2 (en) * 2016-04-26 2021-04-27 Clear Inc. Load-following nuclear reactor system using thermal expansion-based neutron reflector movement and fuel assembly interval adjustment mechanisms and liquid metal primary coolant
KR102406810B1 (ko) * 2016-05-02 2022-06-13 테라파워, 엘엘씨 개선된 용융 연료 원자로 냉각 및 펌프 구성
EP3485496B1 (en) 2016-07-15 2020-04-15 TerraPower, LLC Vertically-segmented nuclear reactor
WO2018031681A1 (en) 2016-08-10 2018-02-15 Terrapower, Llc Electro-synthesis of uranium chloride fuel salts
CN110178186A (zh) 2016-11-15 2019-08-27 泰拉能源公司 熔融燃料核反应堆的热管理
CN106531237B (zh) * 2016-12-29 2018-08-07 中科瑞华原子能源技术有限公司 一种铅基反应堆冷却剂工艺系统运行装置
CN107195334B (zh) * 2017-06-08 2023-08-01 清华大学天津高端装备研究院 一种加速器驱动次临界气冷反应堆
US11145424B2 (en) 2018-01-31 2021-10-12 Terrapower, Llc Direct heat exchanger for molten chloride fast reactor
EP3766081B1 (en) 2018-03-12 2023-12-13 TerraPower LLC Reflector assembly for a molten chloride fast reactor
KR20210083333A (ko) 2018-11-01 2021-07-06 듀얼 플루이드 에너지 인코포레이티드 이중 유체 반응기 - 액체 금속 핵분열 가능 물질을 갖는 변형 (DFR/m)
CN109657905A (zh) * 2018-11-12 2019-04-19 中国辐射防护研究院 一种mox燃料的临界事故环境释放源项的估算方法
JP2022552607A (ja) 2019-10-15 2022-12-19 ニュースケール パワー エルエルシー 原子炉からの熱除去のような熱除去のためのヒートパイプネットワーク並びに関連するシステム及び方法
WO2021076781A2 (en) * 2019-10-15 2021-04-22 Nuscale Power, Llc Nuclear reactors having liquid metal alloy fuels and/or moderators
CN110767333B (zh) * 2019-10-18 2022-05-03 中国核电工程有限公司 用于铅基冷却剂反应堆的氧控装置、方法、反应堆系统
CA3162414A1 (en) 2019-12-23 2021-07-01 Kent E. Wardle Molten fuel reactors and orifice ring plates for molten fuel reactors
US11728052B2 (en) 2020-08-17 2023-08-15 Terra Power, Llc Fast spectrum molten chloride test reactors
CN112349436B (zh) * 2020-11-06 2021-10-19 西安交通大学 一种液态金属冷却绕丝定位熔盐堆堆芯
EP4272226A1 (en) * 2020-12-31 2023-11-08 Alpha Tech Research Corp Pool type liquid metal cooled molten salt reactor
FR3119925B1 (fr) * 2021-02-16 2023-11-24 Alexandre & Gavriloff Réacteur de fission à sels fondus et à échangeur primaire intégré, et électrogénérateur comprenant un tel réacteur
US20230042504A1 (en) * 2021-08-03 2023-02-09 Energy, United States Department Of Flow through liquid metal cooled molten salt reactors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251745A (en) * 1961-12-11 1966-05-17 Dow Chemical Co Nuclear reactor and integrated fuelblanket system therefor
DE1807986A1 (de) * 1968-11-06 1970-06-11 Euratom Verfahren und Vorrichtung zur gleichmaessigen Kuehlmittelverteilung auf den Heizflaechen in einem metallgekuehlten Reaktor oder Verdampfer
RU2125743C1 (ru) * 1997-04-09 1999-01-27 Государственный научный центр РФ "Физико-энергетический институт им.академика А.И.Лейпунского" Ядерный гомогенный реактор
JP2001133572A (ja) * 1999-10-29 2001-05-18 Toshiba Corp 溶融塩炉
RU90609U1 (ru) * 2009-07-17 2010-01-10 Олег Николаевич Морозов Реакторная установка

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527669A (en) * 1968-05-20 1970-09-08 Atomic Energy Commission Molten-salt-fueled nuclear breeder reactor and fuel cell for use therein
FR2296923A1 (fr) * 1975-01-03 1976-07-30 Commissariat Energie Atomique Generateur de vapeur a basse temperature
JP2959973B2 (ja) * 1994-09-19 1999-10-06 核燃料サイクル開発機構 完全燃焼型原子炉
EP0883879A1 (en) * 1996-02-27 1998-12-16 Yury Vasilievich Drobyshevsky Method and reactor for the generation of energy in the process of a controlled nuclear fission
HU226177B1 (en) * 2001-09-20 2008-06-30 Budapesti Mueszaki Es Gazdasag Method for transmutation of radioactive wastes
US20090279658A1 (en) * 2008-05-09 2009-11-12 Ottawa Valley Research Associates Ltd. Molten salt nuclear reactor
JP5671011B2 (ja) * 2009-05-08 2015-02-18 アカデミア シニカAcademia Sinica 二流体溶融塩原子炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3251745A (en) * 1961-12-11 1966-05-17 Dow Chemical Co Nuclear reactor and integrated fuelblanket system therefor
DE1807986A1 (de) * 1968-11-06 1970-06-11 Euratom Verfahren und Vorrichtung zur gleichmaessigen Kuehlmittelverteilung auf den Heizflaechen in einem metallgekuehlten Reaktor oder Verdampfer
RU2125743C1 (ru) * 1997-04-09 1999-01-27 Государственный научный центр РФ "Физико-энергетический институт им.академика А.И.Лейпунского" Ядерный гомогенный реактор
JP2001133572A (ja) * 1999-10-29 2001-05-18 Toshiba Corp 溶融塩炉
RU90609U1 (ru) * 2009-07-17 2010-01-10 Олег Николаевич Морозов Реакторная установка

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020091911A1 (en) * 2018-10-31 2020-05-07 TERRESTRIAL ENERGY USA, Inc. Power plant
US11756696B2 (en) 2018-10-31 2023-09-12 TERRESTRIAL ENERGY USA, Inc. Power plant system
US11923100B2 (en) 2018-10-31 2024-03-05 TERRESTRIAL ENERGY USA, Inc. Power plant system
RU2811776C2 (ru) * 2018-11-01 2024-01-17 Дьюэл Флюид Энерджи Инк. ДВУХЖИДКОСТНЫЙ РЕАКТОР - ВАРИАНТ С ЖИДКИМ МЕТАЛЛИЧЕСКИМ ДЕЛЯЩИМСЯ МАТЕРИАЛОМ (DFR/m)

Also Published As

Publication number Publication date
CA2849175A1 (en) 2013-03-28
JP6326369B2 (ja) 2018-05-16
HUE036705T2 (hu) 2018-07-30
JP2014534413A (ja) 2014-12-18
KR20140074355A (ko) 2014-06-17
PL2758965T3 (pl) 2018-02-28
RU2014115465A (ru) 2015-10-27
KR102086453B1 (ko) 2020-03-09
US10878969B2 (en) 2020-12-29
US20140348287A1 (en) 2014-11-27
EP2758965B1 (de) 2017-07-05
LT2758965T (lt) 2017-11-10
WO2013041085A3 (de) 2013-05-30
EP2758965A2 (de) 2014-07-30
WO2013041085A2 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
RU2608082C2 (ru) Двухфлюидный реактор
Huke et al. The Dual Fluid Reactor–A novel concept for a fast nuclear reactor of high efficiency
US9368244B2 (en) Hybrid molten salt reactor with energetic neutron source
Breeze Nuclear power
Cerullo et al. Generation IV reactor designs, operation and fuel cycle
Kessler Proliferation-proof uranium/plutonium fuel cycles: safeguards and non-proliferation
CN105684090A (zh) 熔盐反应堆
Perry et al. Thermal breeder reactors
Engel et al. Molten-salt reactors for efficient nuclear fuel utilization without plutonium separation
Hejzlar et al. Design strategy and constraints for medium-power lead-alloy–cooled actinide burners
Lewitz et al. The Dual Fluid Reactor—An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup
JP7136449B2 (ja) プルトニウム消滅型の熔融塩原子炉、それを用いた発電システム、及び、プルトニウム消滅型の熔融塩原子炉の運転方法
Poullikkas An overview of future sustainable nuclear power reactors.
Park et al. Design Concepts and Requirements of Passive Molten Salt Fast Reactor (PMFR)
Hore-Lacy Innovation in nuclear power
Fredrickson et al. Nuclear Fuels and Reprocessing Technologies: A US Perspective
JP2000505554A (ja) 核分裂を制御するプロセス中でエネルギーを発生させるための方法および反応機
Slessarev et al. WISE: a new fuel cycle concept based on a mobile fuel reactor
Hejzlar et al. Design strategies for lead-alloy-cooled reactors for actinide burning and low-cost electricity production
Astley Conversion of Nuclear Waste into a Fuel Source
Berwald Fusion breeder studies program
LeBlanc MSR Technology Basics
Johnson The chemical engineering side of nuclear fusion power
Farmer Assessing the economics of the liquid metal fast breeder reactor
Steinberg Accelerator Spallation Reactors for Breeding Fissile Fuel and Transmuting Fission Products

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210823