RU2607737C2 - Соединение для внедрения модифицированного битума в изготовление асфальтов - Google Patents

Соединение для внедрения модифицированного битума в изготовление асфальтов Download PDF

Info

Publication number
RU2607737C2
RU2607737C2 RU2014122330A RU2014122330A RU2607737C2 RU 2607737 C2 RU2607737 C2 RU 2607737C2 RU 2014122330 A RU2014122330 A RU 2014122330A RU 2014122330 A RU2014122330 A RU 2014122330A RU 2607737 C2 RU2607737 C2 RU 2607737C2
Authority
RU
Russia
Prior art keywords
sbs
bitumen
compound
rubber
weight
Prior art date
Application number
RU2014122330A
Other languages
English (en)
Other versions
RU2014122330A (ru
Inventor
Бруно КАРДИНАЛИ
Original Assignee
Текнофильм С.П.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Текнофильм С.П.А. filed Critical Текнофильм С.П.А.
Publication of RU2014122330A publication Critical patent/RU2014122330A/ru
Application granted granted Critical
Publication of RU2607737C2 publication Critical patent/RU2607737C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L17/00Compositions of reclaimed rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2317/00Characterised by the use of reclaimed rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/30Environmental or health characteristics, e.g. energy consumption, recycling or safety issues
    • C08L2555/34Recycled or waste materials, e.g. reclaimed bitumen, asphalt, roads or pathways, recycled roof coverings or shingles, recycled aggregate, recycled tires, crumb rubber, glass or cullet, fly or fuel ash, or slag
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/40Mixtures based upon bitumen or asphalt containing functional additives
    • C08L2555/80Macromolecular constituents
    • C08L2555/84Polymers comprising styrene, e.g., polystyrene, styrene-diene copolymers or styrene-butadiene-styrene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D195/00Coating compositions based on bituminous materials, e.g. asphalt, tar, pitch

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Группа изобретений относится к полимерной химии и используется при производстве асфальтов для дорожных покрытий. Измельчают вулканизированный каучук с получением крошки с гранулометрическим составом меньше 0,4 мм. Смешивают крошку, СБС и смазочный материал в экструдере. Весовое содержание смазочного материала составляет от 1% до 50% по отношению к весу смеси, а содержание вулканизированной каучуковой крошки составляет 70-100% по отношению к весу СБС. СБС представляет собой полимер линейного, радиального типов или их смесь. Каучуковую крошку получают из переработанных шин. Смазочный материал представляет собой минеральное масло. При температуре 160-200°С осуществляют экструзию смеси с получением соединения, содержащего каучуковую крошку, СБС и смазочное соединение. Экструдированное соединение разрезают на фишки и добавляют к битуму в весовом соотношении между 5% и 30% по отношению к общему весу модифицированного битума. 2 н. и 8 з.п. ф-лы, 5 табл.

Description

Настоящая патентная заявка на промышленное изобретение относится к соединению для внедрения модифицированного битума.
Хотя термин «битум» будет являться превалирующим при использовании в приведенном ниже описании, следует понимать, что настоящее изобретение распространяется на отрасль асфальтов, в частности для дорожных покрытий.
Битумы являются сложными термопластичными продуктами, состоящими из довольно разнообразных элементов: асфальтенов и мальтенов. Битумы обладают превосходными адгезионными свойствами, но плохими механическими характеристиками, особенно в зависимости от температуры. В сущности, битумы характеризуются очень низкой жесткостью при комнатной температуре (25°C). Более того, при температуре ниже 0°C (на холоду) битумы являются жесткими и хрупкими, в то время как при температуре выше 38°C (в горячей среде) битумы являются пластичными, мягкими и довольно липучими. По этой причине, битумы не могут быть применены для большинства дорожных либо строительных приложений.
Модифицирование битумов с помощью химических и полимерных добавок представляется крайне важным для того, чтобы существенно модифицировать основные физико-химические свойства битумов, в результате чего модифицированные битумы становятся пригодными для самых разнообразных применений в промышленности.
Уже в достаточной степени известна модификация асфальтовых битумов и битумов с использованием гранул, получаемых из молотых шин с истекшим сроком годности. Преимущества, которые могут быть извлечены из данных мероприятий, могут быть технического и экологического характера.
Преимущества в техническом плане, вытекающие из проявления эксплуатационных качеств битума, модифицированного с добавлением каучуковой крошки, включают, например, снижение уровня шумности, более длительный срок службы готовых изделий, в значительной степени увеличенная эластичность, сокращение числа центров расслоения и их роста в промышленных товарах. Очевидно, сказанное выше соотносится со способностью каучуковой крошки становиться влажной, обуславливаемой несущим битумом. Иными словами, частицы каучука должны набухать и в терминах физической химии это означает, что параметры растворимости двух продуктов (каучука и битума) численно должны быть довольно близки так, что растворяющая часть битума, мальтеновая фракция, могла проникать в твердые частицы каучуковых гранул и форму, находящуюся вне твердых частиц, практически желатиновой фазы, которая является довольно активной в плане адгезии и когезионного взаимодействия с оставшейся битумной частью. Например, Нитрильный каучук (БНК) разбухает значительно меньше в битумах, чем Стирол-Бутадиеновый каучук (СБк). Таким образом, при той же концентрации и гранулометрическом составе эксплуатационные показатели битума, модифицированного гранулами БНК, будут значительно ниже, чем показатели битума, модифицированного гранулами из СБк.
Целесообразность с точки зрения воздействия на экологическую среду вытекает из возможности использования материала, который едва ли может быть практически применим в других видах деятельности и представляется доступным в больших объемах, для высокотехнологических приложений, заменяя вязкоупругие полимеры, дорого стоящие и являющиеся высокозатратными.
Довольно интересная модификация битумов, которая была открыта не столь давно, относится к применению девулканизованной вариации каучуковых гранул. Данный вариант позволяет производить часть материала с низким молекулярным весом, растворимого в битуме либо асфальтовом битуме, и позволяет образовывать поверхность остаточных гранул, более подходящую для когезионного взаимодействия с битумом, последовательно улучшая конечные механические свойства. Однако подобная технология является дорогостоящей и требует использования специального оборудования, такого как пиролизаторы, либо экструдеры, особым образом разработанные для достижения преобразования механической энергии в тепловую с целью достижения температур, необходимых для разрушения внутри- и межмолекулярных связей в вулканизированных продуктах. Более того, в подобной технологии применяются измельченные материалы из шин с очень высокими гранулометрическими показателями.
Следует учитывать, что гранулометрический показатель измельченных продуктов, получаемых из шин с истекшим сроком годности, либо иных подобных вулканизированных материалов, таких, например, как обувные подошвы, резиновые шланги, противовибрационные соединительные элементы и прокладки в стиральных либо посудомоечных машинах, намного больше чем минимальный размер в 0,5 миллиметров. Их полимерные основы, как правило, состоят из сополимеров Стирол-Бутадиена (СБК), Акрилонитрил-Бутадиена (БНК), Этилен-пропилен-Диена (ЭПДМ), Натурального Каучука (НК) и Бутадиеновых Полимеров (БП). Гранулометрический показатель, больший, чем 0,5 мм, значительно снижает способность вулканизированных каучуковых порошков к получению радикальных изменений в свойствах битумов.
Процесс, известный как «сухой процесс», известен в настоящее время в связи с производством модифицированного асфальта. Указанный процесс предусматривает применение порошков, получаемых при измельчении вулканизованных продуктов (как правило, шин), с размером больше 0,4 мм, и замены части минерального песка в составе асфальта на указанный порошок. Указанные порошки также применяются при производстве Каучуко-Асфальта, получаемого влажным процессом (во влажной фазе), с получением битумов с лучшими реологическими характеристиками, чем в случае стандартного битума. Тем не менее, асфальты и битумы, получаемые известными способами, не подходят для достижения эксплуатационных характеристик, какие требуются в настоящее время согласно национальным и международным спецификациям для конкретных применений в дорожных или строительных отраслях.
В нескольких документах описываются битумы, модифицированные переработанным порошком из шин:
СИНИС (SINIS) «Литературный обзор по утилизации побочного продукта в дорожном строительстве в Европе»
АХМЕД(AHMED) «Использование отходов в строительстве автомобильных дорог»
Министерство транспорта США «Модификатор на основе Каучуковой Крошки, Рабочие Записи»
ДЖОНГ(JEONG) «Эффекты взаимодействия в модифицированных каучуковой крошкой битумных связывающих веществах». Данные документы, однако, не описывают процесс производства определенным образом проэкструдированного соединения для модификации асфальтов и в них не указываются количества различных компонентов с тем, чтобы достичь определенных эксплуатационных характеристик битумов.
Известно, что использованию битумов, модифицированных каучуковой крошкой из переработанных шин, сопутствуют затруднения, связанные с совместимостью каучуковой крошки и битума. Подобного рода неудобство устраняется с помощью катализаторов, примешиваемых к битуму.
В документах WO 20011/074003 описывается применение катализатора в установке ФКК (Флюидизированного Каталитического Крекинга), включающей нефть и низкомолекулярные полимеры, такие как полиолефиновые полимеры. Разумеется, СБС не является низкомолекулярным полимером.
Халдун (KHALDOUN) в работе «Влияние фурфурол-активированной каучуковой крошки на свойства прорезиненного асфальта» описывает применение фурфурольного катализатора для повышения адгезии каучуковой крошки к битуму.
В соответствии с предшествующим уровнем техники наилучшие эксплуатационные характеристики модифицированных битумов достигаются с применением термопластичных блок-сополимеров Стирол-Бутадиен-Стирола (СБС) линейных, либо радиальных конфигураций, которые являются наиболее часто применяемыми полимерными продуктами при модификации битума. В сущности, упомянутые термопластичные блок-сополимеры (СБС) являются наиболее эффективными для модификации битума, делающие возможным достижение желаемых характеристик, таких как высокая температура размягчения, проникающая способность при температуре окружающей среды и низкотемпературная гибкость.
Прочие блок-сополимеры могут применяться для модификаций битума, такие как СБС. Они представляют собой блок-сополимер Стирол-Изопрен-Стирола (СИС) и их гидрированные производные СЭБС и СЭПС, в дополнение к прочим блок-сополимерам, которые могут быть получены модификацией фаз эластомера не на основе смесей Бутадиена и Изопрена, но едва ли применимы на практике из-за своей высокой стоимости.
Термопластичные гомо- либо терполимеры применяются и являются пригодными для модификаций битумов. Их получают из мономеров, таких как Этиленвинилацетат (ЭВА), Этилен-Пропилен (ЭПН), Этилен-Пропилен-Диен (ЭПДН), Атактический и Изотактический пропилен (ППа/изо), Полиэтилен (ЛПЭНП, ПЭНД, ПЭВД), Полибутадиен и Полибутен, но ни один из них в отдельности либо в смеси не дает характеристики, аналогичные СБС.
Баха (BAHA) в труде «Лабораторное сравнение модифицированного каучуковой крошкой и СБС битума и горячей асфальтовой смеси» описывает сравнение между модифицированным каучуковой крошкой битумом и модифицированным СБС битумом. Заключением данного документа является то, что модифицированный СБС битум характеризуется гораздо лучшей производительностью, чем модифицированный каучуковой крошкой битум. Поэтому, для того, чтобы заменить СБС на резиновую крошку при сохранении той же производительности асфальта, должно применяться соотношение 1:3, означающее, что количество каучуковой крошки должно быть, по крайней мере, в три раза больше, чем СБС. Данное утверждение подтверждается на примере продуктов, найденных на рынке. В сущности, модифицированные СБС битумы, как правило, содержат СБС в количестве 10% по весу. Напротив, модифицированные каучуковой крошкой битумы содержат каучуковую крошку в количестве до 30% по весу.
В патенте US 6818687 описывается битум, модифицированный СБС, либо СБк после вулканизации и помола; не указывается на то, является ли битум одновременно модифицированным СБС и СБк. Для подобных битумов характерны проблемы, связанные с хранением и, как следствие, к ним добавляют регулятор вязкости (масло) и катализатор на кислотной и сернистой основе.
В патенте WO 2008/083451 описывается продукт, состоящий из СБС, резиновой крошки, а также вулканизующих, пластифицирующих, смазывающих и расширяющихся агентов. Термореактивный продукт получают и подвергают вулканизации. По этой причине указанный продукт не является термопластичным растворимым в асфальте продуктом. В сущности, подобный продукт применяется в изготовлении подошв для обуви, а резиновая крошка приводится в качестве наполнителя, т.е. она может состоять из любого материала, который не нуждается в специальных реакциях для достижения специфических технических характеристик. В любом случае, обувные подошвы получают путем формования, а не экструзии.
Целью настоящего изобретения является устранение недостатков предшествующего уровня техники с получением материала, который может применяться при модификации битума, способен обеспечивать такие же эксплуатационные характеристики, как в случае с СБС в тех же количествах, который является менее дорогостоящим и в то же время обладает высокими техническими показателями и эксплуатационными характеристиками с целью применения в строительстве дорог и кровли зданий, по сравнению с СБС.
Решение данной задачи достигается в соответствии с изобретением, характеристики которого перечислены в приложенных независимых пунктах формулы изобретения.
Предпочтительные варианты исполнения вытекают из дополнительных пунктов формулы изобретения.
Посредством экспериментальных испытаний заявитель обнаружил, что путем снижения гранулометрического показателя используемых частиц вулканизированного каучука при том условии, что параметр растворимости не отличается чрезмерно от битума, представляется возможным в значительной мере повысить эффективность модификации конечного продукта.
Чем ниже гранулометрический показатель частиц каучука и чем параметр растворимости ближе к используемому битуму, тем действенней эффект модификации.
Параметр растворимости битума, как правило, довольно сильно отличается от вулканизированного полимерного продукта, полученного в результате измельчения шин. По этой причине, подходящие значения силы когезионного взаимодействия не образуются между двумя элементами. С технической точки зрения битум не смачивает в достаточной мере крошку вулканизированного каучука.
Значимые результаты получены для частиц вулканизированного каучука с гранулометрическим показателем меньше 0,4 мм, предпочтительно с гранулометрическим показателем 90-320 мкм.
Путем смешения указанных частиц вулканизированного каучука с битумом и доведения битума до состоянии расплава получают модифицированный битум с характеристиками, весьма схожими и сопоставимыми с битумами, модифицированными с использованием только лишь эластомерных полимеров, таких как блок-сополимеры СБС, которые представляются оптимальными и обладающими наилучшими эксплуатационными характеристиками. Процентное содержание по весу частиц вулканизированного каучука составляет 4-20%, предпочтительно 15%, по отношению к общему весу модифицированного битума.
С целью получить удовлетворительные результаты является необходимым подобрать вулканизированные эластомерные продукты, которые должны обладать адгезией к битуму, в качестве основной характеристики. Подбор химической основы каучуковой крошки был осуществлен в лаборатории подготовкой уменьшенного по размеру образца битума и смесей крошки из вулканизированного каучука с гранулометрическим показателем меньше 0,4 мм. По указанным испытаниям измерена смачивающая способность стандартного битума, равная 160/220 проникновению при 25°С для различных типов каучуковой крошки. Указанная смачивающая способность измерена путем оценки низкотемпературной гибкости указанных образцов.
Анализы образцов инфракрасной спектроскопией демонстрируют, что наилучшие результаты получаются с переработанной крошкой из вулканизированного каучука, состоящей из полимеров типа Стирол-Бутадиена, Бутадиена и Изопрена, а также соответствующих смесей. Автомобильные шины идеально подходят для подобного применения, будучи составленными из вышеупомянутых полимерных элементов, хотя и в значительно рознящихся концентрациях.
Переработанная крошка из вулканизированного каучука с регулируемым гранулометрическим показателем была получена после измельчения, в некоторых случаях также после криоизмельчения, с применением оборудования, снабженного достаточно эффективной системой охлаждения и подходящего для отсеивания порошков до нужного размера.
В Таблице 1 демонстрируется гранулометрический показатель порошков из вулканизированного каучука, получаемых после измельчения шин с истекшим сроком службы (ПФУ) и соответствующий отсев.
Таблица 1
ОБРАЗЦЫ и КОЛИЧЕСТВА в г
Размер ячейки сита в мкм ПФУ 1 ПФУ 2 ПФУ 3
500 0 0 0
400 41 0 0
300 36 15 0
200 23 44 10
100 0 37 64
50 0 4 21
<50 0 0 5
Средневзвешенная величина в микронах 318 172 <99
Как показано в Таблице 1, три образца порошков из вулканизированного каучука ПФУ 1, ПФУ 2 и ПФУ 3, соответственно, характеризуются гранулометрическим показателем, равным 318, 172 и приблизительно 99 мкм. Данные по указываемому гранулометрическому показателю были получены из средневзвешенной по фракциям величины, полученной в ходе просеивания.
В таблице 2 приводятся примеры сравнительных испытаний, проведенные для пяти образцов (СО, C1, C2, C3, C4, Cp): первый образец (CO) составлен из стандартного (не модифицированного) битума с проникающей способностью 160/220 при 25°С; три образца модифицированного битума (C1, C2, C3) получены путем смешивания битума образца СО с тремя образцами порошков из вулканизированного каучука ПФУ 1, ПФУ 2 и ПФУ 3 в весовом соотношении (85/15); пятый образец сравнения (Cp) получают путем смешивания образца стандартного битума (CO) с блок-сополимером СБС радиального типа в весовом соотношении (85/1).
Таблица 2
ОБРАЗЕЦ СО C1 C2 C3 Cp
Битум 169/220 100 85 85 85 85
ПФУ 1 15
ПФУ 2 15
ПФУ 3 15
СБС радиального типа 15
Результаты анализов
Вязкость при 180°С (мПа⋅с) Низкая
1000
56000 48000 39000 3000
Кольцо-Шар (°С) 38 105 113 121 114
Проник. Способность при 25°С (дмм) 175 27 32 45 50
Гибкость на холоду (°С) >0 -15 -17 -23 -27
Характеристики, приведенные в таблице (Вязкость при 180°C (мПа⋅с), Кольцо-Шар (°C); Проникающая Способность при 25°С (дмм); Гибкость на холоду (°С) были определены по следующим соответствующим методикам Итальянского Института Стандартизации: EN13 702, EN 1427, EN 1426 и EN 1109.
Как показано в Таблице 2, испытания образцов битума (C1, C2, C3), модифицированного каучуковой крошкой, обладающей малым гранулометрическим показателем, продемонстрировали отличные характеристики по сравнению с образцом сравнения (CP), модифицированного СБС.
Чем меньше гранулометрический показатель каучуковой крошки, тем больше общая площадь взаимодействия битума, что позволяет достичь более высокой общей прочности когезионного взаимодействия при контакте, образующемся между битумом и твердыми частицами, последовательно приводя к улучшению основных физических характеристик модифицированного продукта, как описывается далее в данном документе.
Также увеличивается устойчивость модифицированного битума к действию высоких температур в случае, когда гранулометрический показатель порошков уменьшается. Испытания Кольцо-Шар демонстрируют, что образец модифицированного битума (С1) начинает подвергаться деформации при 105°С; при уменьшении гранулометрического показателя порошков температура, при которой модифицированный битум подвергается деформации, возрастает.
Таким же образом, устойчивость модифицированного битума к действию низких температур улучшается при уменьшении гранулометрического показателя порошков. Испытание гибкости на холоду демонстрирует, что образец модифицированного битума (С1) становится твердым и разрывается при -15°С; при уменьшении гранулометрического показателя порошков температура, при которой модифицированный битум разрушается, снижается.
Напротив, жесткость модифицированного битума (измеренная при 25°C) незначительно уменьшается при уменьшении гранулометрического состава порошка.
Тест на проникновение иглы при 25°С демонстрирует, что образец модифицированного битума (С1) подвержен проникновению на 27 дмм; при уменьшении гранулометрического показателя порошка проникающая способность иглы несколько увеличивается. В любом случае, также в образце С3, где гранулометрический показатель порошка ниже 99 микрон, жесткость больше, чем в случае сравнительного образца (CP), модифицированного СБС, и гораздо больше, чем в случае стандартного не модифицированного битумного образца (СО).
Однако образцы битумов (C1, C2, C3), модифицированные каучуковой крошкой с малым гранулометрическим показателем, не показывают удовлетворительных результатов с точки зрения гибкости на холоду, либо результатов, сравнимых с результатами образца сравнения (Cp), представленного модифицированным СБС битумом. Несмотря на сведение к минимуму гранулометрического показателя каучуковой крошки (ПФУ 3), образец C3 не сопоставим с образцом сравнения Cp. Таким образом, каучуковая крошка сама по себе не способна в равной мере заменить СБС.
С тем, чтобы повысить гибкость на холоду, был испытан образец (C4) модифицированного резиновой крошкой битума с добавлением СБС и минерального масла, как это показано в Таблице 3. В образце (C4) объем вулканизированного каучука, получаемого переработкой шин с истекшим сроком службы (ПФУ 1), был снижен и были добавлены смазочное масло и радиальный СБС. Каучуковая крошка (ПФУ 1), СБС и смазочное масло вводятся отдельно и смешиваются с битумом.
Таблица 3
КОМПОНЕНТ ПРОЦЕНТНОЕ СОДЕРЖАНИЕ ПО ВЕСУ
БИТУМ 160/220 85
ПФУ 1 5
Радиальный СБС 5
Смазочное масло 5
Результаты анализов
Вязкость при 180°С (мПа⋅с) 3500
Кольцо-шар (°С) 92
Проник. Способность при 25°С (дмм) 80
Гибкость на холоду (°С) -24
Как показано в таблице 3, образец (C4) также не продемонстрировал желаемых эксплуатационных характеристик с точки зрения гибкости на холоду.
Таким образом, заявитель подверг испытаниям новый образец (C5) модифицированного битума, увеличив содержание каучуковой крошки (ПФУ 1) и СБС с 5 до 7,5 долей каждого, а именно активное вещество (ПФУ 1 + СБС) составляет 15 долей, смазочного масла 5 долей, а на битум приходится 85 долей. Следовательно, в данном случае, образец сравнения (CP 1) состоит из модифицированного битума, содержащего 15 долей СБС, 5 долей смазочного масла и 85 долей отводится на битум.
В таблице 4 приводится сравнение образца (C5) и образца сравнения (Cp1).
Таблица 4
ОБРАЗЕЦ Cp1 C5
БИТУМ 160/220 85 85
ПФУ 1 7,5
Радиальный СБС 15 7,5
Смазочное масло 5 5
Результаты анализов
Вязкость при 180°С (мПа⋅с) 3500 3300
Кольцо-шар (°С) 105 97
Проник. Способность при 25°С (дмм) 46 65
Гибкость на холоду (°С) -28 -26
Как показано в Таблице 4, эксплуатационные характеристики образца C5 улучшены по сравнению с образцом С4. Однако эксплуатационные характеристики образца C5 все еще не сопоставимы с образцом сравнение Cр1. По этой причине делается вывод о том, что те же эксплуатационные характеристики модифицированного СБС битума не достигаются добавлением ПФУ и СБС к битуму.
С учетом данных неудовлетворительных результатов заявитель предпринял попытку получить проэкструдированное соединение (CMP), состоящее из смеси трех продуктов:
А) каучуковой крошки ПФУ 1 в весовом процентном соотношении 37,5%
Б) радиального СБС в весовом процентном соотношении 37,5%
Б) смазочного масла в весовом процентном соотношении 25%.
Далее был получен образец битума (C6), модифицированный проэкструдированным соединением (CMP). Образец (6) включает в себя 85 долей битума и 20 долей проэкструдированного соединения (CMP). 20 долей проэкструдированного соединения (ХМП) состоят из 7,5 долей ПФУ 1, 7,5 долей радиального СБС и 5 долей смазочного агента.
В таблице 5 сравниваются образец сравнения (Cp1) (битум, модифицированный с СБС и смазочным маслом), образец (С5) (битум, модифицированный каучуковой крошкой, СБС и смазочным маслом, добавляемым отдельно) и образец (C6) (битум, модифицированный проэкструдированным соединением ХМП).
Таблица 5
ОБРАЗЕЦ Cp1 С5 C6
БИТУМ 160/220 85 85 85
ПФУ 1 7,5 7,5
Радиальный СБС 15 7,5 7,5
Смазочное масло 5 5 5
Результаты анализов
Вязкость при 180°С (мПа⋅с) 3500 3300 3100
Кольцо-шар (°С) 105 97 116
Проник. Способность при 25°С (дмм) 46 65 48
Гибкость на холоду (°С) -28 -26 -30
Как показано в Таблице 5, эксплуатационные характеристики образца (C6) являются весьма примечательными. Характеристики, продемонстрированные образцом (C6), гораздо лучше, чем в случае образца (C5), и сопоставимы, либо даже лучше, чем в случае образца сравнения (Cр1). Следовательно, в случае образца (C6) становится возможным достичь цели настоящего изобретения, а именно заменить СБС, применяемый для модификации битумов, на недорогой продукт с теми же эксплуатационными характеристиками, как в случае СБС с тем же содержанием.
Значительная разница в физических свойствах между образцами С5 и С6 обусловлена иной процедурой подготовки модифицированного битума: в случае образца С5 активные элементы вводятся по отдельности (ПФУ 1 и СБС) без какой-либо предварительной обработки, тогда как в случае образца C6 те же активные элементы (ПФУ 1 и СБС) и подвергались компаундированию и экструзии до непосредственного введения.
Физические характеристики образца C6, безусловно, лучше, чем в случае C5: гибкость на холоду ниже на 4°С, температура в тесте Кольцо-Шар выше на 19°С, а проникающая способность ниже на 17°C; это является как раз тем, что обычно желательно при модификации битумов.
Ниже следует обсуждение полученных результатов.
В образце C5, в случае когда каучуковая крошка ПФУ смешивается непосредственно с битумом, несмотря на порошкообразное состояние, твердый ПФУ характеризуется довольно разнящейся плотностью, в отличие от жидкообразного битума, нагретого до 160-190°С. Гомогенизация указанной смеси требует особой геометрической конфигурации смесителей, используемых для смешивания битума с тем, чтобы обеспечить включение твердого (ПФУ) в составе битумной жидкости без какой-либо гарантии правильности эффективного диспергирования ПФУ, что влияет на конечный результат в виде желаемых свойств.
С практической точки зрения, ПФУ выступает в качестве инертного наполнителя, но будучи наделенным хорошей характеристической упругостью, придает определенную эластичность битуму, который, определенно, не сравним с СБС, заменяемым в том же количестве. Более того, гранулы ПФУ обволакиваются битумными компонентами, которые характеризуются рознящимися параметрами растворимости, не сравнимыми с ПФУ. По этой причине, не образуется достаточной прочности когезионного взаимодействия и, следовательно, образуются прерывания сплошности фазы.
Когда СБС примешивается непосредственно в горячем битуме, СБС растворяется. Тем не менее, при низких температурах имеет место фазовое разделение и битум встраивается в трехмерную сетку из блок-сополимера СБС. Полистирольный блок не растворим в битуме и действует как соединительный элемент между различными молекулами СБС, способствуя формированию трехмерной структуры, а именно полимерный сетки, которая придает эластичность и стойкость модифицированному битуму. Данный процесс представляет собой примерно то же самое явление, которое имеет место в бетоне, используемом для заливки пола: если металлический каркас такой, как, например, сетка, не был вставлен внутрь, то полы будут непрочными и легко разбиваемыми.
Напротив, путем компаундирования СБС с ПФУ низкой размерности (менее 400 мкм) (пластификацирующее смазочное масло является вспомогательной добавкой для экструзии), образуется плотный контакт между СБС и ПФУ, поскольку совместимы их параметры растворимости. ПФУ, в основном, состоит из ненасыщенных полимерных цепей и стирольных групп, которые вполне совместимы и подвержены смачиванию со стороны СБС, полимера со схожим олефиновым типом ненасыщенности и стирольными группами. Таким образом, устанавливающееся когезионное связывание между СБС и твердыми гранулами ПФУ является достаточно прочным и увеличивается с уменьшением размера гранул, с последующим возрастанием удельной поверхности, доступной для взаимодействия, причем в данном случае достигается максимальная дисперсионная активность твердого ПФУ в полимерной матрице СБС.
Это явление представляет собой принцип, на котором основываются принципы действия ТВП (Термопластичные динамически Вулканизированные Полимеры) эластомеров, которые в отличие от жесткоцепных полимеров, таких как Полипропилен, делают возможным получение высокоэффективных каучуков.
Если вулканизированные частицы СКЭП с микрометрическими и субмикрометрическими размерами включаются в ПП, СКЭП характеризуется параметром растворимости, близким к полипропилену, потому твердая частица вулканизированного СКЭП смачивается и присоединяется к ПП, который представляет собой жесткий продукт, и уже из данного сочетания получается эластомер, подходящий для самых разнообразных и актуальных практических применений.
Принимая во внимание вышеизложенное, соединение ПФУ и СБС будет сочетаться при гомогенизации с битумом, но после охлаждения его трехмерная сетка, сформированная из СБС и твердого ПФУ, будет включать в себя битумную фазу при сохранении ее упругой структуры с физическими характеристиками, описываемыми в настоящем изобретение. В области полимеров данное явление известно как ВПС (Взаимопроникающие Полимерные Сетки) и, при связывании с явлением, описываемым в технологии ТВП, способствует объяснению различий в эксплуатационных характеристиках между образцами C5 и C6 согласно изобретению.
Процесс получения соединения согласно изобретению включает следующие стадии: измельчение вулканизированного каучука до получения вулканизированной каучуковой крошки с гранулометрическим показателем меньше 0,4 мм; смешивание вулканизированной каучуковой крошки, СБС и смазочного материала в экструдере, где весовое процентное содержание смазочного материала составляет от 1% до 50% по отношению к весу смеси, а вулканизированной каучуковой крошки в весовых процентах 70-100% по отношению к весу СБС.
Экструзия соединением, содержащего указанную вулканизированную резиновую крошку, СБС и смазочный материал соединение.
Предпочтительно:
- гранулометрический состав вулканизированной каучуковой крошки составляет от 0,09 и 0,32 мм;
- каучуковая крошка получается из переработанных шин с истекшим сроком годности (ПФУ);
- весовое процентное содержание СБС равно весовому процентному содержанию вулканизированной каучуковой крошки;
- СБС, предпочтительно, представлен радиальным типом, но также может быть линейным, либо в виде смеси радиального СБС и линейного СБС;
- смазочный материал по весовому процентному содержанию присутствует в количестве 20-30% по отношению к общему весу соединения;
- смазочный материал представлен минеральным маслом;
- как каучуковая крошка, так и СБС по весовому процентному содержанию представлены в объеме от 35% до 42% по отношению к общей массе соединения;
- экструзия проводится при температуре между 160-200°С.
Соединение, получаемое на выходе из экструдера, разрезается на фишки любого размера. Указанные фишки из проэкструдированного соединения используются при модифицировании битумов. Битум модифицируют добавлением проэкструдированного соединения в весовом процентном соотношении между 5% и 30% по отношению к общему весу модифицированного битума. Указанный битум, модифицированный проэкструдированным соединением, обладает эксплуатационными характеристиками, схожими с модифицированными СБС битумами, с равным проэкструдированному соединению количеством СБС, но стоимость проэкструдированного соединения является значительно более низкой, чем в случае СБС.

Claims (13)

1. Способ получения соединения для внедрения модифицированного битума в асфальты, включающий следующие стадии:
- измельчение вулканизированного каучука с получением вулканизированной каучуковой крошки с гранулометрическим показателем меньше 0,4 мм;
- смешение вулканизированной каучуковой крошки, СБС и смазочного материала в экструдере, где весовое процентное содержание смазочного материала составляет от 1% до 50% по отношению к весу смеси, а вулканизированной каучуковой крошки в весовом процентном соотношении, равном весовому процентному соотношению СБС;
- экструзия с получением экструдированного соединения, содержащего указанную вулканизированную каучуковую крошку, СБС и смазочное соединение, где экструзия имеет место при значении температуры в интервале между 160 и 200°С.
2. Способ по п. 1, отличающийся тем, что гранулометрический показатель вулканизированной каучуковой крошки составляет от 0,09 и 0,32 мм.
3. Способ по п. 1, отличающийся тем, что каучуковую крошку получают из переработанных шин с истекшим сроком годности (ПФУ).
4. Способ по п. 1, отличающийся тем, что СБС представляет собой полимер радиального типа.
5. Способ по п. 1, отличающийся тем, что СБС представляет собой полимер линейного типа.
6. Способ по п. 1, отличающийся тем, что СБС представляет собой смесь радиального СБС и линейного СБС.
7. Способ по п. 1, отличающийся тем, что весовое процентное содержание смазочного материала составляет между 20-30% по отношению к общему весу соединения.
8. Способ по п. 1, отличающийся тем, что смазывающий материал представляет собой минеральное масло.
9. Способ по п. 1, отличающийся тем, что весовое процентное содержание как каучуковой крошки, так и СБС составляет от 35% до 42% по отношению к общему весу соединения.
10. Способ модификации битума для производства асфальтов, где способ предусматривает добавление экструдированного соединения, получаемого с помощью способа по п. 1, где экструдированное соединение добавляют к битуму в весовом процентном соотношении между 5 и 30% по отношению к общему весу модифицированного битума.
RU2014122330A 2011-11-03 2012-10-24 Соединение для внедрения модифицированного битума в изготовление асфальтов RU2607737C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT000150A ITAN20110150A1 (it) 2011-11-03 2011-11-03 Bitume modificato e compound.
ITAN2011A000150 2011-11-03
PCT/EP2012/071087 WO2013064408A1 (en) 2011-11-03 2012-10-24 A compound for realization of modified bitumen for asphalts

Publications (2)

Publication Number Publication Date
RU2014122330A RU2014122330A (ru) 2015-12-10
RU2607737C2 true RU2607737C2 (ru) 2017-01-10

Family

ID=45034025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014122330A RU2607737C2 (ru) 2011-11-03 2012-10-24 Соединение для внедрения модифицированного битума в изготовление асфальтов

Country Status (24)

Country Link
US (1) US9487633B2 (ru)
EP (1) EP2773703B8 (ru)
JP (1) JP6119760B2 (ru)
KR (1) KR101951977B1 (ru)
CN (1) CN103930491B (ru)
AU (1) AU2012331323B2 (ru)
BR (1) BR112014010604B1 (ru)
CA (1) CA2853866C (ru)
DK (1) DK2773703T3 (ru)
ES (1) ES2553032T3 (ru)
HK (1) HK1201867A1 (ru)
HR (1) HRP20151247T1 (ru)
HU (1) HUE025992T2 (ru)
IN (1) IN2014MN01064A (ru)
IT (1) ITAN20110150A1 (ru)
MX (1) MX2014005232A (ru)
PL (1) PL2773703T3 (ru)
PT (1) PT2773703E (ru)
RS (1) RS54403B1 (ru)
RU (1) RU2607737C2 (ru)
SI (1) SI2773703T1 (ru)
SM (1) SMT201500274B (ru)
UA (1) UA111094C2 (ru)
WO (1) WO2013064408A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703205C1 (ru) * 2019-06-14 2019-10-15 Сергей Анатольевич Комаров Способ получения модифицированного битумного вяжущего
RU2717068C1 (ru) * 2019-04-19 2020-03-17 Сергей Анатольевич Комаров Способ получения модифицирующей композиции для асфальтобетонных смесей

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195613A1 (en) * 2014-06-16 2015-12-23 Ingevity South Carolina, Llc Composite polymer materials for modification of adhesive compositions and associated methods of manufacture
EP3172280B1 (en) * 2014-07-23 2018-06-13 Tecnofilm S.p.A. Self-adhesive bituminous sheath for building and bitumen modifier for self-adhesive bituminous sheath
BR112017011973A2 (pt) * 2015-02-26 2017-12-26 Du Pont ?solução de polímero, composição de asfalto, método para a preparação de um asfalto e pavimento rodoviário ou chapa de cobertura?
US20170297287A1 (en) * 2016-04-19 2017-10-19 Eefoam Materials Co., Ltd. Production method of glueless pasted integrally modeling shoe sole
RU2712687C1 (ru) * 2019-04-01 2020-01-30 Сергей Анатольевич Комаров Модифицирующая композиция для асфальтобетонных смесей
CN110079107A (zh) * 2019-04-29 2019-08-02 湖北卓宝科技有限公司 一种高活性橡胶改性沥青预处理工艺
RU2730857C1 (ru) 2020-04-20 2020-08-26 Андрей Леонидович Воробьев Низкотемпературный способ изготовления модифицированной резиновой крошки
KR102242826B1 (ko) * 2020-12-03 2021-04-22 주식회사 포이닉스 습식형 고성능 개질 아스팔트 바인더를 이용한 표층용 아스팔트 조성물
CN115537035A (zh) * 2022-10-18 2022-12-30 四川省交通建设集团股份有限公司 一种复合改性沥青及其制备方法
NL2034086B1 (en) 2023-02-03 2024-08-23 Atlantis Rubber Powders B V A method for the modification of bitumen
CN116790127B (zh) * 2023-06-16 2024-07-26 上海群康沥青科技股份有限公司 一种环保降噪超薄罩面用复配岩沥青胶结料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314525A1 (en) * 2001-11-19 2003-05-28 R & D Technology, Inc. Elastomer reclaiming composition and method
US6818687B2 (en) * 2003-03-18 2004-11-16 G. Mohammed Memon Modified asphalt with carrier and activator material
RU2258722C1 (ru) * 2004-05-21 2005-08-20 Общество с ограниченной ответственностью "Научно-производственное объединение "Космос" Битумно-полимерная мастика и способ ее получения
EP2055745A1 (en) * 2007-10-31 2009-05-06 Repsol YPF, S.A. Bitumen modified with crumb rubber stable to storage
WO2010025212A1 (en) * 2008-08-29 2010-03-04 Bailey William R Rubberized asphalt pellets

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607383B2 (ja) * 1988-08-11 1997-05-07 昭和シェル石油株式会社 アスフアルト系振動減衰材料
JPH0313603A (ja) * 1989-06-12 1991-01-22 Bridgestone Corp アスファルト舗装組成物
GB9227035D0 (en) * 1992-12-29 1993-02-24 Univ Toronto Innovation Found Treatment of rubber
US5510419A (en) * 1994-09-16 1996-04-23 National Rubber Technology Inc. Polymer-modified rubber composition
EP0961812A1 (en) * 1997-02-18 1999-12-08 Polyphalt Inc. Polymer stabilized bitumen granulate
AU7327898A (en) * 1997-05-01 1998-11-27 Nri Technology Inc. Thermoplastic elastomer compositions
EP1196511B1 (en) * 1998-08-27 2004-01-07 KRATON Polymers Research B.V. High peel strength high holding power hot melt disposables adhesive composition
US20030212168A1 (en) * 1999-02-11 2003-11-13 White Donald H. Petroleum asphalts modified by liquefied biomass additives
JP3413390B2 (ja) * 2000-04-21 2003-06-03 南己 伊藤 アスファルト用改質材およびこれを含むアスファルト組成物
US20070264495A1 (en) * 2004-03-29 2007-11-15 Emiliano Resmini Thermoplastic Elastomeric Material Comprising a Vulcanized Rubber in a Subdivided Form
KR100827070B1 (ko) * 2004-07-30 2008-05-02 삼성전자주식회사 라이센스 데이터 관리 장치 및 그 방법
JP4366309B2 (ja) * 2004-12-21 2009-11-18 新日本石油株式会社 アスファルト改質材、それを含むアスファルト混合物およびその製造方法
BRPI0700089B1 (pt) * 2007-01-11 2018-02-06 Alpargatas S.A Composição polimérica, vulcanizado espumado similar a borracha microporoso e solado de calçado espumado similar a borracha microporoso
KR100862057B1 (ko) * 2007-10-04 2008-10-09 금호석유화학 주식회사 용융 속도가 향상된 아스팔트 개질제 조성물 및 이를이용한 개질 아스팔트
JP2011518244A (ja) * 2008-04-17 2011-06-23 クレイトン・ポリマーズ・ユー・エス・エル・エル・シー 路盤アスファルト舗装用途において用いるためのブロックコポリマーおよびポリマー改質瀝青バインダ組成物
WO2011074003A2 (en) * 2009-12-14 2011-06-23 Bharat Petroleum Corporation Ltd. Crumb rubber modified bitumen (crmb) compositions and process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314525A1 (en) * 2001-11-19 2003-05-28 R & D Technology, Inc. Elastomer reclaiming composition and method
US6818687B2 (en) * 2003-03-18 2004-11-16 G. Mohammed Memon Modified asphalt with carrier and activator material
RU2258722C1 (ru) * 2004-05-21 2005-08-20 Общество с ограниченной ответственностью "Научно-производственное объединение "Космос" Битумно-полимерная мастика и способ ее получения
EP2055745A1 (en) * 2007-10-31 2009-05-06 Repsol YPF, S.A. Bitumen modified with crumb rubber stable to storage
WO2010025212A1 (en) * 2008-08-29 2010-03-04 Bailey William R Rubberized asphalt pellets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717068C1 (ru) * 2019-04-19 2020-03-17 Сергей Анатольевич Комаров Способ получения модифицирующей композиции для асфальтобетонных смесей
RU2703205C1 (ru) * 2019-06-14 2019-10-15 Сергей Анатольевич Комаров Способ получения модифицированного битумного вяжущего

Also Published As

Publication number Publication date
HK1201867A1 (zh) 2015-09-11
WO2013064408A1 (en) 2013-05-10
KR20140088586A (ko) 2014-07-10
IN2014MN01064A (ru) 2015-05-01
CA2853866C (en) 2020-04-14
HRP20151247T1 (hr) 2015-12-18
MX2014005232A (es) 2014-08-22
US9487633B2 (en) 2016-11-08
AU2012331323A1 (en) 2014-06-05
RS54403B1 (en) 2016-04-28
US20150038621A1 (en) 2015-02-05
JP6119760B2 (ja) 2017-04-26
PT2773703E (pt) 2015-12-01
BR112014010604A2 (pt) 2017-05-02
SMT201500274B (it) 2016-01-08
CA2853866A1 (en) 2013-05-10
JP2014532790A (ja) 2014-12-08
EP2773703B1 (en) 2015-08-19
EP2773703A1 (en) 2014-09-10
DK2773703T3 (en) 2015-11-16
CN103930491B (zh) 2017-11-10
KR101951977B1 (ko) 2019-02-25
PL2773703T3 (pl) 2016-01-29
ITAN20110150A1 (it) 2013-05-04
UA111094C2 (uk) 2016-03-25
RU2014122330A (ru) 2015-12-10
HUE025992T2 (en) 2016-05-30
ES2553032T3 (es) 2015-12-03
CN103930491A (zh) 2014-07-16
BR112014010604B1 (pt) 2020-04-07
SI2773703T1 (sl) 2015-12-31
EP2773703B8 (en) 2015-11-25
AU2012331323B2 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
RU2607737C2 (ru) Соединение для внедрения модифицированного битума в изготовление асфальтов
Sienkiewicz et al. Development of methods improving storage stability of bitumen modified with ground tire rubber: A review
JP4988182B2 (ja) 自動車の密閉システム用コーナー造型組成物
CN103562286B (zh) 自由流动的颗粒状合成生料弹性体组合物及其制备方法
Sulyman et al. Asphalt pavement material improvement: a review
CN101495555B (zh) 制品的制备方法
WO2016160083A1 (en) Method of making thermoplastic vulcanizates and thermoplastic vulcanizates made therefrom
US6262175B1 (en) Thermoplastic elastomer composition
KR20040082370A (ko) 열가소성 엘라스토머 및 그의 제조방법
US10240008B2 (en) Thermoplastic vulcanizates and method of making the same
TWI602869B (zh) 含有寬分子量分佈的聚丙烯之熱塑性硫化橡膠
CN101218291A (zh) 过氧化物硫化的热塑性硫化橡胶
KR100986718B1 (ko) 폐이피디엠분말을 이용한 개질 아스팔트의 제조방법
US9828505B2 (en) Polymer asphalt-rubber
JP3308484B2 (ja) ゴム組成物
KR102662561B1 (ko) 분산성이 우수한 gtr 건식 아스팔트 개질제 조성물과 그 제조방법 및 이를 이용한 개질 아스팔트 혼합물
KR20130013171A (ko) 재생 폴리프로필렌을 사용한 고무복합체 방수시트
TW202336125A (zh) 基於含有彈性體之粉末或粒化材料的可交聯組成物及可由其獲得的彈性體混合物和物件
CN101205398A (zh) 一种改性复合橡胶沥青胶结料