RU2606683C1 - Способ комбинированной химико-термической обработки конструкционной теплопрочной стали - Google Patents

Способ комбинированной химико-термической обработки конструкционной теплопрочной стали Download PDF

Info

Publication number
RU2606683C1
RU2606683C1 RU2015132619A RU2015132619A RU2606683C1 RU 2606683 C1 RU2606683 C1 RU 2606683C1 RU 2015132619 A RU2015132619 A RU 2015132619A RU 2015132619 A RU2015132619 A RU 2015132619A RU 2606683 C1 RU2606683 C1 RU 2606683C1
Authority
RU
Russia
Prior art keywords
temperature
cooling
tempering
air
hardening
Prior art date
Application number
RU2015132619A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Валерий Игоревич Громов
Нина Алексеевна Курпякова
Алла Андреевна Верещагина
Антон Валерьевич Дорошенко
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2015132619A priority Critical patent/RU2606683C1/ru
Application granted granted Critical
Publication of RU2606683C1 publication Critical patent/RU2606683C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Предлагаемое изобретение относится к области металлургии, в частности к способу комбинированной химико-термической обработки деталей из теплопрочной стали, предназначенных для изготовления высоконагруженных зубчатых колес редукторов авиационной техники, работоспособных при нагреве в зоне контакта до 500°С. Проводят предварительную термическую обработку путем нормализации при температуре (950±10)°C с охлаждением на воздухе, высокого отпуска при температуре (650±10)°C с выдержкой 3 часа, охлаждения на воздухе, закалки в масле при температуре (960±10)°С, повторного высокого отпуска при температуре (660±10)°C с выдержкой 3 часа и охлаждения на воздухе. Затем проводят вакуумную цементацию при температуре 940°С и упрочняющую термическую обработку путем закалки, промежуточных отпусков, обработки холодом и повторного отпуска. После упрочняющей термической обработки с поверхности цементованного слоя удаляют насыщенную карбидную зону методом шлифования на глубину 0,2-0,25 мм, после чего проводится газовое азотирование при (480-500)°С. Обеспечивается существенное повышение контактной долговечности (основная характеристика для тяжелонагруженных зубчатых колес), усталостной прочности и износостойкости. 1 ил., 1 табл., 1 пр.

Description

Предлагаемое изобретение относится к области металлургии, в частности к способам комбинированной химико-термической обработки деталей из конструкционных теплопрочных сталей, предназначенных для изготовления высоконагруженных зубчатых колес редукторов авиационной техники, работоспособных при нагреве в зоне контакта до 500°С.
Из уровня техники известны различные комбинированные способы химико-термической обработки. Так, например, в патенте RU 2052536 C1, С23С 8/34, опубл. 20.01.1996, предлагается комбинированное диффузионное насыщение поверхности изделия, включающее цементацию стальных изделий в насыщающей среде при температурах выше АС3(920)°С, дискретное подстуживание до 600-700°C с последующим разогревом за счет аккумулированного тепла, обеспечивающего диффузию углерода от поверхности вглубь. После дискретного подстуживания поверхности нагрев изделий под закалку осуществляют с одновременным, начиная от 600°С, насыщением поверхности азотом (азотирование) или азотом и углеродом (карбонитрация), которое продолжается в течение 30-50 минут после достижения температуры закалки, затем производится закалка и низкий отпуск. Этот способ позволяет повысить твердость (до 700HV) и износостойкость диффузионного слоя.
Недостаток этого способа заключается в том, что:
а) по законам диффузии насыщение поверхности азотом за 30-50 мин при данной температуре происходит на глубину не более 0,015 мм, соответственно, износостойкость повышается при условии, что изделие после термической обработки не подвергается шлифованию.
б) не обеспечивается теплопрочность диффузионного слоя: при повышении температуры в зоне контакта до 450-500°С будет наблюдаться резкое снижение твердости диффузионного слоя до 500HV, контактной долговечности и усталостной прочности.
В заявке WO 2011030827 A1, C21D 1/06, опубл. 17.03.2011 «Технология комбинированной химико-термической обработки» процесс включает в себя науглероживание стали в цементационной атмосфере при температуре (900-950)°С, затем карбонитрацию в атмосфере, имеющей потенциал азота от 0,2 до 0,6% при температуре (800-900)°С, затем производится закалка, отпуск при температуре 350°С, что способствует повышению поверхностной твердости.
Недостаток этого способа заключается в том, что:
а) после цементации при температуре (900-950)°С приповерхностная часть диффузионного слоя имеет углеродный потенциал, приблизительно равный потенциалу насыщающей атмосферы, используемой при карбонитрации, что препятствует диффузии азота и не позволяет значительно увеличить твердость поверхности и достигнуть высоких показателей эксплуатационных характеристик (контактной долговечности и износостойкости).
б) данный процесс обеспечивает в зоне контакта твердость поверхности 58-60 HRC только до 350°С, при повышении температуры в зоне контакта до 500°С, твердость снизится до 54 HRC, что приведет к снижению контактной и усталостной прочности.
Наиболее близким аналогом предложенного изобретения является «Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей», представленный в заявке 2013118075 А, С23С 8/38, опубл. 27.10.2014 г. Способ включает вакуумную цементацию деталей, упрочняющую термическую обработку и ионно-плазменное азотирование. Перед вакуумной цементацией проводят предварительную термическую обработку, включающую нормализацию при температуре 950°С, высокий отпуск при температуре 670°С, закалку от температуры 1010°С, высокий отпуск при температуре не менее 570°С и пластическую деформацию методом осадки при температуре не менее 700°С со степенью деформации 50…80%. Вакуумную цементацию проводят с чередованием циклов насыщения и диффузионной выдержки. Количество циклов зависит от необходимой толщины диффузионного слоя, а соотношение времен насыщения и выдержки составляет от 0,1 до 0,2. После цементации проводят высокий отпуск, закалку в масло, обработку холодом при температуре -70°С и трехкратный отпуск при 510°С. Затем осуществляют ионно-плазменное азотирование в диапазоне температур 480-500°С в течение не менее 10 часов. При этом наблюдается повышение износостойкости приповерхностных слоев.
Недостаток этого способа заключается в том, что:
а) карбидообразующие элементы (Cr, Mo, W, V), которые вводятся в сталь типа ВКС-10 (ВКС10У-Ш) для обеспечения теплопрочности цементованного слоя, способствуют снижению предела растворимости углерода в аустените, что приводит к формированию насыщенной карбидной зоны с поверхности, затрудняющей диффузию углерода вглубь. В рассматриваемом аналоге вакуумная цементация стали ВКС10У-Ш формирует в приповерхностной части диффузионного слоя высокоуглеродистую зону с плотной карбидной фазой. Азотирование такой поверхности не эффективно, так как углеродистый слой препятствует диффузии азота и образованию эффективной глубины упрочнения, что отрицательно сказывается на долговечности тяжелонагруженных деталей.
Микроструктура диффузионного слоя стали ВКС-10У-Ш после проведения химико-термической обработки без шлифования приведена на фиг. 1а, а со съемом приповерхностной части диффузионного слоя на 0,2 мм приведена на фиг. 1б.
Технической задачей предлагаемого изобретения является создание способа комбинированной химико-термической обработки конструкционной теплопрочной стали, легированной активными карбидообразующими элементами (Cr, Mo, W, V).
Техническим результатом заявленного способа комбинированной химико-термической обработки конструкционной теплопрочной стали является существенное повышение контактной долговечности (основная характеристика для тяжелонагруженных зубчатых колес), усталостной прочности и износостойкости.
Для достижения поставленного технического результата предложен способ комбинированной химико-термической обработки деталей из теплопрочной стали, включающий предварительную термическую обработку по режиму: нормализация при температуре (950±10)°C с охлаждением на воздухе, высокий отпуск при температуре (650±10)°C с выдержкой 3 часа, охлаждение на воздухе, закалка в масле при температуре (960±10)°С, повторный высокий отпуск при температуре (660±10)°C с выдержкой 3 часа, охлаждение на воздухе, затем проводят вакуумную цементацию при температуре 940°С и упрочняющую термическую обработку по режиму: закалка, промежуточные отпуски, обработка холодом, повторный отпуск, причем после упрочняющей термической обработки удаляется с поверхности цементованного слоя насыщенная карбидная зона методом шлифования на глубину 0,2-0,25 мм, после чего проводится газовое азотирование при (480-500)°С.
Установлено, что в процессе отпусков дисперсионного твердения (не менее 520°С, 1 час, 3 раза) из остаточного аустенита выделяются спецкарбиды (Cr7C3, М6С), а из мартенсита - легированный цементит (М3С). В связи с этим для получения высокой теплопрочности промежуточные отпуски проводятся непосредственно после закалки, когда в слое содержится большое количество остаточного аустенита (до 60%), затем проводится обработка холодом и повторный отпуск.
Показано, что в поверхностном слое теплопрочных сталей концентрация углерода составляет ≥1,6%. При дополнительном азотировании высокоуглеродистый слой препятствует диффузии азота и формированию слоя азотистого мартенсита и способствует формированию нитридов по границам зерен. Для обеспечения диффузии азота необходимо удалить с поверхности цементованного слоя насыщенную карбидную зону методом шлифования на глубину (0,2-0,25) мм, что приводит к снижению концентрации углерода до 0,9%. Затем проводится газовое азотирование с регулируемым азотным потенциалом, обеспечивающим заданный фазовый состав слоя.
При этом на поверхности формируется диффузионный слой, состоящий из азотистого мартенсита, карбида (Cr7C3; Мо2С), карбонитрида Nb(CN) и высокодисперсного нитрида NbN.
Наличие наноструктурированного азотированного слоя на прочной углеродистой подложке обеспечивает высокую контактную долговечность, износостойкость и усталостную прочность.
Пример осуществления. В опытно-промышленных условиях была выплавлена плавка стали ВКС10У-Ш методом электрошлакового переплава. Механические свойства (по ГОСТ 9013, ГОСТ 1497) определялись на стандартных образцах после различных режимов комбинированной химико-термической обработки, приведенных в таблице 1. Свойства конструкционной теплопрочной стали после обработки по различным режимам комбинированной химико-термической обработки в сравнении с прототипом по оптимальному режиму приведены в таблице 1.
Figure 00000001
Figure 00000002
Таким образом, как видно из таблицы 1, обработка теплопрочных сталей по предлагаемому способу (пункт 1, пункт 2), по сравнению с известным (пункт 3), увеличивает твердость до 60-60,5 HRC (пункт 1) и до 61-61,5 HRC (пункт 2) вместо 58-59 HRC (пункт 3), износостойкость ~ в 2 раза и обеспечивает наиболее высокие значения контактной долговечности и усталостной прочности.

Claims (1)

  1. Способ комбинированной химико-термической обработки деталей из теплопрочной стали, включающий предварительную термическую обработку путем нормализации при температуре (950±10)°C с охлаждением на воздухе, высокого отпуска при температуре (650±10)°C с выдержкой 3 часа, охлаждения на воздухе, закалки в масле при температуре (960±10)°С, повторного высокого отпуска при температуре (660±10)°C с выдержкой 3 часа и охлаждения на воздухе, проведение вакуумной цементации при температуре 940°С и упрочняющей термической обработки путем закалки, промежуточных отпусков, обработки холодом и повторного отпуска, отличающийся тем, что после упрочняющей термической обработки удаляют с поверхности цементованного слоя насыщенную карбидную зону путем шлифования на глубину 0,2-0,25 мм, после чего проводят газовое азотирование при (480-500)°С.
RU2015132619A 2015-08-05 2015-08-05 Способ комбинированной химико-термической обработки конструкционной теплопрочной стали RU2606683C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015132619A RU2606683C1 (ru) 2015-08-05 2015-08-05 Способ комбинированной химико-термической обработки конструкционной теплопрочной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015132619A RU2606683C1 (ru) 2015-08-05 2015-08-05 Способ комбинированной химико-термической обработки конструкционной теплопрочной стали

Publications (1)

Publication Number Publication Date
RU2606683C1 true RU2606683C1 (ru) 2017-01-10

Family

ID=58452523

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015132619A RU2606683C1 (ru) 2015-08-05 2015-08-05 Способ комбинированной химико-термической обработки конструкционной теплопрочной стали

Country Status (1)

Country Link
RU (1) RU2606683C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757362C1 (ru) * 2021-03-11 2021-10-14 федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский государственный авиационный технический университет» Способ комбинированной обработки изделия из быстрорежущей стали

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191599A (en) * 1978-09-13 1980-03-04 Ford Motor Company Method of heat treating high carbon alloy steel parts to develop surface compressive residual stresses
SU840196A1 (ru) * 1979-05-31 1981-06-26 Предприятие П/Я М-5671 Способ нитроцементации деталей изТЕплОпРОчНыХ СТАлЕй
RU2358019C1 (ru) * 2007-10-23 2009-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ химико-термической обработки деталей из конструкционных сталей
US20130180626A1 (en) * 2010-10-27 2013-07-18 Nippon Steel & Sumitomo Metal Corporation Steel for machine structural purposes for surface hardening use and steel parts for machine structural purposes and method of production of same
RU2532777C1 (ru) * 2013-04-19 2014-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191599A (en) * 1978-09-13 1980-03-04 Ford Motor Company Method of heat treating high carbon alloy steel parts to develop surface compressive residual stresses
SU840196A1 (ru) * 1979-05-31 1981-06-26 Предприятие П/Я М-5671 Способ нитроцементации деталей изТЕплОпРОчНыХ СТАлЕй
RU2358019C1 (ru) * 2007-10-23 2009-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ химико-термической обработки деталей из конструкционных сталей
US20130180626A1 (en) * 2010-10-27 2013-07-18 Nippon Steel & Sumitomo Metal Corporation Steel for machine structural purposes for surface hardening use and steel parts for machine structural purposes and method of production of same
RU2532777C1 (ru) * 2013-04-19 2014-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Способ комбинированной химико-термической обработки деталей машин из теплостойких сталей

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757362C1 (ru) * 2021-03-11 2021-10-14 федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский государственный авиационный технический университет» Способ комбинированной обработки изделия из быстрорежущей стали

Similar Documents

Publication Publication Date Title
JP5958652B2 (ja) 面疲労強度に優れる軟窒化高周波焼入れ鋼部品
JP5994924B2 (ja) 高周波焼入れ部品の素形材及びその製造方法
JP4560141B2 (ja) 表面硬化用機械構造用鋼及び機械構造鋼部品
KR20060047713A (ko) 침탄 질화 담금질된 마텐자이트 스테인리스 스틸
JP5477111B2 (ja) 窒化高周波焼入れ用鋼及び窒化高周波焼入れ部品
JP2011032536A (ja) 焼入れ鉄鋼部材の複合熱処理方法及び焼入れ鉄鋼部材
CN111809137A (zh) 一种低碳高合金钢制轴承套圈的热加工方法
US8808470B2 (en) High-carbon chromium bearing steel and production method of the same
JP3787663B2 (ja) 転がり軸受の熱処理方法
JP5649884B2 (ja) 窒素化合物層を有する鉄鋼部材、及びその製造方法
JP6772499B2 (ja) 鋼部品及びその製造方法
JP2018141218A (ja) 部品およびその製造方法
RU2606683C1 (ru) Способ комбинированной химико-термической обработки конструкционной теплопрочной стали
CN109972077B (zh) 用于渗碳Ferrium钢的氮化工艺
JP6263874B2 (ja) 高Si浸炭用鋼の浸炭方法
JP2012207247A (ja) 浸炭部材、浸炭部材用鋼および浸炭部材の製造方法
CN108474448B (zh) 用于传动带的横向元件、传动带和用于制造这种横向元件的方法
JP6447064B2 (ja) 鋼部品
JP4193145B2 (ja) 歯面強度に優れた歯車の製造方法および歯面強度に優れた歯車
US20160305007A1 (en) Method of manufacturing ferrous metal component
JP6160054B2 (ja) 耐高面圧部品
JP7262376B2 (ja) 鉄鋼材料
JP6881496B2 (ja) 部品およびその製造方法
JP2018141217A (ja) 部品およびその製造方法
JP3705462B2 (ja) 歯面強度に優れた歯車の製造方法