RU2604844C2 - Способ изготовления полимерного открытопористого материала - Google Patents

Способ изготовления полимерного открытопористого материала Download PDF

Info

Publication number
RU2604844C2
RU2604844C2 RU2015106204/05A RU2015106204A RU2604844C2 RU 2604844 C2 RU2604844 C2 RU 2604844C2 RU 2015106204/05 A RU2015106204/05 A RU 2015106204/05A RU 2015106204 A RU2015106204 A RU 2015106204A RU 2604844 C2 RU2604844 C2 RU 2604844C2
Authority
RU
Russia
Prior art keywords
matrix
porous
polymer
formation
removal
Prior art date
Application number
RU2015106204/05A
Other languages
English (en)
Other versions
RU2015106204A (ru
Inventor
Виктор Викторович Маркелов
Максим Витальевич Кременчугский
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом"
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом", Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом"
Priority to RU2015106204/05A priority Critical patent/RU2604844C2/ru
Publication of RU2015106204A publication Critical patent/RU2015106204A/ru
Application granted granted Critical
Publication of RU2604844C2 publication Critical patent/RU2604844C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/52Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles soluble or fusible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/54Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles made of powdered or granular material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Изобретение относится к области получения изделий из полимерного открытопористого материала (поропласта). Детали из поропласта могут быть использованы как функциональные элементы, например фильтроэлементы фильтрующих устройств, матрицы-носители катализаторов, теплоизоляция. Детали из поропласта могут быть использованы как части конструкций, несущие силовую нагрузку. При изготовлении из термоустойчивых полимеров детали из поропласта могут эксплуатироваться при повышенной температуре, так как имеют высокие механические и термические характеристики. Заявляемый способ заключается в формировании пористой матрицы с системой пор заданной формы и размера, формирование второй матрицы заполнением пор первой матрицы, удаление первой матрицы, формирование полимерной фазы в порах второй матрицы, образовавшихся после удаления первой матрицы, упрочнение полимерной фазы, удаление второй матрицы. После удаления второй матрицы на упрочненную полимерную фазу может быть нанесено защитное покрытие из поли-пара-ксилилена. Формирование первой матрицы возможно с использованием оборудования, называемого 3D-принтер. В этом оборудовании реализован метод, также еще называемый методом объемной печати. Метод послойного наращивания позволяет формировать матрицу с морфологией пористости практически любого желаемого типа. Способ может быть применен и для термопластов и для реактопластов. Заявляемый способ позволяет изготовить полимерный открытопористый материал со следующими характеристиками поровой структуры: пористость 25-67%; размер пор ~0,5 мм; плотность (кажущаяся) 0,30-0,90 г/см3. Можно изготовить композитный пористый материал с матрицей из весьма термоустойчивого полиимида (температурный индекс 250-300°C) и покрытия из поли-пара-ксилилена, обеспечивающего материалу низкий уровень водопоглощения. 2 з.п. ф-лы, 2 ил., 2 пр.

Description

Изобретение относится к области получения изделий из полимерного открытопористого материала (далее - из поропласта). Детали из поропласта могут быть использованы как функциональные элементы, то есть выполняющие определенную функцию, например фильтроэлементы фильтрующих устройств, матрицы-носители катализаторов, теплоизоляция. Детали из поропласта могут быть использованы как части конструкций, несущие силовую нагрузку. При изготовлении из термоустойчивых полимеров детали из поропласта могут эксплуатироваться при повышенной температуре, так как имеют высокие механические и термические характеристики.
Известен способ получения пористых изделий из полимерного пористого материала (патент RU 2528842, В29С 47/00, C08J 9/00, опубл. 20.09.2014). Сущность изобретения заключается в приготовлении раствора термопласта в органическом растворителе, кристаллизации раствора, формовании заготовок из закристаллизованного раствора при температуре ниже температуры плавления растворителя, и удалении закристаллизованного растворителя. Перед формованием гранулы закристаллизованного раствора измельчают и отбирают нужную фракцию полученного порошка. Формование осуществляют методом экструдирования. Перед экструдированием возможно статическое прессование измельченного закристаллизованного раствора. Этап формования заготовок может заканчиваться их термообработкой. Удаление закристаллизованного растворителя из заготовок осуществляют вакуумно-сублимационной сушкой при температуре не выше 42°C. Способ позволяет изготовить деталь из полимерного ультрадисперсного пористого материала со следующими характеристиками поровой структуры открытого типа: пористость 95-98%; размер пор <10 мкм; кажущаяся плотность 0,02-0,30 г/см3; разноплотность (в объеме детали) ≤5%; прочность на сжатие (δ10)103-104 Н/м2; удельная поверхность >6·103 м2/кг.
Данный способ имеет ограничение, заключающееся в том, что невозможно изготовить изделия, имеющие кажущуюся плотность более 0,30 г/см3. Это связано с тем, что, например, полиметилметакрилат имеет монолитную плотность 1,19 г/см3. Порообразователь (расплавленный нафталин при 85°C) имеет плотность 0,98 г/см3. Для получения пористого материала, например, с кажущейся плотностью 0,6 г/см3, объемно-массовое соотношение между полимером и порообразователем должно быть таким, при котором кристаллы порообразователя оказываются «запечатаны» в массе полимера. Становится невозможным удалить порообразователь. Кроме этого, то обстоятельство, что в технологии поропласта используются термопластичные полимеры (например, полиметилметакрилат, полистирол), которые имеют невысокие термические свойства (полиметилметакрилат имеет теплостойкость по Вика 100-115°C, по Мартенсу 60-80°C), существенно ограничивает применимость поропласта.
Для ряда задач требуется пористый материал со сквозной пористостью из термоустойчивого полимера. Рабочая температура полимера должна составлять 180-250°C. Плотность пористого материала должна быть в интервале 0,6-0,8 г/см3.
Известен способ получения пористых изделий из полимерных дисперсий (патент RU 02062277, C08J 5/02, опубл. 20.06.1996). Сущность изобретения заключается в замораживании полимерной дисперсии с кристаллизующейся дисперсионной средой при (-2)-(-12)°C в течение 5-15 мин при постоянном перемешивании до получения пластичного полупродукта. Полученный полупродукт формуют. Осуществляют вторую стадию замораживания с последующим размораживанием полученного пористого изделия. Пористое полимерное изделие из полимерной дисперсии, в которой дисперсной фазой является сополимер бутадиена со стиролом с содержанием стирольных звеньев 30 мас. %, дисперсионная среда - вода с парафинатом калия (до 0,05 мас. %) имеет кажущуюся плотность - 0,358-0,445 г/см3 (358-445 кг/м3), твердость - 0,139-0,361 г/см2 ((1,39-3,61)·10-3 кг/см2).
Изделия, получаемые данным способом, имеют очень узкий интервал значений кажущейся плотности. Недостаточна также и термоустойчивость полимера. Технология не позволяет регулировать такие характеристики пористой среды как дисперсность поровой структуры, однородность пористости и разноплотность в объеме детали.
Наиболее близким к предлагаемому способу по технической сущности и достигаемым результатам является способ получения высокопористого полимерного материала (патент RU 2377335, C22C 1/08, C08J 9/26, опубл. 27.12.2009). Из гранул легкоплавкого, нерастворимого в воде органического вещества, или легко сублимирующих веществ, или водорастворимых органических веществ, или льда формуют пористую матрицу с системой взаимосвязанных открытых пор. Поры полностью заполняют текучей массой, не растворяющей матрицу. Текучая масса представляет собой электропроводную или неэлектропроводную смесь полимеров. Это может быть смесь порошка полимера с полимерным связующим. А также это может быть суспензия или раствор полимеров с водой или с органической жидкостью. Матрицу удаляют для формирования на ее месте системы пор определенной формы и размера, после удаления матрицы материал упрочняют. Способ обеспечивает возможность получения пор заданной формы и размера при сохранении прочностных свойств.
Недостатком известного способа (прототипа) является ограничение по кажущейся плотности получаемых изделий, о чем говорилось выше. Также недостатком прототипа является однообразие морфологических типов пористости, что обусловлено технологическими приемами (прессование гранул), которые использовались для формования удаляемой матрицы.
Задачей изобретения является увеличение диапазона технологически достижимой кажущейся плотности деталей, получаемых из полимерного пористого материала. Также ставится задача повышения термических характеристик деталей из полимерного пористого материала.
Технический результат, достигаемый при использовании заявляемого способа, заключается в следующем.
Детали, изготовленные заявляемым способом, могут иметь характеристики:
Пористость (сквозная), % 25-67
Размер пор, мм ~0,5
Плотность (кажущаяся), г/см3 0,30-0,90
Увеличено разнообразие морфологий пористости и повышены термические характеристики деталей из пористого полимерного материала.
Следует пояснить следующее. Для каждой характеристики дан некоторый интервал возможных значений. Этот интервал указывает не разброс (погрешность) значений, а технологически достижимую область. Это значит, что можно получать различные модификации поропласта с более конкретными характеристиками из этих областей. Верхняя граница интервала плотности (соответственно, нижняя для пористости) указана на основе предположения о достижимости такой плотности при сохранении открытой пористости.
Для решения указанной задачи и достижения технического результата предлагается способ изготовления полимерного открытопористого материала, включающий формирование пористой матрицы с системой пор заданной формы и размера, формирование второй матрицы заполнением пор первой матрицы, удаление первой матрицы, формирование полимерной фазы в порах второй матрицы, образовавшихся после удаления первой матрицы, упрочнение полимерной фазы, удаление второй матрицы. После удаления второй матрицы на упрочненную полимерную фазу может быть нанесено защитное покрытие из поли-пара-ксилилена. Формирование первой матрицы возможно с использованием оборудования, называемого 3D-принтер. В этом оборудовании реализован метод послойного наращивания, также еще называемый методом объемной печати. Метод позволяет формировать матрицу с морфологией пористости практически любого желаемого типа (фиг. 2, а, б).
Способ с некоторыми вариациями может быть применен и для термопластов и для реактопластов.
Заявляемый способ содержит совокупность признаков, которые позволили получить новое качество. Этим способом можно изготовить деталь из пористого материала с требуемыми характеристиками поровой структуры открытого типа из полимера: с регулируемой морфологией и дисперсностью поровой структуры, с высокой однородностью по размеру пор.
Формирование структуры пористого материала с помощью метода удаляемой матрицы позволяет использовать для получения открытопористых материалов полимеры с высокой термоустойчивостью. Получение открытопористых материалов из этих полимеров физико-химическими методами либо затруднительно, либо невозможно.
Формирование структуры пористого материала, проводимое в два этапа, позволяет преодолеть ограничение по увеличению кажущейся плотности деталей, получаемых из пористого полимерного материала. Матрица, сформированная на первом этапе, является моделью структуры пористого материала, которая будет получена в итоге. Матрица, формируемая на втором этапе, облекает эту модель и после удаления первой матрицы служит стенками формы, в которой «отливается» из полимера структура пористого материала.
Использование метода послойного наращивания для формирования первой матрицы позволяет получить морфологию пористости практически любого желаемого типа. Также значительно увеличивается диапазон возможных значений кажущейся плотности пористого полимерного материала.
На фиг. 1 условно изображена одна пора пористого материала и схематично представлена последовательность действий по ее преобразованию при формировании структуры пористого материала: а - формирование первой пористой матрицы; б - заполнение пор первой пористой матрицы текучей массой и упрочнение текучей массы (формирование второй пористой матрицы); в - удаление первой матрицы; г - заполнение полимерной фазой пор, образовавшихся на месте структурных элементов первой матрицы; д - удаление второй матрицы; е - сформированная структура полимерного пористого материала.
На фиг. 2 представлены примеры структур, полученных с помощью 3D-принтера методом послойного наращивания: а - додекаэдр; б - сложноструктурный додекаэдр.
Ниже следует описание технологической последовательности изготовления композитного открытопористого материала из термоустойчивых полимеров на примере системы сахар - нафталин - поли-пара-ксилилен - полиимид.
Особенностью заявляемого способа является то, что структура пористости материала формируется раньше самого материала. Формирование первой пористой матрицы (фиг. 1, а) проводится путем вибрационного уплотнения и последующего прессования гранул из сахара (сахароза), насыпанных в металлический стакан. Давление прессования должно быть достаточным для соединения гранул по точкам контактов (~0,5-1 МПа). Гранулы изготовлены путем диспергирования густого сахарного сиропа или расплавленного сахара в охлаждающую жидкость. Вместо гранул можно взять сахарный песок. Если используется метод послойного наращивания, картридж 3D-принтера заполняется высококонцентрированным сахарным сиропом и поддерживается при температуре, при которой сироп обладает вязкостью, достаточной для продавливания через фильеру печатающей головки 3D-принтера. Таким образом, получили модель структуры пористого материала - первую пористую матрицу (заготовку), состоящую из сахара.
Заполнение пор первой матрицы текучей жидкостью (фиг. 1, б), в качестве которой используется нафталин, проводится погружением заготовки в расплав нафталина. Для улучшения качества пропитки проводить эту операцию следует в вакуумируемой камере. После охлаждения заготовки ниже температуры плавления (80,3°C) нафталин в ней кристаллизуется. В итоге получили заготовку, структура которой теперь состоит из двух фаз: сахара и нафталина.
Как только нафталин кристаллизуется, можно приступать к удалению из заготовки фазы сахарозы (первой матрицы) (фиг. 1, в). Растворять матрицу из сахара лучше в горячей воде (но не более 50-60°C). После удаления сахарозы заготовку необходимо просушить от воды. Таким образом, преобразовали заготовку и получили форму для «отливки» полимерной фазы - вторую пористую матрицу, состоящую из нафталина.
Далее приступают к формированию полимерной фазы (фиг. 1, г). Возможны два варианта этого этапа и соответственно две разновидности материала, отличающиеся по свойствам.
Первый вариант. Если требуется пористый материал с высокой термоустойчивостью, поры второй матрицы заполняют бисмалеинимидной смолой (БМИ-связующее) с отвердителем. После отверждения смолы и отгонки нафталина (см. ниже) получили пористый материал с матрицей из весьма термоустойчивого полиимида (температурный индекс 250-300°C).
Для понижения уровня водопоглощения отвержденного БМИ-связующего, его можно покрыть защитной пленкой из поли-пара-ксилилена.
Второй вариант. Полимер поли-пара-ксилилен (ППК) относят к термоустойчивым полимерам (температурный индекс 95°C). Чтобы получить полимерную матрицу, полностью состоящую из ППК, процесс осаждения ППК (см. ниже) на структурные элементы второй матрицы ведут до тех пор, пока поры полностью не заполнятся ППК. Полученный материал по термоустойчивости уступает материалу, полученному по первому варианту. Этот вариант привлекает меньшей трудоемкостью.
Чтобы внедрить ППК в поры второй матрицы, или, чтобы покрыть защитной пленкой из ППК пористый материал из полиимида, используют метод, который в научной литературе получил название газофазной полимеризации на поверхности. Метод газофазной полимеризации имеет особенность, состоящую в том, что газообразный мономер (пара-ксилилен) обладает большой проникающей способностью, вследствие чего сплошная полимерная пленка образуется одновременно на всей поверхности, включая и труднодоступные места (поры, щели, узкие зазоры, капилляры и др.). Благодаря этой особенности удается покрыть пленкой поли-пара-ксилилена внутренние поверхности практически любого открытопористого материала. Метод газофазной полимеризации позволяет получить на поверхности так называемое конформное покрытие, полностью повторяющее рельеф поверхности.
Для нанесения ППК на структурные элементы пористой матрицы заготовку (вторую матрицу из нафталина) помещают в рабочую камеру (камеру осаждения ППК) установки осаждения ППК. Процесс осаждения ППК ведут до тех пор, пока поры в заготовке полностью не заполнятся ППК. Если наносят защитное покрытие, то процесс осаждения ППК ведут в течение времени, необходимого для получения в матрице из полиимида заданной толщины покрытия (толщина 1-5 мкм). Параметры технологического режима процесса синтеза ППК (температура стенок камеры полимеризации - 20-25°C, а давление газообразного мономера составляет 5-8 Па) имели такие величины, чтобы нафталиновая матрица в процессе обработки сохранила свою форму и внутреннюю структуру.
Завершающей операцией техпроцесса является отгонка нафталина (удаление второй матрицы) (фиг. 1, д), которую проводят в установке вакуумной сублимационной сушки (УВСС). В процессе вакуумной сублимационной сушки происходит возгонка нафталина и его перемещение из заготовки, находящейся в камере сушки (сублиматоре), в азотную ловушку (десублиматор). В процессе сушки давление в сублиматоре составляет (1300-13)·10-3 Па. Температура стенок сублиматора поддерживается в интервале 40-70°C. Интервал температур сушки определен по критерию качества, характеристиками которого являются однородность поровой структуры детали, разноплотность в объеме детали, а также возникающие в процессе сушки заготовки отклонения от ее начальной геометрической формы (усадка).
Результатом технологического процесса является композитный открытопористый материал с характеристиками, приведенными выше, с матрицей из термоустойчивого полиимида (температурный индекс 250-300°C) с покрытием из ППК (или без него) или с матрицей, полностью состоящей из ППК (фиг. 1, е).
В способе можно применять и другие материалы. Для формирования первой и второй матриц можно также использовать вещества, выбранные из ряда: мочевина, NaCl, AlCl3·6H2O, NH4NO3 (растворяются в воде), нафталин, (NH4)2CO3·2H2O, NH4HCO3·2H2O (легко сублимируют), парафин, камфен (легкоплавкие), лед (легкоплавкий, сублимирует в вакууме). Для формирования полимерной фазы можно также использовать композиции, выбранные из ряда: эпоксидные связующие с отвердителем, смесь порошка полимера с жидким мономером, полимерную суспензию с водой или с органической жидкостью.

Claims (3)

1. Способ изготовления полимерного открытопористого материала, включающий формирование пористой матрицы с системой пор заданной формы и размера, формирование второй матрицы заполнением пор первой матрицы, удаление первой матрицы, формирование полимерной фазы в порах второй матрицы, образовавшихся после удаления первой матрицы, упрочнение полимерной фазы, удаление второй матрицы.
2. Способ по п. 1, в котором после удаления второй матрицы на упрочненную полимерную фазу наносят защитное покрытие из поли-пара-ксилилена.
3. Способ по п. 1, в котором формирование первой матрицы осуществляют с использованием оборудования, называемого 3D-принтер.
RU2015106204/05A 2015-02-24 2015-02-24 Способ изготовления полимерного открытопористого материала RU2604844C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015106204/05A RU2604844C2 (ru) 2015-02-24 2015-02-24 Способ изготовления полимерного открытопористого материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015106204/05A RU2604844C2 (ru) 2015-02-24 2015-02-24 Способ изготовления полимерного открытопористого материала

Publications (2)

Publication Number Publication Date
RU2015106204A RU2015106204A (ru) 2016-09-10
RU2604844C2 true RU2604844C2 (ru) 2016-12-10

Family

ID=56889351

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015106204/05A RU2604844C2 (ru) 2015-02-24 2015-02-24 Способ изготовления полимерного открытопористого материала

Country Status (1)

Country Link
RU (1) RU2604844C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2790250C2 (ru) * 2021-05-12 2023-02-15 Общество с ограниченной ответственностью «Оксикод» Композитное пористое изделие (варианты)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753932A (en) * 1970-12-23 1973-08-21 Du Pont Process for preparing microporous opencelled cellular polymeric structures
SU1643565A1 (ru) * 1987-06-19 1991-04-23 Предприятие П/Я Г-4665 Способ получени микропористого полимерного материала
RU2078099C1 (ru) * 1994-02-10 1997-04-27 Институт пищевых веществ РАН Способ получения макропористого полимерного материала
RU2377335C1 (ru) * 2008-10-14 2009-12-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения высокопористого полимерного материала
US20100249913A1 (en) * 2003-01-03 2010-09-30 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
RU2528842C1 (ru) * 2013-04-09 2014-09-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Способ изготовления деталей из полимерного ультрадисперсного пористого материала

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753932A (en) * 1970-12-23 1973-08-21 Du Pont Process for preparing microporous opencelled cellular polymeric structures
SU1643565A1 (ru) * 1987-06-19 1991-04-23 Предприятие П/Я Г-4665 Способ получени микропористого полимерного материала
RU2078099C1 (ru) * 1994-02-10 1997-04-27 Институт пищевых веществ РАН Способ получения макропористого полимерного материала
US20100249913A1 (en) * 2003-01-03 2010-09-30 Biomerix Corporation Reticulated elastomeric matrices, their manufacture and use in implantable devices
RU2377335C1 (ru) * 2008-10-14 2009-12-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения высокопористого полимерного материала
RU2528842C1 (ru) * 2013-04-09 2014-09-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом" Способ изготовления деталей из полимерного ультрадисперсного пористого материала

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2790250C2 (ru) * 2021-05-12 2023-02-15 Общество с ограниченной ответственностью «Оксикод» Композитное пористое изделие (варианты)

Also Published As

Publication number Publication date
RU2015106204A (ru) 2016-09-10

Similar Documents

Publication Publication Date Title
JP7111815B2 (ja) 複雑な形状の3次元物体の製造
KR102310916B1 (ko) 슬립을 이용하는 3d 프린팅 방법
JP4409834B2 (ja) プロセス減圧により誘導された炭素発泡体の製造方法
JP2009514996A (ja) 多孔質材料及びそれを製作する方法
US11685108B2 (en) Method of 3D printing a cellular solid
DE19747309A1 (de) Verwendung eines Polyamids 12 für selektives Laser-Sintern
KR20140048895A (ko) 성형체를 제조하기 위한 방법 및 장치
KR20180134345A (ko) 바인더 제팅 방법에서 비드 폴리머 층들에 거싯들을 충전하기 위한 분무-건조된 소프트-페이즈 에멀젼 폴리머
US3534803A (en) Method of casting in a permanent carbon mold
JP2017519665A (ja) 硬質フォームコアを製造するための密閉型中でのポリ(メタ)アクリルイミド粒子の圧力依存性の型内発泡
US6254998B1 (en) Cellular structures and processes for making such structures
Feng et al. Water-assisted fabrication of porous bead-on-string fibers
KR20170007442A (ko) 경질 발포체 코어의 제조를 위한 폐쇄된 몰드에서의 폴리(메트)아크릴이미드 입자의 발포 성형
DE2222960C3 (de) Herstellen von mikroporösen, offenzelligen Polymerisaterzeugnissen
RU2604844C2 (ru) Способ изготовления полимерного открытопористого материала
RU2528842C1 (ru) Способ изготовления деталей из полимерного ультрадисперсного пористого материала
EP1597004B1 (de) Verfahren zum schäumen von sinterformkörpern mit zellstruktur
RU2377335C1 (ru) Способ получения высокопористого полимерного материала
DE4118277A1 (de) Verfahren zum thermoplastischen verarbeiten nichtplastifizierbarer polymerer
EP0561273A1 (de) Vergiessbare Formmassen
Pastukhov et al. Hollow poly (alpha-methylstyrene) shells for inertial confinement fusion targets
DE102012004442B3 (de) Verfahren zur Herstellung von Formkörpern aus pulverförmigen keramischem oder metallischem Werkstoff
WO2017167650A1 (de) Verkürzung der abkühlphase beim partikelschäumen durch die wärmeleitung erhöhende additive
JPH03103376A (ja) 多孔質型の製造方法
Esteves et al. Characterization of Polypropylene Structural Foams for Large Part Applications