RU2596869C1 - Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии - Google Patents

Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии Download PDF

Info

Publication number
RU2596869C1
RU2596869C1 RU2015119693/14A RU2015119693A RU2596869C1 RU 2596869 C1 RU2596869 C1 RU 2596869C1 RU 2015119693/14 A RU2015119693/14 A RU 2015119693/14A RU 2015119693 A RU2015119693 A RU 2015119693A RU 2596869 C1 RU2596869 C1 RU 2596869C1
Authority
RU
Russia
Prior art keywords
ccd camera
light source
computer
fluorescent marker
monitoring
Prior art date
Application number
RU2015119693/14A
Other languages
English (en)
Inventor
Михаил Сергеевич Клешнин
Илья Викторович Турчин
Илья Иосифович Фикс
Владимир Александрович Воробьев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук
Priority to RU2015119693/14A priority Critical patent/RU2596869C1/ru
Application granted granted Critical
Publication of RU2596869C1 publication Critical patent/RU2596869C1/ru

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

Изобретение относится к медицинской технике. Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии содержит источник света в полосе поглощения флуоресцентного маркера (1), источник света в полосе эмиссии флуоресцентного маркера (2), блок коммутации источников света, блок фильтрации излучения (3), объектив (4), CCD камеру (5), процессор сигналов управления и синхронизации и компьютер (6) с устройствами отображения и хранения информации. Источник света (1) в полосе поглощения флуоресцентного маркера выполнен в виде светодиода с длиной волны в диапазоне 640-680 нм. Источник света (2) в полосе эмиссии флуоресцентного маркера выполнен в виде светодиода с длиной волны в диапазоне 720-760 нм. Блок фильтрации излучения (3) установлен перед объективом (4) CCD камеры (5) и выполнен в виде интерференционного фильтра с полосой пропускания в пределах 700-800 нм. CCD камера (5) имеет дополнительное электрическое соединение с компьютером (6). Процессор сигналов и блок коммутации источников света конструктивно объединены в систему управления и синхронизации данных (7), которая электрически соединена с источниками света (1, 2), CCD камерой (5) и компьютером (6). Компьютер (6) снабжен программным обеспечением для обработки полученных изображений с CCD камеры (5) и синхронизации системы управления (7) с внешним терапевтическим лазером. Применение изобретения обеспечит синхронизацию устройства с терапевтическим лазером и повысит удобство эксплуатации. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к медицине, в частности к медицинской диагностике, и может быть использовано для флуоресцентной диагностики с применением экзогенных маркеров и визуализации процесса выгорания фотосенсибилизатора во время облучения пациента терапевтическим лазером при проведении фотодинамической терапии.
Фотодинамическая терапия (ФДТ) является одним из высокотехнологичных методов современной медицины, который основан на взаимодействии оптического излучения с фотосенсибилизатором в опухолевой ткани. Данный метод включает в себя несколько этапов. Сначала в организм пациента вводится фотосенсибилизатор, который избирательно накапливается в раковых клетках или иных целевых тканях, в зависимости от химической природы препарата и типа опухоли. При этом облучение пораженного участка низкоинтенсивным оптическим излучением, длина волны которого находится в полосе поглощения фотосенсибилизатора, вызывает флуоресценцию маркированных клеток, что позволяет проводить флуоресцентную диагностику тканей пациента для точной локализации опухоли. Далее пораженный участок облучается высокоинтенсивным светом, длина волны которого находится в полосе поглощения фотосенсибилизатора, что приводит к гибели (некроз и апоптоз) раковых клеток вследствие высокотоксичных фотохимических реакций, вызванных препаратом. В течение нескольких недель после процедуры опухоль разрушается, и пораженные участки частично или полностью восстанавливаются.
К преимуществам ФДТ можно отнести: амбулаторный характер процедуры, очень низкий уровень болевых ощущений, хорошие косметические результаты, удобство применения, отсутствие лимитирующих доз фотосенсибилизатора и светового воздействия и, как следствие, возможность многократного повторения процедуры, а также комбинирования с другими методами лечения. При этом повседневная потребность в ФДТ неуклонно растет. Например, за последние 20 лет, заболеваемость злокачественными новообразованиями кожи в России возросла в 2 раза, а в США вышла на первое место и ежегодно там диагностируется более 1 миллиона случаев. Кроме того, ФДТ успешно применяется в косметологии, гинекологии и проктологии. Основными недостатками фотодинамической терапии являются: эмпирический характер подбора режимов воздействия, зависимость результатов облучения от кровоснабжения и степени оксигенации опухоли, а также малая глубина воздействия, вследствие сильного ослабления света в тканях. Однако объективная информация о накоплении и выгорании фотосенсибилизатора в процессе облучения позволяет обосновать, оптимизировать и персонализировать терапевтическое воздействие. Таким образом, разработка и развитие методов мониторинга ФДТ позволяют избавиться от наиболее значимых недостатков данной процедуры.
В настоящее время наиболее перспективным методом мониторинга процедуры ФДТ является флуоресцентная диагностика, которая позволяет оценить степень накопления препарата в опухоли и окружающих здоровых тканях, а также определить границы поражения и проводить ранний мониторинг эффективности ФДТ. Для оценки концентрации фотосенсибилизатора в тканях по уровню флуоресценции в современных медицинских учреждениях, как правило, применяются точечные регистраторы или цифровые камеры. Однако точечная регистрация флуоресценции не позволяет определить границы опухоли и требует большого числа измерений, что существенно усложняет диагностическую процедуру, поэтому для мониторинга процесса ФДТ в реальном времени удобнее использовать диагностические системы с цифровой камерой.
Например, по патенту RU 2221605, МПК7 A61N 5/067, А61В 6/00, опубл. 27.08.2003 г. известно устройство для люминесцентной диагностики и фотодинамической терапии, включающее в себя: источник лазерного излучения с управляемым пространственно-временным распределением, оптическую систему переноса излучения, блок формирования топологии воздействия, CCD камеру со спектрально-селективной оптической системой, блок кадровой памяти, систему отображения информации о топологии воздействия и патологии, блок выбора режима работы, а также блок управления режимом диагностики. Данное устройство позволяет проводить процедуру ФДТ и отображать флуоресцентные изображения опухоли в процессе облучения пациента. При этом для возбуждения флуоресценции и терапевтического воздействия используется единственный источник лазерного излучения. Такая конструкция реализует наиболее простое комплексное устройство для фотодинамической терапии, однако ограничивается регистрацией только флуоресцентного изображения, что не позволяет отображать саму поверхность исследуемого объекта и идентифицировать местоположение областей с повышенным уровнем флуоресценции. Кроме того, в данном устройстве используется специальный источник излучения, поэтому оно не совместимо с обычными терапевтическими лазерами, которые получили широкое распространение в современных медицинских учреждениях. В отличие от данного устройства в предлагаемом устройстве для флуоресцентной диагностики и мониторинга фотодинамической терапии вместо единственного источника лазерного излучения применяются два светодиода, излучающих на разных длинах волн. Источник света в полосе возбуждения фотосенсибилизатора позволяет получать флуоресцентные изображения, а светодиод в полосе эмиссии фотосенсибилизатора предназначен для визуализации исследуемого объекта в рассеянном свете. Такой подход обеспечивает высокую наглядность получаемых изображений, поскольку позволяет определять не только границы пораженной области, но и ее местоположение на теле пациента. При этом предлагаемое устройство не является комплексным и может применяться для мониторинга процедуры ФДТ с использованием произвольного терапевтического лазера.
Ближайшим аналогом предлагаемого устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии является устройство для диагностики областей пролиферации RU 2169922, МПК7 G01N 33/52, А61В 5/05, А61В 6/00, опубл. 27.06.2001, включающее в себя: источник света в полосе поглощения флуоресцентного маркера, источник света в полосе эмиссии флуоресцентного маркера, источник белого света, блок коммутации источников излучения, блок коллинеарной подсветки и приема оптических сигналов от объекта, объектив, блок деления изображений, блок регистрации цветного изображения, блок фильтрации излучения, блок регистрации флуоресцентных и монохромных изображений, выполненный в виде CCD камеры, процессор сигналов управления, видеосигналов и сигналов синхронизации, а также компьютер с устройствами отображения, вывода и хранения информации.
Излучение от каждого источника поочередно освещает исследуемый объект через блок коллинеарной подсветки и приема оптических сигналов. При этом рассеянный свет и флуоресцентный отклик от объекта передаются блоком коллинеарной подсветки и приема оптических сигналов в блок деления изображений через объектив. Коммутация источников света и выбор режима регистрации изображений выполняются процессором сигналов управления и синхронизации, поэтому при облучении объекта белым светом блок деления изображений передает излучение на блок регистрации цветного изображения, а в остальных случаях излучение передается на монохромную CCD камеру через полосовой фильтр. Далее видеосигналы с CCD камеры и блока регистрации цветного изображения поступают на процессор сигналов, который осуществляет обработку зарегистрированных изображений и передачу данных в компьютер. Данное устройство предназначено для флуоресцентной визуализации эндогенных порфиринов и их комплексов, но может применяться также для отображения любых экзогенных флуоресцентных маркеров, у которых полоса поглощения находится в спектральном диапазоне 630-645 нм, а полоса эмиссии - в пределах 650-730 нм.
Основным недостатком устройства для диагностики областей пролиферации является отсутствие синхронизации с терапевтическим лазером, поэтому данное устройство недостаточно удобно использовать для мониторинга выгорания фотосенсибилизатора (фотобличинга) во время облучения пациента из-за необходимости одновременного ручного управления питанием лазера и самого устройства. При этом полученные данные также потребуют ручной систематизации. Кроме того, устройство для диагностики областей пролиферации имеет очень сложную конструкцию, которая необходима исключительно для эндоскопических исследований и не эффективна для визуализации открытых участков тела пациента. Например, устранение источника белого света, блока коллинеарной подсветки и приема оптических сигналов, блока деления изображений и блока регистрации цветного изображения из конструкции данного устройства никак не повлияет на эффективность визуализации областей с повышенным уровнем флуоресценции на коже пациента при проведении сеанса ФДТ.
Задачей, на решение которой направлено настоящее изобретение, является разработка устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии, которое позволяет проводить мониторинг процесса выгорания фотосенсибилизатора во время терапевтического облучения открытых участков тела пациента и отличается удобством эксплуатации по сравнению с ближайшим аналогом.
Указанный технический результат достигается благодаря тому, что разработанное устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии, так же, как и устройство, которое является ближайшим аналогом, содержит источник света в полосе поглощения флуоресцентного маркера, источник света в полосе эмиссии флуоресцентного маркера, блок коммутации источников излучения, блок фильтрации излучения, объектив, CCD камеру, процессор сигналов управления и синхронизации, а также компьютер с устройствами отображения, вывода и хранения информации.
Новым в разработанном устройстве для флуоресцентной диагностики и мониторинга фотодинамической терапии является то, что источник света в полосе поглощения флуоресцентного маркера выполнен в виде светодиода с длиной волны в полосе 640-680 нм, источник света в полосе эмиссии флуоресцентного маркера выполнен в виде светодиода с длиной волны в полосе 720-760 нм, блок фильтрации излучения установлен перед объективом CCD камеры и выполнен в виде интерференционного фильтра с полосой пропускания в пределах 700-800 нм, CCD камера имеет дополнительное электрическое соединение с компьютером, а процессор сигналов и блок коммутации источников света конструктивно объединены в систему управления и синхронизации данных. При этом обработка полученных изображений осуществляется на компьютере с использованием оригинального программного обеспечения для мониторинга процедуры ФДТ. Кроме того, в разработанном устройстве не применяются такие конструктивные элементы, как источник белого света, блок коллинеарной подсветки и приема сигналов, блок деления изображений и блок регистрации цветного изображения, которые используются в ближайшем аналоге.
В частном случае реализации разработанного устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии система управления и синхронизации данных имеет дополнительный электрический вход для подключения блока управления питанием терапевтического лазера.
На фиг. 1 представлена схема технической реализации устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии.
На фиг. 2 представлена схема технической реализации устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии с электрическим входом для подключения блока управления питанием терапевтического лазера.
Разработанное устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии в соответствии с п. 1 формулы, представленное на фиг. 1, содержит светодиод 1 для возбуждения фотосенсибилизатора, светодиод 2 для получения изображений в рассеянном свете, полосовой оптический фильтр 3, объектив 4, CCD камеру 5, компьютер 6 с устройствами отображения, вывода и хранения информации, а также систему управления и синхронизации 7.
В режиме флуоресцентной диагностики (при выключенном терапевтическом лазере) светодиоды 1 и 2 поочередно освещают патологический участок 8 на теле пациента. При этом рассеянный свет и флуоресцентный отклик от объекта 8 проходят сквозь оптический фильтр 3, выделяющий излучение только в полосе эмиссии фотосенсибилизатора, собираются объективом 4 и регистрируются CCD камерой 5. Управление затвором CCD камеры 5 и коммутация светодиодов 1 и 2 выполняются системой управления и синхронизации 7. Таким образом, при включении светодиода 1, возбуждающего фотосенсибилизатор, CCD камера 5 передает в компьютер 6 флуоресцентное изображение объекта 8, а при включении светодиода 2, излучающего в полосе эмиссии фотосенсибилизатора, CCD камера 5 передает в компьютер 6 изображение объекта 8 в рассеянном свете. В компьютере 6 осуществляется обработка изображений с CCD камеры 5, результаты которой отображаются на экране через интерфейс программы управления устройством. При включении терапевтического лазера программное обеспечение устройства распознает характерные изменения флуоресцентного изображения объекта 8 и переводит устройство в режим ожидания, в котором облучение объекта 8 светодиодами 1 и 2 прекращается, a CCD камера 5 передает в компьютер 6 только опорные изображения объекта 8, полученные без подсветки. После выключения терапевтического лазера программное обеспечение устройства распознает характерные изменения опорного изображения объекта 8 и переводит устройство в режим флуоресцентной диагностики. Таким образом, мониторинг выгорания фотосенсибилизатора при проведении процедуры ФДТ осуществляется периодическим кратковременным выключением терапевтического лазера. При этом частота кадров и время экспозиции CCD камеры 5 для каждого режима определяются оператором через интерфейс программы управления устройством.
Разработанное устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии в соответствии с п. 2 формулы, представленное на фиг. 2, содержит светодиод 1 для возбуждения фотосенсибилизатора, светодиод 2 для получения изображений в рассеянном свете, полосовой оптический фильтр 3, объектив 4, CCD камеру 5, компьютер 6 с устройствами отображения, вывода и хранения информации, систему управления и синхронизации 7, а также электрический вход 9 для подключения блока управления питанием терапевтического лазера.
Особенностью работы устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии по п. 2 формулы, представленному на фиг. 2, является то, что при включении терапевтического лазера система управления и синхронизации 7 получает соответствующий сигнал от блока управления питанием терапевтического лазера через электрический вход 9 и переводит устройство в режим сна. В этом режиме светодиоды 1 и 2 выключаются, затвор CCD камеры 5 закрывается и обработка и отображение изображений в компьютере 6 приостанавливаются. После выключения терапевтического лазера система управления и синхронизации 7 получает соответствующий сигнал от блока управления питанием терапевтического лазера через электрический вход 9 и переводит устройство в режим флуоресцентной диагностики. В режиме флуоресцентной диагностики устройство по п. 2 (фиг. 2) работает идентично устройству для флуоресцентной диагностики и мониторинга фотодинамической терапии в соответствии с п. 1 формулы (фиг. 1).
В конкретной реализации разработанного устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии были использованы: в качестве светодиода 1 для возбуждения фотосенсибилизатора светодиод LZ4-00R200 («LED Engin, Inc.», США); в качестве светодиода 2 для получения изображений в рассеянном свете светодиод LZ4-00R308 («LED Engin, Inc.», США); в качестве полосового оптического фильтра 3 интерференционный полосовой фильтр SL 755/90 («ООО Фотооптик-фильтры», Россия); в качестве объектива 4 объектив V-4612-CS («Marshall Electronics, Inc.», США); в качестве CCD камеры 5 CCD камера CGN-B013-U («Mightex Systems)), Канада); в качестве компьютера 6 ноутбук HP Envy 17-j121sr («Hewlett-Packard Development Company, L.P.», Китай); система управления и синхронизации 7 изготовлена на базе платы Arduino Uno («Arduino», Китай).
Основным преимуществом предлагаемого устройства для флуоресцентной диагностики и мониторинга фотодинамической терапии перед ближайшим аналогом является синхронизация работы устройства и терапевтического лазера, которая позволяет отображать процесс выгорания (фотобличинга) фотосенсибилизатора при проведении фотодинамической терапии, а также автоматически систематизировать полученные изображения и исключать некорректные данные об интенсивности флуоресценции в моменты терапевтического облучения пациента. Кроме того, предлагаемое устройство предназначено для исследования открытых участков на теле пациента, поэтому отличается удобством эксплуатации по сравнению с ближайшим аналогом. При этом применение светодиодов 1 и 2 для возбуждения флуоресценции и освещения поверхности исследуемого объекта обеспечивает компактность конструкции и сравнительно низкую стоимость разработанного устройства. Важно также отметить, что спектральный диапазон излучения светодиода 1, вызывающего флуоресценцию, и полоса пропускания интерференционного фильтра 3 в предлагаемом устройстве мониторинга фотодинамической терапии соответствуют полосам поглощения и эмиссии фотосенсибилизатора «фотодитазин» (ООО Вета-Гранд, Россия), который, на сегодняшний день, является наиболее распространенным и эффективным препаратом для ФДТ. Таким образом, основной областью применения разработанного устройства является флуоресцентная диагностика и мониторинг процедуры ФДТ открытых участков тела с применением фотодитазина и произвольного терапевтического лазера.

Claims (2)

1. Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии, содержащее источник света в полосе поглощения флуоресцентного маркера, источник света в полосе эмиссии флуоресцентного маркера, блок коммутации источников света, блок фильтрации излучения, объектив, CCD камеру, процессор сигналов управления и синхронизации, компьютер с устройствами отображения и хранения информации, отличающееся тем, что источник света в полосе поглощения флуоресцентного маркера выполнен в виде светодиода с длиной волны в диапазоне 640-680 нм, источник света в полосе эмиссии флуоресцентного маркера выполнен в виде светодиода с длиной волны в диапазоне 720-760 нм, блок фильтрации излучения установлен перед объективом CCD камеры и выполнен в виде интерференционного фильтра с полосой пропускания в пределах 700-800 нм, CCD камера имеет дополнительное электрическое соединение с компьютером, процессор сигналов и блок коммутации источников света конструктивно объединены в систему управления и синхронизации данных, которая электрически соединена с источниками света, CCD камерой и компьютером, а компьютер снабжен программным обеспечением для обработки полученных изображений с CCD камеры и синхронизации системы управления с внешним терапевтическим лазером.
2. Устройство по п. 1, отличающееся тем, что система управления и синхронизации данных имеет дополнительный электрический вход для подключения блока управления питанием внешнего терапевтического лазера.
RU2015119693/14A 2015-05-26 2015-05-26 Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии RU2596869C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015119693/14A RU2596869C1 (ru) 2015-05-26 2015-05-26 Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015119693/14A RU2596869C1 (ru) 2015-05-26 2015-05-26 Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии

Publications (1)

Publication Number Publication Date
RU2596869C1 true RU2596869C1 (ru) 2016-09-10

Family

ID=56892724

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015119693/14A RU2596869C1 (ru) 2015-05-26 2015-05-26 Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии

Country Status (1)

Country Link
RU (1) RU2596869C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672478C1 (ru) * 2017-08-03 2018-11-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный университет" Способ оптической диагностики патологий в биологических тканях
RU2707828C1 (ru) * 2018-12-25 2019-11-29 Закрытое акционерное общество "Элекард Девайсез" (ЗАО "Элекард Девайсез") Устройство для фотодинамической визуализации для дифференциации путей лимфооттока

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973848A (en) * 1989-07-28 1990-11-27 J. Mccaughan Laser apparatus for concurrent analysis and treatment
RU2169922C1 (ru) * 1999-02-12 2001-06-27 Трушин Алексей Иванович Способ диагностики областей пролиферации и устройство для его осуществления
RU2274434C1 (ru) * 2004-09-23 2006-04-20 Государственное учреждение Межотраслевой научно-технический комплекс "Микрохирургия глаза" им. акад. С.Н. Федорова Министерства Здравоохранения Российской Федерации Способ удаления внутриглазных новообразований
RU2297813C1 (ru) * 2005-10-11 2007-04-27 Федеральное государственное учреждение Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по здравоохранению и социальному развитию" Способ лечения неоваскулярной глаукомы
US7311722B2 (en) * 2001-01-22 2007-12-25 Eric Larsen Photodynamic stimulation device and methods
RU2323722C2 (ru) * 2005-12-26 2008-05-10 Валентин Викторович Петров Фармацевтическая композиция для фотодинамической терапии и способ лечения онкологического заболевания с ее использованием
US20140039322A1 (en) * 2012-08-03 2014-02-06 Cerca Solutions, LLC Diagnostic Device, Therapeutic Device, and Uses Thereof
US8858607B1 (en) * 2013-03-15 2014-10-14 Gary W. Jones Multispectral therapeutic light source

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973848A (en) * 1989-07-28 1990-11-27 J. Mccaughan Laser apparatus for concurrent analysis and treatment
RU2169922C1 (ru) * 1999-02-12 2001-06-27 Трушин Алексей Иванович Способ диагностики областей пролиферации и устройство для его осуществления
US7311722B2 (en) * 2001-01-22 2007-12-25 Eric Larsen Photodynamic stimulation device and methods
RU2274434C1 (ru) * 2004-09-23 2006-04-20 Государственное учреждение Межотраслевой научно-технический комплекс "Микрохирургия глаза" им. акад. С.Н. Федорова Министерства Здравоохранения Российской Федерации Способ удаления внутриглазных новообразований
RU2297813C1 (ru) * 2005-10-11 2007-04-27 Федеральное государственное учреждение Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова Федерального агентства по здравоохранению и социальному развитию" Способ лечения неоваскулярной глаукомы
RU2323722C2 (ru) * 2005-12-26 2008-05-10 Валентин Викторович Петров Фармацевтическая композиция для фотодинамической терапии и способ лечения онкологического заболевания с ее использованием
US20140039322A1 (en) * 2012-08-03 2014-02-06 Cerca Solutions, LLC Diagnostic Device, Therapeutic Device, and Uses Thereof
US8858607B1 (en) * 2013-03-15 2014-10-14 Gary W. Jones Multispectral therapeutic light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2672478C1 (ru) * 2017-08-03 2018-11-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Оренбургский государственный университет" Способ оптической диагностики патологий в биологических тканях
RU2707828C1 (ru) * 2018-12-25 2019-11-29 Закрытое акционерное общество "Элекард Девайсез" (ЗАО "Элекард Девайсез") Устройство для фотодинамической визуализации для дифференциации путей лимфооттока

Similar Documents

Publication Publication Date Title
US11751971B2 (en) Imaging and display system for guiding medical interventions
KR100853655B1 (ko) 피부 질환의 광학 진단 및 치료를 위한 장치, 광원 시스템 및 장치의 이용방법
US20190384048A1 (en) Method and apparatus for quantitative hyperspectral fluorescence and reflectance imaging for surgical guidance
BR112020015757A2 (pt) Dispositivos, sistemas, e métodos para visualização e remoção de tumor
CN103608662B (zh) 肿瘤部位的识别装置以及识别方法
KR100785279B1 (ko) 조명의 균일도를 향상시킨 광학 진단 장치
JP2017529514A (ja) マルチスペクトルイメージングのための方法及び手段
JPH10113327A (ja) 内視鏡装置
US20200323431A1 (en) Imaging method and system for intraoperative surgical margin assessment
US20090234236A1 (en) Nerve blood flow modulation for imaging nerves
JP2021533907A (ja) 分子化学イメージングによる結石と組織の識別
RU2596869C1 (ru) Устройство для флуоресцентной диагностики и мониторинга фотодинамической терапии
RU2661029C1 (ru) Устройство для флуоресцентной навигации в нейрохирургии
WO2017137350A1 (en) Wavelength tuneable led light source
CN204207717U (zh) 内窥镜照射光谱选择装置及超光谱内窥镜成像系统
CA2360229C (en) Method for diagnosing proliferation regions and device for realising the same
CN109276230A (zh) 一种短波红外肿瘤成像系统及方法
US20230280577A1 (en) Method and apparatus for quantitative hyperspectral fluorescence and reflectance imaging for surgical guidance
CN104352216B (zh) 内窥镜照射光谱选择装置及超光谱内窥镜成像系统
KR20070076153A (ko) 피부진단용 형광 비디오 시스템
Papayan et al. Video-endoscopy system for photodynamic theranostics of central lung cancer
Kang et al. System for fluorescence diagnosis and photodynamic therapy of cervical disease
CN113645889A (zh) 用于将医学成像设备连接到医学成像控制器的系统和方法
KR20200064771A (ko) 모바일 형광 영상 기반 치아 우식증 조기 진단 시스템 및 방법
RU2169922C1 (ru) Способ диагностики областей пролиферации и устройство для его осуществления