RU2594410C2 - Усовершенствованные плазменные газификаторы для производства сингаза - Google Patents

Усовершенствованные плазменные газификаторы для производства сингаза Download PDF

Info

Publication number
RU2594410C2
RU2594410C2 RU2013140830/05A RU2013140830A RU2594410C2 RU 2594410 C2 RU2594410 C2 RU 2594410C2 RU 2013140830/05 A RU2013140830/05 A RU 2013140830/05A RU 2013140830 A RU2013140830 A RU 2013140830A RU 2594410 C2 RU2594410 C2 RU 2594410C2
Authority
RU
Russia
Prior art keywords
feed
layer
section
openings
middle section
Prior art date
Application number
RU2013140830/05A
Other languages
English (en)
Other versions
RU2013140830A (ru
Inventor
Александр ГОРОДЕТСКИЙ
Джеймс САНТОИАННИ
Сурендра ЧАВДА
Сурешкумар КУКАДИЯ
Original Assignee
АЛЬТЕР ЭнЭрДжи КОРП.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АЛЬТЕР ЭнЭрДжи КОРП. filed Critical АЛЬТЕР ЭнЭрДжи КОРП.
Publication of RU2013140830A publication Critical patent/RU2013140830A/ru
Application granted granted Critical
Publication of RU2594410C2 publication Critical patent/RU2594410C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/18Continuous processes using electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Изобретение относится к области химии и может быть использовано для получения синтез-газа. Нагревают плазмой углеродистый слой 13 в донной секции 12 сосуда реактора 10. Подают твердый материал через отверстия 23 в среднюю секцию 22 сосуда реактора 10. В результате проводимой реакции в средней секции 22 образуется смесь синтез-газа с непрореагировавшими частицами твердого материала. Осуществляют резкое охлаждение верхней части верхней секции сосуда реактора 10 до температуры приблизительно 850°С посредством введения воды, пара или их смеси через отверстия 42. Синтез-газ выводят через выпускные отверстия 41. Изобретение позволяет минимизировать возникновение непрореагировавших частиц в получаемом продукте. 3 н. и 22 з.п. ф-лы, 8 ил.

Description

Область изобретения
Изобретение относится к плазменным газификаторам (иногда упоминаемым здесь как PGs и которые могут также быть упоминаемыми как реакторы плазменной газификации или PGRs) с характеристиками, которые могут облегчить процессы, как, например, производство сингаза.
Уровень техники
Обширная литература, как в патентах, так и иным образом, рассматривает вопрос о конструкции и работе плазменного газификатора, чтобы обрабатывать подаваемые материалы различных сортов, например отходы, как, например, городские твердые отходы (MSW), чтобы производить синтез-газ или сингаз. Такие технологии могут быть главным образом выгодны как с точки зрения удаления отходов, так и превращения удаленных отходов, чтобы образовать сингаз для использования в качестве топлива.
Некоторые примеры технологий для таких целей содержатся, или упоминаются, в опубликованной заявке на патент США 2010 0199557, 12 августа 2010 г., на имя Dighe и др., выданной Alter Nrg Corp, и в Industrial Plasma Torch Systems, Westinghouse Plasma Corporation, Descriptive Bulletin 27-501, опубликованной 2005 г., и все такие описания включены сюда посредством ссылки.
В настоящем описании «реактор плазменный газификатор» и “PGR” предназначены, чтобы упоминать их как реакторы того же общего типа, которые применяются для газификации или для витрификации или для того и другого. Если в контексте не упоминается иное, термины, как, например, «газификатор» или «газификация», используемые здесь, могут быть поняты, чтобы применяться альтернативно или дополнительно к «витрификатору» или «витрификации» и наоборот.
Предшествующая практика имеет достоинство успешной работы, что является постоянно желательным для последующего улучшения.
Сущность изобретения
Настоящая заявка представляет собой инновации для улучшенной характеристики в возможности одной или обеих из (1) более полной газификации подаваемого материала в форме частиц и (2) минимизации возникновения непрореагировавших расплавленных частиц подаваемого материала, выходящих из сосуда реактора вместе с сингазом и осаждаемых на внутренней стенке наружной канализации из выпускного отверстия сосуда.
В частности, настоящему изобретению принадлежит обеспечение плазменного газификатора и процесса для работы плазменного газификатора для целей, как, например, превращения отходов в сингаз, посредством включения в себя одной или обеих следующих технологий. В то время как обычно в случае, когда PGRs могут иметь преимущество в следующих технологиях индивидуально, здесь может быть преимущество для их использования в сочетании.
В особенности при использовании в сочетании, благоприятные возможности для более высокого выхода сингаза с хорошими качествами из более широкого разнообразия составов подаваемого материала могут быть усовершенствованы.
Одна технология представляет собой обеспечение расположения впускных отверстий для текучей среды резкого охлаждения в верхней части (как, например, крыше) верхней секции сосуда реактора и ввода текучей среды, как, например, но не ограничиваясь этим, воды, пара или смеси воды и пара, чтобы охладить мягкие или расплавленные куски непрореагировавшего подаваемого материала, достаточного, чтобы минимизировать число их, выходящих из сосуда реактора, которые, вероятно, отлагаются на внутренней стороне внешней канализации. Расположение впускных отверстий для текучей среды резкого охлаждения (иногда упоминаемое здесь как система резкого охлаждения (или система частичного резкого охлаждения)) наилучшим образом сочетается с сосудом реактора, имеющим дополнительный объем (упоминаемый как зона резкого охлаждения), которая дает возможность объема расширяющихся текучих сред из впускных отверстий для текучей среды резкого охлаждения, так чтобы минимизировать любые вредные воздействия на поток сингаза из района надводной плиты ниже зоны резкого охлаждения к выпускным отверстиям. В предыдущей практике канализация из выпускных отверстий для сингаза часто подвергалась наращиванию отлагаемого материала, и систему резкого охлаждения с хорошей характеристикой внутри канала трудно построить.
Другая технология, вариант осуществления которой (без системы резкого охлаждения) также раскрыт в ранее упомянутой сопровождающей заявке на патент, представляет собой обеспечение сосуда реактора с донной секцией для содержания углеродистого слоя, средней секцией для содержания слоя отложенного подаваемого материала и верхней секцией, включающей район надводной плиты и крышу поверх района надводной плиты, имеющую одно или более отверстий для подачи через боковую стенку средней секции, поверх и вблизи верхней поверхности слоя подаваемого материала или в сам слой. Это дает возможность подаваемому материалу быть (а) для более тяжелых сегментов отлагаться быстро и непосредственно на слой подаваемого материала для реакции и (b) для более легких частиц (или «поплавков»), которые удерживаются поверх слоя подаваемого материала посредством поднимающихся горячих газов, иметь долгое время пребывания внутри сосуда, что обеспечивает более полную реакцию (газификацию) частиц. Отверстия для подачи в сам слой, иногда упоминаемые как подача снизу, могут существенно предотвратить поплавки. Сравнительная заявка также объясняет, как такое расположение может способствовать меньшему использованию углерода в углеродистом слое в донной секции. Это расположение контрастирует с некоторой предыдущей практикой PGRs с одним или более отверстиями для подачи, расположенными только в верхней секции значительно выше, чем подаваемый слой. Здесь включены варианты осуществления, которые создают расстояние между отверстиями для подачи и выпускными отверстиями для газа большим посредством расположения отверстий для подачи не выше, чем только на короткое расстояние поверх слоя подаваемого материала, в то время как выпускные отверстия для газа в верхней секции удалены от подаваемого слоя.
Только посредством примера упоминание о секциях в сосуде реактора, в особенности средней и верхней секциях, может включать в себя формы перевернутого усеченного конуса, более широкие у их верхних концов, что способствует достижению по существу постоянной скорости газа для увеличивающегося количества газа, поднимающегося из сосуда (см. вышеупомянутую опубликованную заявку на патент о таких конических конфигурациях). Коническая стенка верхней секции может иметь меньший угол к центральной оси сосуда реактора, чем коническая стенка средней секции; и верхняя секция имеет дополнительный верхний объем, упоминаемый как зона резкого охлаждения, где впускные отверстия для текучей среды резкого охлаждения являются эффективными, то есть в одном иллюстративном примере внутри цилиндрической части выше конической части верхней секции.
Конкретные, но не только, варианты осуществления изобретений здесь могут сочетаться в сосуде реактора, имеющего вышеупомянутые конические характеристики, донную секцию (которая может быть цилиндрической) с углеродистым слоем (из угля или как представлено в сопровождающей заявке) и плазменными соплами, среднюю секцию (коническую) со множеством (например, двумя или тремя) боковыми отверстиями для подачи обрабатываемого материала на или как раз поверх углеродистого слоя с хорошим распределением по внутренней части средней секции, верхнюю секцию поверх средней секции, которая имеет как район надводной плиты (с конической конфигурацией, которая может быть менее угловатой, чем средняя секция) и поверх района надводной плиты зону резкого охлаждения (которая может иметь цилиндрическую конфигурацию), в которой вводимая текучая среда по меньшей мере частично резко охлаждается (то есть, затвердевает или делается менее мягкой), причем твердые куски материала поднимаются с газообразными продуктами реакции снизу в одно или более выпускных отверстий у или вблизи верха зоны резкого охлаждения.
Следующее описание и чертежи помогут в понимании этих инноваций и их различных вариантов осуществления и вариаций.
Краткие описания чертежей
Фиг.1 и 2 представляют собой, соответственно, вид в вертикальном разрезе и вид в плане сверху примера плазменного газификатора;
Фиг.3 и 4 представляют собой графические примеры потоков произведенного газа и текучей среды резкого охлаждения в реакторе; и
Фиг.5-8 представляют собой примеры в продольном сечении газификаторов с отверстиями для подачи под верхней поверхностью подаваемого слоя.
Дополнительное описание вариантов осуществления
Фиг.1 и 2 показывают один пример плазменного газификатора, который имеет как систему резкого охлаждения сингаза, так и отверстия для подачи, через которые вводится подаваемый материал в среднюю секцию сосуда реактора газификатора.
Пример газификатора по Фиг.1 или 2 включает в себя сосуд 10 реактора с огнеупорной футеровкой трех основных секций, которые со дна до верха представляют собой донную секцию 12, среднюю секцию 22 и верхнюю секцию 32.
Донная секция 12 содержит углеродистый слой 13, одну или более плазменных факельных фурм 14, спускное отверстии 15 для шлака и расплавленного металла (здесь может быть множество спускных отверстий), нижнее отверстие 16 для горелки запуска (также служащее, как аварийное спускное отверстие) и одну или более фурм 17 углеродного слоя.
Углеродистый слой 13 (иногда упоминаемый как С слой) донной секции может быть из металлургического кокса или другого углеродистого материала, извлеченного из ископаемого топлива или из не ископаемых источников (например, из биомассы в различных формах, как, например, раскрыто в вышеупомянутой сопровождающей заявке). Плазменные факельные фурмы 14 и фурмы 17 С слоя в этом примере могут каждая быть количеством шесть; они расположены симметрично около цилиндрической стенки 18 донной секции, наклонены вниз около 15° к горизонтали и нацелены в центр С слоя 13. Плазменные факельные фурмы 14 имеются для ввода плазмы в С слой 13. Фурмы 17 С слоя дополнительно предусмотрены для выборочного использования, чтобы вводить газ, как, например, воздух или кислород, в С слой 13. Нижнее отверстие 16 горелки может быть использовано для нагрева посредством горелки природным газом (или другого топливом) огнеупорного материала вдоль стенки сосуда реактора, чтобы обеспечить температуру внутри сосуда выше температуры самовоспламенения горючих веществ, как, например, углерода, водорода, СО и сингаза, вводимого в сосуд. Затем подвод плазмы, подаваемого материала и других реагентов может иметь место с большей безопасностью и меньшим риском взрыва.
Средняя секция 22 имеет одно или более (как, например, три) отверстия 23 для подачи через коническую стенку 24 средней секции, простирающуюся вверх (полезную для более постоянной скорости газа). Цилиндрическая стенка 18 донной секции 12 и коническая стенка 24 средней секции 14 соединяются у съемного донного фланцевого соединения 25. Отверстия 23 для подачи наклонены к горизонтали около 15°, что помогает минимизировать вход влаги из влажного подаваемого материала и может быть благоприятным в других отношениях, как описано ниже. Горизонтальные или направленные вниз отверстия для подачи могут также быть приняты в некоторых вариантах осуществления. Подаваемый материал подводится через отверстия 23 для подачи из внешних подводов подачи через механизмы (не показанные здесь), которые по желанию помогают достигать по существу равномерной и непрерывной скорости подачи, как, например, уплотняющий винтовой питатель, который может быть известного промышленного типа. Вводимый подаваемый материал образует слой 26 подаваемого материала в средней секции 22 поверх С слоя 13 донной секции 12. Средняя секция 22 также имеет ряд (например, от 12 до 24 каждая) нижних фурм 27 подаваемого слоя и верхних фурм 28 подаваемого слоя, которые могут быть использованы, чтобы вводить газы непосредственно в подаваемый слой 26, так же как и одна или более фурм 29 газового пространства поверх подаваемого слоя 26. Дополнительно показаны в этом примере смотровое стекло 30 для наблюдения внутри подаваемого слоя 26 и дверь 31 для доступа для входа персонала, когда сосуд (вне операции) нуждается во внутренней проверке или ремонте.
Подаваемый слой 26 показан с верхней и нижней линиями поверхности 26а и 26b, соответственно, которые являются только представительными протяжения подаваемого слоя 26. В этом примере скорость подвода подаваемого материала и скорость потребления подаваемого материала в подаваемом слое 26 регулируются до такой степени, чтобы удерживать верхнюю поверхность 26а ниже отверстия 23 для подачи, так чтобы подаваемый слой 26 не мешал входу подаваемого материала. (Здесь могут быть предусмотрены датчики уровня подаваемого слоя, так же как и визуальный доступ, чтобы подтвердить, что блокада не имеет места.) В противном случае, отверстия 23 для подачи и верхняя поверхность 26а подаваемого слоя желательно находятся вблизи один от другого, что содействует более длительному времени пребывания внутри сосуда 10 для частиц внутри подаваемого материала, которые могут быть настолько легкими, что они не спускаются на подаваемый слой 26. Более длительное время пребывания в сосуде будет повышать возможность газификации таких частиц в средней секции 22 поверх подаваемого слоя 26 в верхней секции 32. Более тяжелые сегменты подаваемого материала падают непосредственно, чтобы образовать и реагировать (газифицироваться) в подаваемом слое 26. Вообще, в вариантах осуществления с отверстиями для подачи в средней секции, отверстия для подачи и верхняя поверхность подаваемого слоя являются желательно «ближайшими» или смыкающимися друг с другом в вертикальном направлении настолько, насколько это достаточно возможно без встречающихся проблем блокады отверстий для подачи или материала в отверстиях для подачи, воспринимающих радиационный нагрев от подаваемого слоя. Наклон отверстий для подачи в этом примере способствует последней цели. Средняя секция 22 может иногда упоминаться как имеющая нижнюю часть, содержащую подаваемый слой 26, и верхнюю часть с одним или более отверстиями 23 для подачи, в то же время все же обнаруживая, что они являются близкими друг к другу. Это расположение обеспечивает большее расстояние между отверстиями для подачи и выпускными отверстиями для газа, описанными ниже. Максимизирование этого расстояния может быть благоприятным для газификации мелких частиц, вводимых в подаваемый материал, которые могут быть любыми из широкого разнообразия материалов. Для производства сингаза для использования в качестве топлива или источника топлива подаваемый материал желательно включает в себя некоторые углеводороды; примерами являются MSW, так же как и биомасса различных форм (и любые их смеси), которые могут включать в себя большое количество мелких частиц, которые лучше газифицируются посредством более долгого времени пребывания в реакторе.
Еще другие варианты осуществления, описанные ниже со ссылками на Фиг.5-8, имеют отверстия для подачи, которые подводят подаваемый материал непосредственно в подаваемый слой.
Возвращаясь к Фиг.1 и 2, верхняя секция 32 сосуда реактора опирается посредством фиксированной опоры 33 и соединяется со средней секций 22 у трубопровода 34. Как показано, верхняя секция 32 находится внутри верхней обечайки сосуда 10 реактора, и средняя секция 22 находится внутри нижней обечайки сосуда реактора. Объем внутри верхней секции 32 является вертикально большим (например, по меньшей мере примерно равным вертикальному протяжению как донной, так и средней секций 12 и 22 вместе) для дополнительных реакций газификации внутри района 35 надводной плиты и для верхней зоны 35а резкого охлаждения. Верхняя секция 32, в этом примере, имеет первую часть, примыкающую к средней секции 22, которая имеет расширяющуюся вверх коническую стенку 36 (с меньшим углом, чем угол стенки 24 средней секции 22), которая соединена у трубопровода 37 со второй частью, которая имеет цилиндрическую стенку 38, выше которой, начиная у трубопровода или боковой опоры 39, верхняя секция 32 имеет закругленную или куполообразную крышу 40.
Иллюстрируемая конфигурация частей 36 и 38 стенки верхней секции 32 облегчает конструкцию сосуда 10. Вообще, не является необходимым изменять угол стенки верхней секции. Например, ее полное протяжение может быть по существу полностью коническим. Как объяснено в вышеупомянутой опубликованной заявке на патент, расширяющаяся коническая боковая стенка может быть благоприятной для поддержания потока газа на желаемых уровнях. Расширяющаяся коническая секция уменьшает скорость газа, так что он имеет более длительное время пребывания; и это помогает осаждению частиц. Здесь в настоящем изобретении с системой резкого охлаждения верхней секции, при любой форме стенки предусмотрен добавочный объем внутри верхней секции 32 для зоны 35а резкого охлаждения. То есть, район 35 надводной плиты желательно имеет размер и форму для дополнительной газификации материала, поднимающегося с горячем газом из подаваемого слоя 26. Газификация может быть по существу полной в районе 35 надводной плиты до такой степени, что на уровне 37 может существовать произведенный сингаз, который в прошлом мог бы типично немедленно выпущен из сосуда реактора, который мог быть по существу подобен сосуду 10 в других отношениях, но не иметь зоны резкого охлаждения (как, например, зона 35а поверх района надводной плиты; вместо этого в прошлом крыша была бы расположена непосредственно на вершине района надводной плиты и отверстие или отверстия для выпуска были бы через крышу в верхней части боковой стенки района надводной плиты. Как описано ниже, имеются расстояния, на которых некоторая дополнительная газификация может иметь место в зоне 35а резкого охлаждения, что может содействовать качеству выпускаемого сингаза.
Объем внутри верхней секции 32, обозначенный, как зона 35а резкого охлаждения, представляет собой объем верхней секции, в который проникает и на который воздействует текучая среда резкого охлаждения, в то время как объем ниже здесь упомянут как район надводной плиты. Для настоящих целей, зона 35 надводной плиты и зона 35а резкого охлаждения в общем считаются как две зоны одна выше другой. Терминология, применяющая термин «надводная плита» ко всему объему верхней секции, но имеющая зону резкого охлаждения внутри верхней части надводной плиты, является также применяемой. В любом случае, зона резкого охлаждения представляет собой дополнительный объем к объему иных аналогичных предшествующих реакторов.
В варианте осуществления по Фиг.1, крыша 40 верхней секции 32 имеет одно или более (здесь два, как показано на Фиг.2) выпускных отверстий 41 для сингаза и множество впускных отверстий 42 для текучей среды резкого охлаждения, симметрично расположенных поверх крыши 40. Вариации могут включать в себя только одно сопло резкого охлаждения для ввода текучей среды в зону резкого охлаждения, хотя расположение множества сопел резкого охлаждения, в особенности построение, которое является симметричным по отношению к выпускным отверстиям, обычно является предпочтительным для более эффективного резкого охлаждения. (Вообще, если в контексте не указано иначе, любое упоминание в этой заявке отверстий для подачи, сопел для резкого охлаждения или выпускных отверстий для газа обозначает любой один или более таких элементов.)
Впускные отверстия 42 для текучей среды резкого охлаждения имеются в количестве шесть в этом примере и составляют систему резкого охлаждения сингаза, эффективную внутри зоны 35а резкого охлаждения в верхней части верхней секции выше района 35 надводной плиты. Зона 35а резкого охлаждения может считаться находящейся внутри около верхней трети верхней секции 32 и представляет собой район, в котором текучая среда (как, например, вода, пар или смесь воды и пара или, возможно, рециркулирующий сингаз или инертный газ, как, например, азот), вводимая через впускные отверстия 42, обеспечивает атомизированный туман, который понижает температуру в зоне 35а резкого охлаждения, чтобы заставить частицы, поднимающиеся с сингазом в зоне резкого охлаждения, с меньшей вероятностью выходить через выпускные отверстия 41 в расплавленном (или мягком) состоянии и прикрепляться к или конденсироваться на внутренней стороне внешней канализации (не показана) из выпускных отверстий 41.
Зона 35а резкого охлаждения, где имеет место резкое охлаждение посредством впускных отверстий 42, сконструирована с объемом, чтобы разместить вводимую текучую среду, которая будет термически расширяться в сосуде для того, чтобы незначительно воздействовать на продвижение сингаза из района 35 надводной плиты к выпускным отверстиям 41. Некоторая дополнительная газификация может иметь место в зоне 35а резкого охлаждения, но ее дополнительный объем предназначен главным образом для функции частичного резкого охлаждения, как далее описано на Фиг.3 и 4. Во многих примерах будет предпочтительно, чтобы текучие среды системы резкого охлаждения в смысле их температуры и качества были ограничены только охлаждением поднимающейся смеси сингаза и частиц только достаточно, чтобы частично резко охладить более мягкие или расплавленные частицы, так чтобы они стали более твердыми и не «кололи» поверхность выпускного канала. В основном нежелательно создавать любой большой перепад температуры в зоне резкого охлаждения, поскольку больший перепад температуры в зоне резкого охлаждения может иметь вредный термический эффект ниже в сосуде реактора. Дополнительный эффект сопел для резкого охлаждения и зоны резкого охлаждения состоит в том, что вводимая текучая среда (например, вода) может сделать некоторые частицы агломератами в зоне резкого охлаждения и образовать большие частицы, которые падают обратно вниз в район надводной плиты и возможно на подаваемый слой, вместо того, чтобы выпускаться через выпускные отверстия. Это может быть желательно, чтобы понизить эксплуатационные расходы и капитальные затраты на оборудование ниже по потоку, чем выпускные отверстия. Эти аспекты системы резкого охлаждения и зоны резкого охлаждения дополнительно описаны ниже.
Верхняя секция 32 также имеет верхнее отверстие 43 для запуска горелки для использования, как описано для нижнего отверстия 16 для запуска горелки. Использование двух отверстий 16 и 43 для запуска горелки обеспечивает более равномерный нагрев внутренней части сосуда с горючими газами, исключаемый перед началом плазменного пиролиза.
Посредством дополнительного примера, вариант осуществления газификатора по Фиг.1 и 2 показан по существу в масштабе. Как один пример, он может иметь общую высоту около 22,5 м и максимальную ширину около 9 м, но широкое изменение размеров реактора может быть подходящим для реакторов, объединенных настоящими инновациями. Как один пример, углы конических стенок 24 и 36 составляют около 20° и 5°, соответственно, от вертикальной оси. Размер и конфигурация могут варьироваться значительно от показанных в этом примере.
Среди других вариаций (использующих номера ссылок, подобные соответствующим элементам по Фиг.1 и 2) газификатор с зоной 35а резкого охлаждения и впускными отверстиями 42 для текучей среды резкого охлаждения, как, например, описанными выше, может быть снабжен сосудом с любой конфигурацией стенки. Также, такая система резкого охлаждения может быть предусмотрена в газификаторе с другими отверстиями для подачи материала, например, с одним или более отверстиями для подачи в верхнюю секцию; или здесь могут быть одно или более отверстий для подачи в каждую из как средней, так и верхней секции. Выгоды, достигаемые с системой резкого охлаждения, не требуют наличия отверстий для подачи как системы резкого охлаждения, так и средней секции.
Система резкого охлаждения зоны 35а резкого охлаждения и впускные отверстия 42 могут, например, производить частичное резкое охлаждение, как, например, понижение температуры смеси сингаза, которая поднимается в районе надводной плиты, от около 1000 до 1150°С вниз до около 850°С у выпускных отверстий 41, что может минимизировать налипание расплавленных или мягких частиц на внутренность канализации из выпускных отверстий 41. Типичными примерами подходящего резкого охлаждения являются те, которые понижают температуру расплавленных частиц, поднимающихся из района 35 надводной плиты, от около 150 до 300°С перед тем, как они достигнут выпускных отверстий 41. Также см. обсуждение ниже, относящееся к Фиг.3 и 4, для дополнительного описания некоторых аспектов зоны резкого охлаждения верхней секции и как она может работать.
В вариантах осуществления с выпускными отверстиями 23 средней секции вблизи подаваемого слоя 26 не всегда требуется иметь впускные отверстия для текучей среды резкого охлаждения в зону резкого охлаждения выше района надводной плиты. То есть, преимущество отверстий для подачи средней секции может быть получено даже без системы резкого охлаждения. Например, средство для резкого охлаждения может не присутствовать или может иметь место только в наружной канализации из выпускных отверстий для сингаза. Как раскрыто в вышеупомянутой сопровождающей заявке на патент, расположение отверстий для подачи вблизи подаваемого слоя может быть благоприятным для минимизации потребления углерода в С слое и что применяется с системой резкого охлаждения или без нее или любой конкретной формы системы резкого охлаждения.
Дополнительными пунктами, например, является то, что подаваемый материал может в дополнение к отходу, как, например, MSW, подлежащий обработке, включать в себя или сопровождаться дополнительным углеродистым материалом (который может сохраняться и расходоваться в подаваемом слое или который может спускаться через подаваемый слой в С слой 13 в донной секции) и также плавиться, чтобы регулировать основность, вязкость и температуру плавления шлака, который образуется и спускается в спускное отверстие 15 в донной секции. Также любые частицы, которые выносятся из реактора с выпускаемым сингазом, могут захватываться снаружи и подаваться обратно с подаваемым материалом.
Плазменные факельные фурмы предусмотрены с плазменными факелами, пример которых представляет собой тот, который имеется на рынке, как MARC-11L™ плазменный факел от Westinghouse Plasma Corporation. Такие факелы, использующие экранирующий газ в дополнение к факельному газу и кислороду или воздуху, могут быть использованы для этих целей, так же как и другие газы (см. Dighe и др., патент США 4761793, который включен сюда посредством ссылки для описания расположения плазменного факела). Газ, вводимый посредством факела, может быть перегрет до температуры выше 10000°F (около 5500°С), что значительно превышает традиционные температуры горения.
Плазменные факельные фурмы иногда упоминаются как первичные фурмы. Нижние и верхние фурмы 27 и 28 средней секции 22 иногда упоминаются как вторичные и третичные фурмы, соответственно. Фурмы 27 и 28 могут быть использованы для того, чтобы поставлять кислород для дополнительной помощи контролю температуры сингаза, так же как, возможно, других функций.
Химические реакции предназначены, чтобы иметь место, например, как раскрыто в опубликованной заявке на патент 20100199557. На содержания полученного в результате сингаза (включая СО и Н2, так же как и, возможно, другие) и скорости потребления подаваемого слоя и С слоя влияют посредством кислорода (или воздуха) и, возможно, пара, вводимого через фурмы в различных секциях.
Среди вариаций, которые могут избирательно использоваться вместе с раскрытыми инновациями, имеют место выпускные отверстия для сингаза, которые имеют внедренные каналы внутри сосуда реактора. Также, вариации в свойствах отверстий для подачи могут включать внедрение отверстий для подачи в сосуд реактора и/или механизмы, чтобы изменять угол или расстояние входов подаваемого материала из отверстий для подачи. На упомянутую опубликованную заявку на патент может быть сделана ссылка для дополнительной информации таких характеристик.
В большей части многие аспекты общей конструкции и работы газификатора могут быть изменены в соответствии с прошлой практикой в плазменных газификаторах и все еще включать инновации, представленные здесь, как, например, но не ограничиваясь этим, систему резкого охлаждения верхней секции или расположение одного или более отверстий для подачи в средней секции вблизи подаваемого слоя.
Плазменные газификаторы с системой резкого охлаждения верхней секции являются отличными от известной практики PG, которые иногда включают введение замедляющего газа непосредственно в район надводной плиты PG в целях остановки или минимизации газификации в районе надводной плиты. Например, в патенте США Dighe и др. 7632394, 15 декабря 2009 раскрыто введение пара в район надводной плиты, чтобы понизить температуру до около 450°С или менее, чтобы минимизировать дальнейший крекинг нефтяных фракций в процессе, осуществляемом для понижения тяжелых углеводородов.
Посредством настоящего изобретения, в особенности нацеленного на использование в процессах превращения разных отходов в сингаз (хотя не обязательно ограничено такими процессами), текучие среды для резкого охлаждения вводятся в зону резкого охлаждения, которая находится дополнительно и поверх района надводной плиты, где имеет место по существу полная газификация. Зона резкого охлаждения здесь существует, например, для того, чтобы предотвратить выход мягких частиц летучей золы, содержащей такие предметы, как оксиды металлов, которые имеют точки плавления около 900°С или более. Система резкого охлаждения, как раскрыто здесь, может понизить их температуру до около 850˚С. Система резкого охлаждения не является необходимой и обычно не будет требоваться, чтобы охладить газы далее. Некоторая дальнейшая газификация в зоне резкого охлаждения может быть благоприятной; там, где пар включен в текучую среду резкого охлаждения, это может быть плюсом, поскольку пар может помочь в крекинге тяжелых углеводородов. Но дальнейшая газификация в зоне резкого охлаждения является вообще не основной целью по сравнению с целью минимизации выхода мягких частиц. Более важным соображением является то, что объем зоны резкого охлаждения (дополнительный к объему района надводной плиты) вмещает все расширяющиеся газы из вводимых текучих сред резкого охлаждения, так что поток сингаза из района надводной плиты к выпускным отверстиям является равномерным.
Фиг.3 и 4 предусмотрены для дополнительного объяснения некоторых вариантов осуществления изобретения с системой резкого охлаждения. Эти виды показывают некоторую часть сосуда 10 реактора (используя те же номера ссылок, как для соответствующих элементов на Фиг.1 или 2, хотя они не обязательно являются идентичными), включая в себя на Фиг.3 среднюю секцию 22, содержащую подаваемый слой 26 (не полностью обрисованный на этом виде, но который представляет собой слой, создаваемый подачей, вводимой через одно или более отверстий для подачи, не показанных, которые могут быть подобными отверстиям 23 для подачи по Фиг.1 или иначе), верхнюю секцию 32, включающую в себя как район 35 надводной плиты непосредственно поверх средней секции 32, так и зону 35а резкого охлаждения поверх района 35 надводной плиты. Зона 35а резкого охлаждения имеет впускные отверстия или сопла 42 для текучей среды резкого охлаждения (которые могут быть расположены, как показано на Фиг.2).
Реактор только частично показан на Фиг.3 без донной секции с С слоем и плазменными фурмами, например, как показано и описано в связи с Фиг.1. То, что показано, заключается в том, что поднимающимся горячим газам из подаваемого слоя 26 присуще отсутствие равномерности или стабильности в расположении; более горячие газы сдвигаются вокруг подобно пламени в очаге. Моделирование примера на Фиг.3 показывает, как вводимая текучая среда 42а из левого сопла 42 наталкивается на поднимающуюся очень горячую струю газа, показанную стрелкой 50, и более быстро рассеивается в зоне 35а резкого охлаждения, чем вводимая текучая среда 42b из правого сопла 42, которые наталкивается на более холодную секцию потока газа. Поскольку более горячий газ изменяет расположение, на различные построения впускных отверстий 42 воздействуют подобным образом. Более полная иллюстрация построения впускных отверстий 42 показана на Фиг.4 вместе с текучей средой резкого охлаждения, которая хорошо внедряется в зону 35а резкого охлаждения, но может рассеиваться различным образом в зависимости от температур наталкивающегося газа. Поэтому, как видно, диапазон различающихся струй из впускных отверстий 42 не является обязательно равномерным. Однако построение сопел 42 может в некоторых других вариантах осуществления быть оборудовано системой обнаружения температуры газа и регулирования потока текучей среды, так чтобы вводимая текучая среда могла быть увеличена в объеме, когда более горячий газ наталкивается на конкретное сопло.
Несколько дополнительных комментариев по аспектам бокового входа, множество отверстий для подачи являются следующими и могут относиться к реакторам вообще даже без зоны резкого охлаждения, хотя эта комбинация была бы зачастую желательной. Известно, что пористость подаваемого слоя (такого, как 26) является обычно более высокой вдоль или вблизи боковых стенок, когда подаваемый материал входит сверху. Если используются боковые отверстия для подачи, больше материала отлагается вблизи стенок по причине близости отверстий для подачи. Это приводит в результате к большему сопротивлению потоку газа вдоль стенок. Газ также по меньшей мере иногда вводится через стенки (например, посредством фурм 33 и 34). Боковые отверстия для подачи делают его менее похожим на газы, поднимающиеся из С слоя, чтобы проходить по каналу вдоль стенок без реакции с подаваемыми материалами из-за обхода слоя. Теперь, с боковыми входными отверстиями для подачи любая такая тенденция минимизируется и больше газа вынуждается по направлению к центру сосуда. Следовательно, это может иногда быть дополнительно благоприятным аспектом более низких боковых входных отверстий для подачи с наращиванием подаваемого слоя на стенках сосуда более, чем в центре. Так, в то время как это представляет собой вообще случай, в котором по существу равномерная масса подаваемого слоя является желательной поперек средней секции 22, на протяжении которой отверстие 23 для подачи дает в результате большее наращивание подаваемого материала на стенке 24, что не является значительным ущербом и является предпочтительным иметь большее наращивание подаваемого материала в центре сосуда.
Наклон отверстий 23 для подачи на Фиг.1 является примером инновации, которая дает возможность отверстиям для подачи находиться поверх, но вблизи верхней поверхности подаваемого слоя 26 при отсутствии подаваемого материала в отверстии для подачи, который подвергается тепловой радиации, вызываемой блокадой (например, посредством расплавления). В противном случае может быть желательно обеспечить устройство для охлаждения для отверстий для подачи. Также может быть полезным для боковых отверстий для подачи иметь подающий механизм (например, питатель типа толкача, систему клапан-мигалка, систему запорного бункера, порционный питатель или винтовой питатель).
Что касается системы резкого охлаждения, в некоторых заявках могут быть процессы с подаваемым материалом, в котором высок комплекс углеводородов, и могут возникать озабоченности о нежелательном образовании дегтя. Однако система резкого охлаждения с водой и/или паром, включенными во вводимую текучую среду, будет помогать превращению любых полициклических ароматических углеводородов (PAHs), поднимающихся из района надводной плиты, в зоне резкого охлаждения в СО, СО2, Н2 и Н2О. Многофазные текучие среды (например, вода и пар совместно) могут работать хорошо, как текучая среда резкого охлаждения. Пар может служить, как движущий газ, чтобы атомизировать воду лучше, чем уже имеющаяся водяная струя. Вода, Н2О в любой форме (вода, после ввода, быстро превратится в пар) предлагает преимущество в том, что она дает использовать меньшие массы текучей среды по сравнению с некоторым другим газом, который может быть охладителем при вводе по причине его скрытой теплоты испарения. Также может быть замечено, что объем зоны резкого охлаждения в реакторе может быть функцией размера капель в каплях текучей среды, вводимых или образованных в зоне резкого охлаждения. Более тонкие капли воды будут испаряться более быстро и опускаются на меньшее расстояние в сосуде, чем большие капли.
Резкое охлаждение часто является наилучшим, если регулируется по отношению к скорости, с которой вводится подаваемый материал. Система может быть спроектирована так, что понижение скорости подачи приводит в результате к понижению скорости текучей среды резкого охлаждения, вводимой для того, чтобы контролировать температуру газа.
Выгодные реакторы могут иметь любое количество выпускных каналов, расположенных в любом месте в крыше или верхней боковой стенке. Но два или более каналов могут быть благоприятны в том отношении, что мониторинг температуры в каналах может показывать разницы температур, которые могут быть использованы, чтобы регулировать поток текучей среды резкого охлаждения через соответствующие сопла, чтобы помочь сделать выходы каналов более равномерными, если предпочтительный поток устанавливается в одном канале.
Множественные отверстия для текучей среды, как в обсуждаемом примере, могут работать при индивидуальных различных скоростях, чтобы регулировать изменения в подаваемом слое, которые могут иметь место поперек слоя.
Среди потенциальных вариаций предшествующих примеров, которые находятся внутри более широких аспектов настоящего изобретения, имеют место варианты осуществления, в которых одно или более отверстий для подачи средней секции расположены через боковые стенки ниже верхней поверхности (26а на Фиг.1) подаваемого слоя (26). То есть, сверхнизкие отверстия для подачи (не показанные на Фиг.1) предназначены для подачи материала непосредственно в подаваемый слой (26), и подаваемый слой намеренно продолжается после тех сверхнизких отверстий для подачи, по контрасту с предыдущим описанием.
Фиг.5-8 иллюстрируют примерные реакторы газификаторы с такими сверхнизкими отверстиями для подачи (иногда упоминаемыми, как отверстия для подачи снизу). Фиг.5 имеет контур 110 реактора, аналогичный сосуду 10 по Фиг.1. Хотя в противном случае, подобно реактору по Фиг.1, здесь боковые отверстия 123 для подачи расположены на таком низком уровне в средней секции 122, вблизи С слоя донной секции 112, что подаваемый слой 126 простирается выше уровня отверстий для подачи. На Фиг.5 отверстия 123 для подачи расположены под углом вниз, что может дать возможность некоторой гравитации помогать входу подаваемого материала.
Фиг.6-8 являются подобными Фиг.5 с определенными вариациями. На Фиг.6 отверстия 223 для подачи расположены под углом вверх. На Фиг.7 отверстия 323 для подачи являются горизонтальными и на Фиг.8 одно отверстие 423 для подачи показано с нижней и верхней фурмами 427 и 428 подаваемого слоя, соответственно. (Такие фурмы, описанные в связи с Фиг.1, могут быть предусмотрены в подаваемом слое независимо от характера, расположения, ориентации или количества отверстий для подачи.)
Сверхнизкие отверстия для подачи, или подачи снизу, как например те, что на Фиг.5-8, предпочтительно предусмотрены с механизмом для подачи, как предварительно описано. Вдобавок, может быть важно в большинстве примеров, чтобы каждое такое отверстие для подачи было снабжено устройством охлаждения (например, змеевиком с подводом холодильного агента, как, например, воды, обернутым вокруг отверстия для подачи) для того, чтобы удерживать подаваемый материал достаточно холодным, чтобы быстро двигаться через отверстие для подачи.
Такие сверхнизкие отверстия для подачи могут либо быть только отверстиями для подачи в сосуд реактора, либо они могут быть дополнительными к одному или более других отверстий для подачи, которые могут быть подобными отверстиям 23 для подачи или иначе. Оборудование может быть устроено со сверхнизкими отверстиями для подачи, так чтобы подаваемый материал мог эффективно проталкиваться в подаваемый слой.
Сверхнизкие отверстия для подачи могут быть предусмотрены в сосуде реактора для использования по желанию. Пример их использования может быть там, где подаваемый материал содержит относительно большое количество тонких частиц. Посредством погружения такого материала в подаваемый слоя он будет захвачен поднимающимися горячими газами вначале в подаваемый слой для более полной газификации, которая может иметь место либо в самом подаваемом слое, либо поверх подаваемого слоя.
Дополнительный аспект некоторых соответствующих вариантов осуществления состоит в отделении тонких частиц или вообще частиц от сингаза, который выходит через выпускные отверстия, и рециркуляции их в реактор через любое одно или большее число отверстий для подачи или фурм, включающих те, которые подают внутрь С слоя или непосредственно внутрь подаваемого слоя (посредством сверхнизких отверстий для подачи) или поверх подаваемого слоя.
Множество выпускных отверстий для сингаза является лучшим, чем единственное центральное выпускное отверстие для газа в том отношении, что выпускные отверстия наружу от центра крыши вынуждают поток газа по направлению к боковым стенкам сосуда и предотвращают установление воронки или центрального потока, что приводит в результате к лучшему использованию объема реактора.

Claims (25)

1. Плазменный газификатор, содержащий
сосуд реактора с огнеупорной футеровкой, включающий в себя во время работы донную секцию, содержащую углеродистый слой, среднюю секцию, содержащую слой отложенного подаваемого материала, и верхнюю секцию, включающую зону резкого охлаждения в верхней части верхней секции, крышу поверх зоны резкого охлаждения;
верхняя секция дополнительно отличается тем, что она включает в себя одно или более выпускных отверстий для сингаза, соединенных с внешней канализацией, и расположение множества впускных отверстий для текучей среды резкого охлаждения для ввода текучей среды в зону резкого охлаждения.
2. Газификатор по п. 1, в котором
одно или более выпускных отверстий для сингаза расположено в крыше.
3. Газификатор по п. 2, в котором
множество впускных отверстий для текучей среды резкого охлаждения расположено в крыше.
4. Газификатор по п. 1, в котором
множество впускных отверстий для текучей среды резкого охлаждения по существу симметрично расположено вблизи одного или более выпускных отверстий для сингаза.
5. Газификатор по п. 4, в котором
множество впускных отверстий для текучей среды резкого охлаждения, каждое соединено с внешним подводом текучей среды, включающей воду, пар, смесь воды и пара, рециркулирующий сингаз или азот.
6. Газификатор по п. 1, в котором
средняя секция имеет конфигурацию усеченного перевернутого конуса, который является более широким вблизи верхней секции, чем вблизи донной секции.
7. Газификатор по п. 6, в котором
верхняя секция имеет конфигурацию, которая включает в себя коническую часть, начинающуюся вблизи средней секции, которая имеет общую конфигурацию усеченного конуса, который является более широким у более высокого конца этой первой части, чем вблизи средней секции.
8. Газификатор по п. 7, в котором
конус средней секции имеет больший угол стенки относительно центральной линии сосуда, чем угол стенки конической части верхней секции.
9. Газификатор по п. 7, в котором
зона резкого охлаждения верхней секции расположена в цилиндрической части между ее конической частью и крышей.
10. Газификатор по п. 1, в котором
каждое из множества впускных отверстий для текучей среды резкого охлаждения соединено с внешним подводом текучей среды, включающей в себя воду, пар или смесь воды и пара, рециркулирующий сингаз и/или азот, которые впускаются в зону резкого охлаждения в таком количестве, чтобы существенно минимизировать расплавленные частицы, проходящие через выпускные отверстия для сингаза и отлагающиеся внутри наружной канализации.
11. Газификатор по п. 10, в котором
зона резкого охлаждения верхней секции содержится внутри цилиндрической части, которая простирается вверх от конической части верхней секции, которая находится ниже зоны резкого охлаждения.
12. Газификатор по п. 1, в котором
средняя секция сосуда имеет одно или более отверстий для подачи, простирающихся через его боковую стенку.
13. Газификатор по п. 12, в котором
одно или более отверстий для подачи включает в себя множество отверстий для подачи, которые простираются через боковую коническую стенку средней секции и расположены в местах вокруг боковой конической стенки.
14. Газификатор по п. 12, в котором
одно или более отверстий для подачи включает в себя по меньшей мере одно отверстие для подачи, ориентированное под углом вверх к горизонтальной плоскости поверх слоя отложенного подаваемого материала.
15. Газификатор по п. 12, в котором
одно или более отверстий для подачи включает в себя по меньшей мере одно отверстие для подачи, расположенное ниже верхней поверхности слоя отложенного подаваемого материала.
16. Газификатор по п. 12, в котором
каждое из отверстий для подачи расположено так, чтобы принимать подаваемый материал либо по существу непрерывным и равномерным способом, либо в различных количествах.
17. Газификатор по п. 12, в котором
одно из отверстий для подачи включает в себя по меньшей мере одно отверстие для подачи, расположенное в сочетании с механизмом для подачи, выбранным из группы, состоящей из питателя типа толкача, системы с клапаном-мигалкой, системы запорного бункера, порционного питателя и винтового питателя.
18. Газификатор по п. 1, в котором
донная секция сосуда реактора дополнительно имеет одну или более плазменных фурм, направленных через боковую стенку в углеродистый слой, и также имеет спускное отверстие для расплавленного металла и шлака; и
сосуд реактора дополнительно снабжен одним или более впускными отверстиями, включающими в себя
фурмы углеродного слоя для ввода газа в донную секцию;
нижнее отверстие для горелки для запуска в донной секции;
верхнее отверстие для горелки для запуска в верхней секции;
одну или более нижних фурм подаваемого слоя в нижнем районе средней секции вблизи слоя подаваемого материала;
одну или более верхних фурм подаваемого слоя в верхнем районе средней секции вблизи слоя подаваемого материала и
фурмы в средней секции поверх слоя подаваемого материала для использования для контроля температуры посредством введения кислорода и/или воздуха.
19. Способ газификации твердого подаваемого материала, чтобы производить сингаз, содержащий этапы, на которых
обеспечивают нагреваемый плазмой углеродистый слой в донной секции сосуда реактора;
подают подаваемый материал в среднюю секцию сосуда реактора, чтобы образовать слой отложенного подаваемого материала поверх углеродистого слоя в донной секции;
осуществляют реакцию подаваемого материала с горячими газами, поднимающимися из донной секции;
образуют в средней секции смесь сингаза, содержащую изменяющееся количество непрореагировавших частиц подаваемого материала;
дают возможность смеси сингаза подниматься в верхнюю секцию сосуда реактора по направлению к одному или более выпускных отверстий для сингаза вверху верхней секции;
пропускают непрореагировавшие частицы через первую, более низкую, коническую часть верхней секции; и,
по меньшей мере частично осуществляют резкое охлаждение посредством введения воды, пара или их смеси во вторую, верхнюю часть верхней секции по меньшей мере некоторых расплавленных фрагментов среди непрореагировавших частиц в смеси сингаза до температуры приблизительно 850 °С так, что они делаются по существу твердыми, чтобы не подвергаться прилипанию к стенкам внешней канализации из выпускных отверстий для сингаза.
20. Способ по п. 19, в котором
подача подаваемого материала в среднюю секцию сосуда реактора включает в себя подвод подаваемого материала из одного или более внешних источников подачи через одно или более отверстий для подачи в боковой стенке средней секции сосуда, причем упомянутое отверстие для подачи расположено не выше, чем поверх и вблизи к верхней поверхности слоя отложенного подаваемого материала; и
подвод подаваемого материала через отверстия для подачи в боковой стенке средней секции и содействие дополнительным реакциям в нем перед тем, как смесь сигназа достигает выпускных отверстий.
21. Способ по п. 20, в котором
подачу подаваемого материала выполняют по существу непрерывным и равномерным способом.
22. Способ по п. 19, дополнительно содержащий
замену прореагировавшего углеродистого материала донной секции дополнительным углеродистым материалом, подводимым через одно или более отверстий для подачи в боковой стенке средней секции.
23. Способ по п. 20, в котором
подача подаваемого материала включает в себя использование одного или более отверстий для подачи, расположенных непосредственно поверх слоя отложенного подаваемого материала и наклоненных вверх, чтобы предотвратить чрезмерный нагрев посредством реакций в слое подаваемого материала в отверстиях для подачи.
24. Способ по п. 20, в котором
подача подаваемого материала включает в себя использование одного или более отверстий для подачи, расположенных, чтобы подавать материал непосредственно сбоку в слой отложенного подаваемого материала при практически полном реагировании подаваемого материала из упомянутых отверстий для подачи внутри самого слоя.
25. Плазменный газификатор, содержащий
донную секцию с углеродистым слоем и одним или более плазменных факельных впускных отверстий;
среднюю секцию с одним или более боковыми отверстиями для подачи для подвода подаваемого материала, чтобы образовать подаваемый слой поверх углеродистого слоя донной секции, причем упомянутые отверстия для подачи ориентированы под углом вверх и расположены поверх и вблизи к верхней поверхности подаваемого слоя.
RU2013140830/05A 2011-02-05 2012-01-12 Усовершенствованные плазменные газификаторы для производства сингаза RU2594410C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161462601P 2011-02-05 2011-02-05
US61/462,601 2011-02-05
US13/199,813 2011-09-09
US13/199,813 US9005320B2 (en) 2011-02-05 2011-09-09 Enhanced plasma gasifiers for producing syngas
PCT/US2012/021060 WO2012106084A2 (en) 2011-02-05 2012-01-12 Enhanced plasma gasifiers for producing syngas

Publications (2)

Publication Number Publication Date
RU2013140830A RU2013140830A (ru) 2015-03-10
RU2594410C2 true RU2594410C2 (ru) 2016-08-20

Family

ID=46600040

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013140830/05A RU2594410C2 (ru) 2011-02-05 2012-01-12 Усовершенствованные плазменные газификаторы для производства сингаза

Country Status (7)

Country Link
US (2) US9005320B2 (ru)
EP (1) EP2670823B1 (ru)
CN (2) CN103502400B (ru)
CA (1) CA2825955A1 (ru)
RU (1) RU2594410C2 (ru)
SG (1) SG192222A1 (ru)
WO (1) WO2012106084A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680135C1 (ru) * 2018-08-31 2019-02-15 Общество С Ограниченной Ответственностью "Научно-Производственная Фирма "Эко-Страна" Устройство и способ плазменной газификации углеродсодержащего материала и установка для генерирования тепловой/электрической энергии, в которой используется указанное устройство
RU2785096C1 (ru) * 2020-07-10 2022-12-02 Общество с ограниченной ответственностью "Топливная Экологическая Компания" Газогенераторная установка и способ генерации газа для производства водородсодержащего синтез-газа

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120061618A1 (en) 2010-09-11 2012-03-15 James Santoianni Plasma gasification reactors with modified carbon beds and reduced coke requirements
EP2691496A2 (en) 2011-03-29 2014-02-05 Fuelina, Inc. Hybrid fuel and method of making the same
US9656863B2 (en) 2012-12-20 2017-05-23 Air Products And Chemicals, Inc. Method and apparatus for feeding municipal solid waste to a plasma gasifier reactor
US10190065B2 (en) 2013-03-15 2019-01-29 Mark E. Koenig Feed delivery system and method for gasifier
WO2014143168A1 (en) 2013-03-15 2014-09-18 Koenig Mark E Outlet tube for a material transfer system
US10308885B2 (en) 2014-12-03 2019-06-04 Drexel University Direct incorporation of natural gas into hydrocarbon liquid fuels
CN104449853A (zh) * 2014-12-09 2015-03-25 中国东方电气集团有限公司 一种新型三段式等离子气化炉
KR101617392B1 (ko) * 2015-11-13 2016-05-09 김현영 산업용 고온 개질기 및 개질 방법
CN107216916B (zh) * 2017-07-21 2019-08-16 东莞中普环境科技有限公司 一种固体垃圾等离子气化裂解再生转化方法
CN107586569A (zh) * 2017-10-26 2018-01-16 航天长征化学工程股份有限公司 一种高温粗合成气冷却净化装置
CN112708473B (zh) * 2019-10-25 2023-04-07 中国石油化工股份有限公司 一种多物料与煤共气化生产合成气的气化装置和气化方法
CN111849558B (zh) * 2020-07-27 2021-05-04 哈尔滨工业大学 应用用于煤气化除渣系统的喷淋装置进行除渣的方法
KR20230068425A (ko) * 2020-09-14 2023-05-17 에스지 유에스 홀딩스, 엘엘씨 폐기물, 바이오제닉 폐기물 및 바이오매스로부터의 수소 생산 방법, 프로세스 및 시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2105040C1 (ru) * 1995-03-29 1998-02-20 Акционерное общество открытого типа "НовосибирскНИИХиммаш" Комбинированная парогазовая установка с плазмотермической газификацией угля

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627455A (en) 1947-06-05 1953-02-03 Union Oil Co Gasification process and apparatus
US2875137A (en) 1955-10-24 1959-02-24 Union Oil Co Solids feeding process and apparatus
FR1310193A (ru) 1960-12-24 1963-03-06
US3476850A (en) 1966-04-05 1969-11-04 Kuraray Co Low elongation set spandex filaments and process for the preparation thereof
US3476650A (en) 1966-09-26 1969-11-04 Phillips Petroleum Co Oil shale process
US3602362A (en) 1967-12-11 1971-08-31 Universal Inc Conveyor means
GB1569297A (en) * 1977-02-18 1980-06-11 British Gas Corp Hearth arrangements and coal gasification plants incorporating such hearth arrangements
DE2742222C2 (de) 1977-09-20 1987-08-20 Carbon Gas Technologie GmbH, 4030 Ratingen Verfahren und Vorrichtung zur Gaserzeugung aus festen Brennstoffen im Wirbelbett
US4197092A (en) 1978-07-10 1980-04-08 Koppers Company, Inc. High pressure coal gasifier feeding apparatus
DE3439404C2 (de) 1983-11-05 1986-10-16 Rheinische Braunkohlenwerke AG, 5000 Köln Düse zum Einblasen von exothermen und endothermen Vergasungsmitteln in einen Wirbelbett-Feststoffvergaser
US4761793A (en) 1987-05-08 1988-08-02 Electric Power Research Institute Plasma fired feed nozzle
US4998486A (en) 1989-04-27 1991-03-12 Westinghouse Electric Corp. Process and apparatus for treatment of excavated landfill material in a plasma fired cupola
DE4417082C1 (de) 1994-05-17 1995-10-26 Franz Josef Meurer Reaktor zum thermischen Vergasen von festem Brennstoff
US5728193A (en) 1995-05-03 1998-03-17 Philip Services Corp. Process for recovering metals from iron oxide bearing masses
US5544597A (en) 1995-08-29 1996-08-13 Plasma Technology Corporation Plasma pyrolysis and vitrification of municipal waste
US6719952B1 (en) 2000-02-21 2004-04-13 Westinghouse Electric Company Llc Fluidized bed reaction design
US20040232046A1 (en) 2001-08-21 2004-11-25 Hiroshi Tanaka Method and apparatus for recycling hydrocarbon resource
US6987792B2 (en) * 2001-08-22 2006-01-17 Solena Group, Inc. Plasma pyrolysis, gasification and vitrification of organic material
US7452392B2 (en) 2003-11-29 2008-11-18 Nick Peter A Process for pyrolytic heat recovery enhanced with gasification of organic material
US7262384B2 (en) 2004-09-30 2007-08-28 Novacentrix, Corp. Reaction vessel and method for synthesizing nanoparticles using cyclonic gas flow
WO2006128286A1 (en) * 2005-06-03 2006-12-07 Plasco Energy Group Inc. A system for the conversion of coal to a gas of a specified composition
KR20080040664A (ko) * 2005-06-03 2008-05-08 플라스코 에너지 그룹 인코포레이티드 탄소질 공급원료를 특정 조성의 가스로 변환하기 위한 장치
CN101495808B (zh) 2006-05-05 2011-12-07 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 带有横向传送系统的水平取向气化器
US8684070B2 (en) * 2006-08-15 2014-04-01 Babcock & Wilcox Power Generation Group, Inc. Compact radial platen arrangement for radiant syngas cooler
CN1994865B (zh) * 2006-12-12 2011-05-18 华东理工大学 两段气化并耦合热量回收和洗涤于一体的气化装置和应用
US7632394B2 (en) * 2007-05-29 2009-12-15 Westinghouse Plasma Corporation System and process for upgrading heavy hydrocarbons
MX2007008317A (es) * 2007-07-06 2009-02-26 Aba Res Sa De Cv Gasificador por microondas.
US9074152B2 (en) 2007-09-12 2015-07-07 General Electric Company Plasma-assisted waste gasification system
US20090307974A1 (en) 2008-06-14 2009-12-17 Dighe Shyam V System and process for reduction of greenhouse gas and conversion of biomass
US8574329B2 (en) * 2008-12-11 2013-11-05 General Electric Company Method of operating a gasifier
CN105126723A (zh) 2009-02-11 2015-12-09 阿尔特Nrg公司 等离子体气化反应器
US20100199557A1 (en) 2009-02-11 2010-08-12 Dighe Shyam V Plasma gasification reactor
MY151894A (en) * 2009-07-17 2014-07-14 Green Energy And Technology Sdn Bhd Advanced thermal reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2105040C1 (ru) * 1995-03-29 1998-02-20 Акционерное общество открытого типа "НовосибирскНИИХиммаш" Комбинированная парогазовая установка с плазмотермической газификацией угля

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680135C1 (ru) * 2018-08-31 2019-02-15 Общество С Ограниченной Ответственностью "Научно-Производственная Фирма "Эко-Страна" Устройство и способ плазменной газификации углеродсодержащего материала и установка для генерирования тепловой/электрической энергии, в которой используется указанное устройство
RU2785096C1 (ru) * 2020-07-10 2022-12-02 Общество с ограниченной ответственностью "Топливная Экологическая Компания" Газогенераторная установка и способ генерации газа для производства водородсодержащего синтез-газа

Also Published As

Publication number Publication date
RU2013140830A (ru) 2015-03-10
CA2825955A1 (en) 2012-08-09
EP2670823B1 (en) 2018-07-04
SG192222A1 (en) 2013-09-30
CN103502400B (zh) 2017-02-15
US20120199795A1 (en) 2012-08-09
US9005320B2 (en) 2015-04-14
US9540579B2 (en) 2017-01-10
WO2012106084A3 (en) 2013-03-21
EP2670823A2 (en) 2013-12-11
US20150166914A1 (en) 2015-06-18
CN103502400A (zh) 2014-01-08
CN106675654A (zh) 2017-05-17
WO2012106084A2 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
RU2594410C2 (ru) Усовершенствованные плазменные газификаторы для производства сингаза
CA2306889C (en) Method and device for producing combustible gas, synthesis gas and reducing gas from solid fuels
US20100199557A1 (en) Plasma gasification reactor
KR102203125B1 (ko) 단계식 가스화에서의 제 2 단 가스화기
US20150090938A1 (en) Method and Device for the Entrained Flow Gasification of Solid Fuels under Pressure
CA3008823C (en) Plasma gasification reactor
EP2285939B1 (en) Method for multistage gasification
WO2013165122A1 (ko) 비 용융 및 부분 용융형 분류층 가스화기
CA2716774A1 (en) Gasification device with slag removal facility
KR20010072468A (ko) 용융 선철을 제조하는 방법
US9222038B2 (en) Plasma gasification reactor
US20100199556A1 (en) Plasma gasification reactor
EP2748284B1 (en) Gasification process
CN113166661A (zh) 用于气化和/或熔化原料的反应器和工艺
US20130320266A1 (en) Gasification reactor and process
CN114891539B (zh) 一种煤气化设备
US4569681A (en) Fluidization and solids recirculation process for a fluidized bed gasifier
WO2023164079A1 (en) Fixed bed gasifier
AU2015202017B2 (en) Plasma gasification reactor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190113