RU2590693C1 - Способ получения нанокапсул адаптогенов в пектине - Google Patents

Способ получения нанокапсул адаптогенов в пектине Download PDF

Info

Publication number
RU2590693C1
RU2590693C1 RU2015121122/15A RU2015121122A RU2590693C1 RU 2590693 C1 RU2590693 C1 RU 2590693C1 RU 2015121122/15 A RU2015121122/15 A RU 2015121122/15A RU 2015121122 A RU2015121122 A RU 2015121122A RU 2590693 C1 RU2590693 C1 RU 2590693C1
Authority
RU
Russia
Prior art keywords
nanocapsules
suspension
pectin
esterified pectin
sulfuric ether
Prior art date
Application number
RU2015121122/15A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2015121122/15A priority Critical patent/RU2590693C1/ru
Application granted granted Critical
Publication of RU2590693C1 publication Critical patent/RU2590693C1/ru

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области нанотехнологии и фармацевтики. Описан способ получения нанокапсул адаптогенов в оболочке из пектина. В качестве материала оболочки используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектины. В качестве адаптогена используют настойку лимонника китайского, родиолы розовой и аралии маньчжурской. Согласно способу настойку адаптогена при перемешивании добавляют в суспензию пектина в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества. Массовое соотношение настойка адаптогена:пектин составляет 1:1 или 1:3. Затем в качестве осадителя приливают серный эфир. Полученную суспензию нанокапсул отфильтровывают, промывают серным эфиром и сушат при 25°С. Процесс осуществляют в течение 15 минут. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 2 ил., 28 пр.

Description

Изобретение относится к области нанокапсулирования адаптогенов в яблочном и цитрусовом пектине (высоко- и низкоэтерефицированном) физико-химическим методом.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от - 15 до - 50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, которая содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим и бупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологи.
Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.
В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, сожержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является тепло-денатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных денным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. 20110223314, МПК B05D 7/00; 20060101 B05D 007/00, В05С 3/02; 20060101 В05С 003/02, В05С 11/00; 20060101 В05С 011/00, B05D 1/18; 20060101 B05D 001/18; B05D 3/02; 20060101 B05D 003/02, B05D 3/06; 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатками данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US МПК C11D 3/37; B01J 13/08; C11D 17/00 опубликован 01.12.2011, описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US, МПК A61K 8/11, B01J 2/00, B01J 13/06, C11D 3/37, C11D 3/39, C11D 17/00, опубликован 13.10.2011, предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).
В пат.WO/2011/104526 GB, МПК B01J 13/00, B01J 13/14; С09В 67/00; C09D 11/02, опубликован 01.09.2011, предложен способ получения дисперсии инкапсулированных твердых частиц в жидкой среде, включающий: а) измельчение композиции, включающей твердые, жидкие среды и полиуретановые диспергаторы с кислотным числом от 0,55 до 3,5 ммоль на грамм диспергатора, указанная композиция включает от 5 до 40 частей полиуретанового диспергатора на 100 частей твердых, изделий, по весу; и б) сшивания полиуретанового диспергатора при наличии твердой и жидкой среды, так как для инкапсуляции твердых частиц которой полиуретановый диспергатор содержит менее 10% от веса повторяющихся элементов из полимерных спиртов.
Недостатками предложенного способа являются сложность и длительность процесса получения микрокапсул, а также то, что инкапсулированные частицы предложенным способом полезны в качестве красителей в чернилах, особенно чернил струйной печати, для фармацевтической промышленности данная методика неприменима.
В пат. WO/2011/056935 US, МПК C11D 17/00; A61K 8/11, B01J 13/02, C11D 3/50, опубликован 12.05.2011, описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, состоящей из полиэтилена, полиамидов, полистиролов, полиизопренов, поликарбонаты, полиэфиры, полиакрилатов, полимочевины, полиуретанов, полиолефинов, полисахаридов, эпоксидных смол, виниловых полимеров и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемым для материала сердечника и материалов в окружающей среде, в которой инкапсулируются агент выгода будет использоваться, чтобы обеспечивать выгоды, которые будут получены. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воска, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул адаптогенов в пектине, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул адаптогенов, отличающийся тем, что в качестве оболочки нанокапсул используется пектины, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - серного эфира.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул адаптогенов, пектинов, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - этансерного эфира.
Результатом предлагаемого метода являются получение нанокапсул адаптогенов: лимонника китайского, родиолы розовой, аралии маньчжурской, элеутерокока, жень-шеня в пектинах при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1. Получение нанокапсул лимонника китайского в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул лимонника китайского в яблочном низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г белого порошка. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул лимонника китайского в яблочном высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат рот 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул лимонника китайского в яблочном высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат рот 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 5. Получение нанокапсул лимонника китайского в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 6. Получение нанокапсул лимонника китайского в цитрусовом низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира.
Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г белого порошка. Выход составил 100%.
ПРИМЕР 7. Получение нанокапсул лимонника китайского в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 8. Получение нанокапсул лимонника китайского в цитрусовом высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки лимонника китайского. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 9. Получение нанокапсул родиолы розовой в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4 г белого порошка. Выход составил 100%.
ПРИМЕР 10. Получение нанокапсул родиолы розовой в яблочном низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2 г белого порошка. Выход составил 100%.
ПРИМЕР 11. Получение нанокапсул родиолы розовой в яблочном высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 12. Получение нанокапсул родиолы розовой в яблочном высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 13. Получение нанокапсул родиолы розовой в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 14. Получение нанокапсул родиолы розовой в цитрусовом низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира.
Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С. Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 15. Получение нанокапсул родиолы розовой в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 16. Получение нанокапсул родиолы розовой в цитрусовом высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 1 мл настойки родиолы розовой. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 17. Получение нанокапсул аралии маньчжурской в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 18. Получение нанокапсул аралии маньчжурской в яблочном низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 19. Получение нанокапсул аралии маньчжурской в яблочном высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 20. Получение нанокапсул аралии маньчжурской в яблочном высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 21. Получение нанокапсул аралии маньчжурской в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 22. Получение нанокапсул аралии маньчжурской в цитрусовом низкоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира.
Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 23. Получение нанокапсул аралии маньчжурской в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 24. Получение нанокапсул аралии маньчжурской в цитрусовом высокоэтерифицированном пектине, соотношение 1:1
К 1 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества приливают 5 мл настойки аралии маньчжурской. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат 25°С.
Получено 2,0 г порошка. Выход составил 100%.
ПРИМЕР 25. Получение нанокапсул элеутерококка в яблочном низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 1 г элеутерококка. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г белого порошка. Выход составил 100%.
ПРИМЕР 26. Получение нанокапсул элеутерококка в цитрусовом низкоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии низкоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества прибавляют 1 г элеутерококка. Полученную смесь ставят на магнитную мешалку и включают перемешивание. Затем добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 27. Получение нанокапсул женьшеня в цитрусовом высокоэтерифицированном пектине, соотношение 1:3
К 3 г суспензии высокоэтерифицированного пектина в бутаноле, 0,01 г препарата Е472с в качестве поверхностно-активного вещества прибавляют 1 г женьшеня. Полученную смесь ставят на магнитную мешалку и включают перемешивание. После этого добавляют 5 мл серного эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре Шотта 16 класса пор, промывают серным эфиром, сушат при 25°С.
Получено 4,0 г порошка. Выход составил 100%.
ПРИМЕР 28. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.
Получены нанокапсулы адаптогенов в яблочном и цитрусовом пектине физико-химическим методом осаждения нерастворителем с использованием серного эфира в качестве нерастворителя. Процесс прост в исполнении и длится в течение 15 минут.
Пектины (Е440) широко используются в производстве кондитерских желейных и пастильных изделий, для стабилизации кисломолочных продуктов, при производстве варенья, а также в хлебобулочных и мучных кондитерских изделиях. Имеются данные по использованию пектинов в качестве стабилизаторов консистенции кремов, лосьонов, шампуней.
Е472с - сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.

Claims (1)

  1. Способ получения нанокапсул адаптогенов в пектине, характеризующийся тем, что в качестве оболочки нанокапсул используется низкоэтерифицированный или высокоэтерифицированный яблочный или цитрусовый пектин, при этом настойку адаптогена, выбранного из лимонника китайского, родиолы розовой и аралии маньчжурской, при перемешивании добавляют в суспензию указанного пектина в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества при массовом соотношении настойка адаптогена:пектин 1:1 или 1:3, затем в качестве осадителя приливают серный эфир, полученную суспензию нанокапсул отфильтровывают, промывают серным эфиром и сушат при 25°С, процесс осуществляют в течение 15 минут.
RU2015121122/15A 2015-06-02 2015-06-02 Способ получения нанокапсул адаптогенов в пектине RU2590693C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015121122/15A RU2590693C1 (ru) 2015-06-02 2015-06-02 Способ получения нанокапсул адаптогенов в пектине

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015121122/15A RU2590693C1 (ru) 2015-06-02 2015-06-02 Способ получения нанокапсул адаптогенов в пектине

Publications (1)

Publication Number Publication Date
RU2590693C1 true RU2590693C1 (ru) 2016-07-10

Family

ID=56372071

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015121122/15A RU2590693C1 (ru) 2015-06-02 2015-06-02 Способ получения нанокапсул адаптогенов в пектине

Country Status (1)

Country Link
RU (1) RU2590693C1 (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659824C1 (ru) * 2017-02-27 2018-07-04 Александр Александрович Кролевец Способ производства мороженого с наноструктурированным экстрактом элеутерококка
RU2659825C1 (ru) * 2017-06-21 2018-07-04 Александр Александрович Кролевец Способ получения кофейного мороженого с наноструктурированным экстрактом аралии маньчжурской
RU2659826C1 (ru) * 2017-07-27 2018-07-04 Александр Александрович Кролевец Способ производства мороженого с наноструктурированным экстрактом аралии маньчжурской
RU2663974C1 (ru) * 2017-05-29 2018-08-14 Александр Александрович Кролевец Способ производства мороженого с шоколадом и экстрактом лимонника китайского
RU2674603C1 (ru) * 2018-01-17 2018-12-11 Александр Александрович Кролевец Способ производства кофейного мороженого с коньяком и наноструктурированным экстрактом лимонника китайского
RU2685125C1 (ru) * 2018-09-03 2019-04-16 Александр Александрович Кролевец Способ производства хлеба, содержащего наноструктурированный экстракт женьшеня
RU2737550C1 (ru) * 2020-06-15 2020-12-01 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ производства смоквы, содержащей аралию маньчжурскую

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU676316A1 (ru) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Способ получени микрокапсул
SU707510A3 (ru) * 1975-10-30 1979-12-30 Стауффер Кемикал Компани (Фирма) Способ получени микрокапсул
RU2098121C1 (ru) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Микрокапсула для длительного высвобождения физиологически активного пептида
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU707510A3 (ru) * 1975-10-30 1979-12-30 Стауффер Кемикал Компани (Фирма) Способ получени микрокапсул
SU676316A1 (ru) * 1978-03-24 1979-07-30 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Способ получени микрокапсул
RU2098121C1 (ru) * 1990-02-13 1997-12-10 Такеда Кемикал Индастриз, Лтд. Микрокапсула для длительного высвобождения физиологически активного пептида
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЧУЕШОВ В.И. "Промышленная технология лекарств в 2-х томах", Харьков, Изд-во НФАУ, МТК-Книга, 2002, т.2, стр.383. NAGAVARMA B. V. N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl.3, 2012, pages 16-23. СОЛОДОВНИК В.Д. "Микрокапсулирование", Москва, "Химия", 1980, стр.136. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2659824C1 (ru) * 2017-02-27 2018-07-04 Александр Александрович Кролевец Способ производства мороженого с наноструктурированным экстрактом элеутерококка
RU2663974C1 (ru) * 2017-05-29 2018-08-14 Александр Александрович Кролевец Способ производства мороженого с шоколадом и экстрактом лимонника китайского
RU2659825C1 (ru) * 2017-06-21 2018-07-04 Александр Александрович Кролевец Способ получения кофейного мороженого с наноструктурированным экстрактом аралии маньчжурской
RU2659826C1 (ru) * 2017-07-27 2018-07-04 Александр Александрович Кролевец Способ производства мороженого с наноструктурированным экстрактом аралии маньчжурской
RU2674603C1 (ru) * 2018-01-17 2018-12-11 Александр Александрович Кролевец Способ производства кофейного мороженого с коньяком и наноструктурированным экстрактом лимонника китайского
RU2685125C1 (ru) * 2018-09-03 2019-04-16 Александр Александрович Кролевец Способ производства хлеба, содержащего наноструктурированный экстракт женьшеня
RU2737550C1 (ru) * 2020-06-15 2020-12-01 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ производства смоквы, содержащей аралию маньчжурскую

Similar Documents

Publication Publication Date Title
RU2590693C1 (ru) Способ получения нанокапсул адаптогенов в пектине
RU2606854C1 (ru) Способ получения нанокапсул сухого экстракта шпината
RU2561586C1 (ru) Способ получения микрокапсул биопага-д в пектине
RU2550950C1 (ru) Способ получения нанокапсул биопага-д
RU2555824C1 (ru) Способ получения микрокапсул сухого экстракта топинамбура в пектине
RU2500404C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне
RU2619331C2 (ru) Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия
RU2563618C2 (ru) Способ получения микрокапсул биопага-д в пектине
RU2605614C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2640130C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2599007C1 (ru) Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия
RU2599841C1 (ru) Способ получения нанокапсул аминогликозидных антибиотиков в альгинате натрия
RU2578403C2 (ru) Способ получения нанокапсул цитокининов
RU2595825C1 (ru) Способ получения нанокапсул иодида калия в пектине
RU2640490C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди
RU2632428C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура в ксантановой камеди
RU2640127C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2634256C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2654229C1 (ru) Способ получения нанокапсул витаминов в пектине
RU2555472C2 (ru) Способ получения микрокапсул антиоксидантов в пектине
RU2622752C1 (ru) Способ получения нанокапсул сухого экстракта шпината
RU2555782C1 (ru) Способ получения нанокапсул сульфата глюкозамина в конжаковой камеди в гексане
RU2564898C1 (ru) Способ получения нанокапсул антибиотиков
RU2580613C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2641190C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура в пектине