RU2640127C2 - Способ получения нанокапсул сухого экстракта топинамбура - Google Patents

Способ получения нанокапсул сухого экстракта топинамбура Download PDF

Info

Publication number
RU2640127C2
RU2640127C2 RU2016114975A RU2016114975A RU2640127C2 RU 2640127 C2 RU2640127 C2 RU 2640127C2 RU 2016114975 A RU2016114975 A RU 2016114975A RU 2016114975 A RU2016114975 A RU 2016114975A RU 2640127 C2 RU2640127 C2 RU 2640127C2
Authority
RU
Russia
Prior art keywords
nanocapsules
microcapsules
toluene
producing
suspension
Prior art date
Application number
RU2016114975A
Other languages
English (en)
Other versions
RU2016114975A (ru
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2016114975A priority Critical patent/RU2640127C2/ru
Publication of RU2016114975A publication Critical patent/RU2016114975A/ru
Application granted granted Critical
Publication of RU2640127C2 publication Critical patent/RU2640127C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта топинамбура. Способ характеризуется тем, что к суспензии, содержащей каррагинан в бутаноле и препарат Е472с в качестве поверхностно-активного вещества, добавляют сухой экстракт топинамбура, после этого добавляют толуол, полученную суспензию нанокапсул отфильтровывают, промывают толуолом, сушат, при этом соотношение ядро:оболочка составляет 1:1, 1:3, 1:5 или 5:1. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использован в пищевой промышленности. 3 ил., 5 пр.

Description

Изобретение относится к области нанотехнологии и пищевой промышленности.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 (МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация) предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. 2095055 (МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997) предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°C, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. 2091071 (МПК А61К 35/10, Российская Федерация, опубликован 27.09.1997) предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. 2076765 (МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997) предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. 2101010 (МПК А61К 9/52, А61К 9/50, А61К 9/22, А61К 9/20, А61К 31/19, Российская Федерация, опубликован 10.01.1998) предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. 2139046 (МПК А61К 9/50, А61К 49/00, А61К 51/00, Российская Федерация, опубликован 10.10.1999) предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин и, возможно, терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использования высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В пат. 2159037 (МПК A01N 25/28, A01N 25/30, Российская Федерация, опубликован 20.11.2000) предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащие твердый агрохимический материал 0,1-55 мас. %, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас. % неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.
В пат. 2173140 (МПК А61К 009/50, А61К 009/127, Российская Федерация, опубликован 10.09.2001) предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662 (МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация) предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES (МПК B01J 3/00; А61К 9/14; А61К 9/10; А61К 9/12, опубликован 08.07.2010) предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.
Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.
В пат. WO/2010/119041 ЕР (МПК A23L 1/00, опубликован 21.10.2010) предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронных размеров поры, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. WO/2011/003805 ЕР МПК B01J 13/18; B65D 83/14; C08G 18/00 описан способ получения микрокапсул, которые подходят для использования в композициях, образующих герметики, пены, покрытия или клеи.
Недостатком предложенного способа является применение центрифугирования для отделения от технологической жидкости, длительность процесса, а также применение данного способа не в фармацевтической промышленности.
В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US (МПК C11D 3/37; B01J 13/08; C11D 17/00, опубликован 01.12.2011) описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US (МПК А61К 8/11; B01J 2/00; B01J 13/06; C11D 3/37; C11D 3/39; C11D 17/00, опубликован 13.10.2011) предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительной сушилки для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).
Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительной сушилки для сбора частиц (Spray-4М8 Сушилка от ProCepT, Бельгия)).
Наиболее близким методом является способ, предложенный в пат. 2134967 (МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул сухого экстракта топинамбура в каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул сухого экстракта топинамбура, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - толуола.
Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул сухого экстракта топинамбура каррагинана, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - толуола.
Результатом предлагаемого метода являются получение нанокапсул сухого экстракта топинамбура в каррагинане при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.
ПРИМЕР 1. Получение нанокапсул сухого экстракта топинамбура, соотношение ядро:оболочка 1:3
К 3 г суспензии каррагинана в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г сухого экстракта топинамбура медленно порциями добавляют в суспензию каррагинана в бутаноле. Затем добавляют 5 мл толуола. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают толуолом, сушат.
Получено 4 г кремового порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул сухого экстракта топинамбура, соотношение ядро:оболочка 1:1
К 1 г суспензии каррагинана в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г сухого экстракта топинамбура переносят в суспензию каррагинана в бутаноле. После этого добавляют 5 мл толуола. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают толуолом, сушат.
Получено 2 г с кремовым оттенком порошка. Выход составил 100%.
ПРИМЕР 3Получение нанокапсул сухого экстракта топинамбура, соотношение ядро:оболочка 1:5
К 5 г суспензии каррагинана в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 1 г сухого экстракта топинамбура переносят в суспензию каррагинана в бутаноле. После этого добавляют 10 мл толуола. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают толуолом, сушат.
Получено 6 г с кремовым оттенком порошка. Выход составил 100%.
ПРИМЕР 4. Получение нанокапсул сухого экстракта топинамбура, соотношение ядро:оболочка 5:1
К 1 г суспензии каррагинана в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Полученную смесь ставят на магнитную мешалку и включают перемешивание. 5 г сухого экстракта топинамбура переносят в суспензию каррагинана в бутаноле. После этого добавляют 10 мл толуола. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают толуолом, сушат.
Получено 6 г с кремовым оттенком порошка. Выход составил 100%.
ПРИМЕР 5. Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length: Auto, Min Expected Size: Auto. Длительность единичного измерения 215s, использование шприцевого насоса.
Препарат Е472с - сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием.
Получены нанокапсулы сухого экстракта топинамбура в каррагинане физико-химическим методом осаждения нерастворителем с использованием толуола в качестве нерастворителя. Процесс прост в исполнении и длится в течение 15 минут,
Предложенная методика пригодна для косметической и фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения микрокапсул сухого экстракта топинамбура в каррагинане.

Claims (1)

  1. Способ получения нанокапсул сухого экстракта топинамбура, который характеризуется тем, что к суспензии, содержащей каррагинан в бутаноле и препарат Е472с в качестве поверхностно-активного вещества, добавляют сухой экстракт топинамбура, после этого добавляют толуол, полученную суспензию нанокапсул отфильтровывают, промывают толуолом, сушат, при этом соотнощение ядро:оболочка составляет 1:1, 1:3, 1:5 или 5:1.
RU2016114975A 2016-04-18 2016-04-18 Способ получения нанокапсул сухого экстракта топинамбура RU2640127C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016114975A RU2640127C2 (ru) 2016-04-18 2016-04-18 Способ получения нанокапсул сухого экстракта топинамбура

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016114975A RU2640127C2 (ru) 2016-04-18 2016-04-18 Способ получения нанокапсул сухого экстракта топинамбура

Publications (2)

Publication Number Publication Date
RU2016114975A RU2016114975A (ru) 2017-10-23
RU2640127C2 true RU2640127C2 (ru) 2017-12-26

Family

ID=60153754

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016114975A RU2640127C2 (ru) 2016-04-18 2016-04-18 Способ получения нанокапсул сухого экстракта топинамбура

Country Status (1)

Country Link
RU (1) RU2640127C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671818C1 (ru) * 2018-01-17 2018-11-07 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта зверобоя

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064544A1 (en) * 2003-01-22 2004-08-05 Durafizz, Llc Microencapsulation for sustained delivery of carbon dioxide
RU2496483C1 (ru) * 2012-03-20 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ получения микрокапсул

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064544A1 (en) * 2003-01-22 2004-08-05 Durafizz, Llc Microencapsulation for sustained delivery of carbon dioxide
RU2496483C1 (ru) * 2012-03-20 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ получения микрокапсул

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAGAVARMA B. V. N. Different techniques for preparation of polymeric nanoparticles, Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. *
Биологический энциклопедический словарь. Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986. ЧУЕШОВ В.И. Промышленная технология лекарств. В 2-х томах, том 2, 2002, стр. 383. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2671818C1 (ru) * 2018-01-17 2018-11-07 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта зверобоя

Also Published As

Publication number Publication date
RU2016114975A (ru) 2017-10-23

Similar Documents

Publication Publication Date Title
RU2606854C1 (ru) Способ получения нанокапсул сухого экстракта шпината
RU2550918C1 (ru) Способ получения нанокапсул антибиотиков в геллановой камеди
RU2590693C1 (ru) Способ получения нанокапсул адаптогенов в пектине
RU2561586C1 (ru) Способ получения микрокапсул биопага-д в пектине
RU2569736C1 (ru) Способ получения нанокапсул аденина в альгинате натрия
RU2555824C1 (ru) Способ получения микрокапсул сухого экстракта топинамбура в пектине
RU2640130C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2619331C2 (ru) Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия
RU2563618C2 (ru) Способ получения микрокапсул биопага-д в пектине
RU2605614C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2550919C1 (ru) Способ получения нанокапсул антибиотиков в каррагинане
RU2640127C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2632428C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура в ксантановой камеди
RU2622752C1 (ru) Способ получения нанокапсул сухого экстракта шпината
RU2654229C1 (ru) Способ получения нанокапсул витаминов в пектине
RU2640490C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди
RU2578403C2 (ru) Способ получения нанокапсул цитокининов
RU2595825C1 (ru) Способ получения нанокапсул иодида калия в пектине
RU2634256C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2626821C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2641190C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура в пектине
RU2580613C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2564898C1 (ru) Способ получения нанокапсул антибиотиков
RU2599007C1 (ru) Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия
RU2555472C2 (ru) Способ получения микрокапсул антиоксидантов в пектине