RU2606854C1 - Способ получения нанокапсул сухого экстракта шпината - Google Patents

Способ получения нанокапсул сухого экстракта шпината Download PDF

Info

Publication number
RU2606854C1
RU2606854C1 RU2015145375A RU2015145375A RU2606854C1 RU 2606854 C1 RU2606854 C1 RU 2606854C1 RU 2015145375 A RU2015145375 A RU 2015145375A RU 2015145375 A RU2015145375 A RU 2015145375A RU 2606854 C1 RU2606854 C1 RU 2606854C1
Authority
RU
Russia
Prior art keywords
nanocapsules
producing
carboxymethyl cellulose
spinach extract
sodium carboxymethyl
Prior art date
Application number
RU2015145375A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Илья Александрович Богачев
Вячеслав Сергеевич Андреенков
Оксана Валерьевна Жданова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Priority to RU2015145375A priority Critical patent/RU2606854C1/ru
Application granted granted Critical
Publication of RU2606854C1 publication Critical patent/RU2606854C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/21Amaranthaceae (Amaranth family), e.g. pigweed, rockwort or globe amaranth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе. Способ включает диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии E472c в качестве поверхностно-активного вещества при перемешивании со скоростью 1000 об/сек. Далее добавляют осадитель диэтиловый эфир и фильтруют полученную суспензию. Нанокапсулы промывают диэтиловым эфиром и сушат готовый продукт при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. Изобретение может быть использовано, в частности, в косметической и пищевой промышленности. 2 ил., 3 пр.

Description

Изобретение относится к области нанотехнологий и может быть использовано, в частности, в косметической и пищевой промышленности.
Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. РФ №2092155, МПК A61K047/02, A61K009/16 (опубликован 10.10.1997) предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.
Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.
В пат. РФ №2095055, МПК A61K9/52, A61K9/16, A61K9/10 (опубликован 10.11.1997) предложен способ получения твердых непористых микросфер, который включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50oC и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.
Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.
В пат. РФ №2091071, МПК A61K35/10 (опубликован 27.09.1997) предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.
Недостатками способа являются применение шаровой мельницы и длительность процесса.
В пат. РФ №2076765, МПК B01D9/02 (опубликован 10.04.1997) предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.
Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.
В пат. РФ №2101010, МПК A61K9/52, A61K9/50, A61K9/22, A61K9/20, A61K31/19 (опубликован 10.01.1998) предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.
Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.
В пат. РФ №2139046, МПК A61K9/50, A61K49/00, A61K51/00 (10.10.1999) предложен способ получения микрокапсул следующим образом. Эмульсию масло-в-воде готовят из органического раствора, содержащего растворенный моно-, ди-, триглицерид, предпочтительно трипальмитин или тристеарин, и возможно терапевтически активное вещество, и водного раствора, содержащего поверхностно-активное вещество, возможно выпаривают часть растворителя, добавляют редиспергирующий агент и смесь подвергают сушке вымораживанием. Подвергнутую сушке вымораживанием смесь затем снова диспергируют в водном носителе для отделения микрокапсул от остатков органических веществ и полусферические или сферические микрокапсулы высушивают.
Недостатками предложенного способа являются сложность и длительность процесса, использование высушивания вымораживанием, что занимает много времени и замедляет процесс получения микрокапсул.
В пат. РФ №2159037, МПК A01N25/28, A01N25/30 (опубликован 20.11.2000) предложен способ получения микрокапсул реакцией полимеризации на границе раздела фаз, содержащих твердый агрохимический материал 0,1-55 мас.%, суспендированный в перемешивающейся с водой органической жидкости, 0,01-10 мас.% неионного диспергатора, активного на границе раздела фаз и не действующего как эмульгатор.
Недостатки предложенного метода: сложность, длительность, использование высокосдвигового смесителя.
В пат. РФ №2173140, МПК A61K009/50, A61K009/127 (опубликован 10.09.2001) предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. РФ №2359662, МПК A61K009/56, A61J003/07, B01J013/02, A23L001/00  (опубликован 27.06.2009) предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
В пат. WO/2010/076360 ES, МПК B01J13/00; A61K9/14; A61K9/10; A61K9/12 (опубликован 08.07.2010) предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.
Недостатком предложенного способа является сложность процесса, что приводит к получению капсул с плавающим выходом.
В пат. WO/2010/119041 EP, МПК A23L1/00 (опубликован 21.10.2010) предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионного полисахарида с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации, также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°C в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес /объем). Как правило, осуществление процесса осуществляется путем фильтрации через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронные размеры пор, например от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG,. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.
Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.
В пат. US №20110223314, МПК B05D 7/00 20060101 B05D007/00, B05C 3/02 20060101 B05C003/02; B05C 11/00 20060101 B05C011/00; B05D 1/18 20060101 B05D001/18; B05D 3/02 20060101 B05D003/02; B05D 3/06 20060101 B05D003/06 (опубликован 10.03.2011) описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.
Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.
В пат. WO/2011/150138 US, МПК C11D3/37; B01J13/08; C11D17/00 (опубликован 01.12.2011) описан способ получения микрокапсул твердых растворимых в воде агентов методом полимеризации.
Недостатками данного способа являются сложность исполнения и длительность процесса.
В пат. WO/2011/127030 US, МПК A61K8/11; B01J2/00; B01J13/06; C11D3/37; C11D3/39; C11D17/00 (опубликован 13.10.2011) предложено несколько способов получения микрокапсул: межфазной полимеризацией, термоиндуцированным разделением фаз, распылительной сушкой, выпариванием растворителя и др. Недостатками предложенных способов является сложность, длительность процессов, а также применение специального оборудования (фильтр (Albet, Dassel, Германия), распылительная сушилка для сбора частиц (Spray-4M8 Сушилка от ProCepT, Бельгия)).
В пат. WO/2011/056935 US, МПК C11D17/00; A61K8/11; B01J13/02; C11D3/50 (опубликован 12.05.2011) описан способ получения микрокапсул размером от 15 микрон. В качестве материала оболочки предложены полимеры группы, в которую входят полиэтилен, полиамид, полистирол, полиизопрен, поликарбонаты, полиэфиры, полиакрилаты, полимочевины, полиуретаны, полиолефины, полисахариды, эпоксидные смолы, виниловые полимеры и их смеси. Предложенные полимерные оболочки являются достаточно непроницаемыми для материала ядра и материалов в окружающей среде, в которой инкапсулируются. Ядро инкапсулированных агентов может включать в себя духи, силиконовые масла, воски, углеводороды, высшие жирные кислоты, эфирные масла, липиды, охлаждающие кожу жидкости, витамины, солнцезащитные средства, антиоксиданты, глицерин, катализаторы, отбеливающие частицы, частицы диоксида кремния и др.
Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.
Известен способ, предложенный в пат. 2134967, МПК A01N53/00, A01N25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования. Недостатком способа является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Наиболее близким, взятым за прототип, является способ по патенту РФ №2538671 (опубликован 10.01.2015). Способ получения частиц инкапсулированного антисептика-стимулятора Дорогова (АСД) 2 фракция характеризуется тем, что АСД 2 фракцию диспергируют в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 в присутствии 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами, а свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/сек. Далее приливают осадитель бутанол и воду в соотношении 5:1. Полученную суспензию отфильтровывают и сушат при комнатной температуре. Выход готового продукта 94-99%.
Техническая задача – разработка способа получения нанокапсул сухого экстракта шпината в оболочке из натрий карбоксиметилцеллюлозы.
Технический результат заключается в реализации назначения изобретения, повышении выхода готового продукта.
Решение технической задачи достигается предложенным способом получения нанокапсул сухого экстракта шпината, согласно которому сухой экстракт шпината диспергируют в раствор натрий карбоксиметилцеллюлозы в бензоле, в соотношении 1:1-3 в присутствии 0,01 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами, а свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании, далее добавляют осадитель, полученную суспензию отфильтровывают и сушат при комнатной температуре, в который внесены новые признаки; в качестве осадителя используют диэтиловый эфир, после фильтрации нанокапсулы промывают диэтиловым эфиром, а перемешивание осуществляют со скоростью 1000 об/сек.
Отличительной особенностью предлагаемого способа является получение нанокапсул сухого экстракта шпината в оболочке натрий карбоксиметилцеллюлозы с использованием физико-химического метода осаждения нерастворителем с использованием диэтилового эфира в качестве нерастворителя.
Результатом предлагаемого способа является получение нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе при комнатной температуре в течение 15 минут. Выход нанокапсул составляет 100%.
Определение размеров нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе проводили методом NTA на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto.длительность единичного измерения 215s, использование шприцевого насоса.
На фиг. 1 представлено распределение частиц по размерам в образце нанокапсул экстракта шпината в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3.
На фиг. 2 представлена таблица, из которой видно, что 10% частиц имеют размер 103 нм.
ПРИМЕР 1. Получение нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе, соотношение 1:3
1 г сухого экстракта шпината добавляют медленно порциями при перемешивании 1000 об/мин к 3 г суспензии натрий карбоксиметилцеллюлозы в бензоле, содержащей 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Затем добавляют 5 мл диэтилового эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают диэтиловым эфиром, сушат при комнатной температуре.
Получено 4 г кремового порошка. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе, соотношение 1:1
1 г сухого экстракта шпината добавляют медленно порциями при перемешивании 1000 об/мин к 1 г суспензии натрий карбоксиметилцеллюлозы в бензоле, содержащей 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Затем добавляют 5 мл диэтилового эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают диэтиловым эфиром, сушат при комнатной температуре.
Получено 2 г с кремовым оттенком порошка. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе, соотношение 1:2
1 г сухого экстракта шпината добавляют медленно порциями при перемешивании 1000 об/мин к 2 г суспензии натрий карбоксиметилцеллюлозы в бензоле, содержащей 0,01 г препарата Е472с в качестве поверхностно-активного вещества. Затем добавляют 5 мл диэтилового эфира. Полученную суспензию нанокапсул отфильтровывают на фильтре, промывают диэтиловым эфиром, сушат при комнатной температуре.
Получено 3 г с кремовым оттенком порошка. Выход составил 100%.
Получены нанокапсулы сухого экстракта шпината в натрий карбоксиметилцеллюлозе физико-химическим методом осаждения нерастворителем с использованием диэтилового эфира в качестве нерастворителя.
Процесс прост в исполнении и длится в течение 15 минут.
Предложенная методика пригодна для косметической и пищевой промышленности вследствие минимальных потерь, быстроты, простоты получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе.

Claims (1)

  1. Способ получения нанокапсул сухого экстракта шпината в натрий карбоксиметилцеллюлозе, включающий диспергирование сухого экстракта шпината в раствор натрий карбоксиметилцеллюлозы в бензоле в соотношении 1:1-3 и в присутствии препарата E472c при перемешивании, добавление осадителя, фильтрование полученной суспензии и сушку готового продукта при комнатной температуре, отличающийся тем, что в качестве осадителя используют диэтиловый эфир, после фильтрации нанокапсулы промывают диэтиловым эфиром, а перемешивание осуществляют со скоростью 1000 об/сек.
RU2015145375A 2015-10-22 2015-10-22 Способ получения нанокапсул сухого экстракта шпината RU2606854C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145375A RU2606854C1 (ru) 2015-10-22 2015-10-22 Способ получения нанокапсул сухого экстракта шпината

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145375A RU2606854C1 (ru) 2015-10-22 2015-10-22 Способ получения нанокапсул сухого экстракта шпината

Publications (1)

Publication Number Publication Date
RU2606854C1 true RU2606854C1 (ru) 2017-01-10

Family

ID=58452732

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145375A RU2606854C1 (ru) 2015-10-22 2015-10-22 Способ получения нанокапсул сухого экстракта шпината

Country Status (1)

Country Link
RU (1) RU2606854C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638309C1 (ru) * 2017-07-14 2017-12-13 Александр Александрович Кролевец Способ получения мармелада, содержащего наноструктурированный экстракт шпината
RU2659399C1 (ru) * 2017-07-14 2018-07-02 Александр Александрович Кролевец Способ получения шоколадного мороженого с наноструктурированным сухим экстрактом шпината
RU2671192C1 (ru) * 2017-11-10 2018-10-30 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта левзеи
RU2679601C1 (ru) * 2018-08-29 2019-02-12 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта красной щетки
RU2686064C1 (ru) * 2018-09-24 2019-04-24 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта копеечника
RU2691400C1 (ru) * 2018-07-30 2019-06-13 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта красной щетки
RU2713283C1 (ru) * 2019-03-26 2020-02-04 Александр Александрович Кролевец Способ производства хлеба, содержащего наноструктурированный сухой экстракт шпината
RU2798114C2 (ru) * 2021-06-03 2023-06-15 Автономная некоммерческая организация высшего образования «Белгородский университет кооперации, экономики и права» Способ получения микрокапсул антисептика-стимулятора дорогова (асд) 2 фракция в каппа-каррагинане

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064544A1 (en) * 2003-01-22 2004-08-05 Durafizz, Llc Microencapsulation for sustained delivery of carbon dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064544A1 (en) * 2003-01-22 2004-08-05 Durafizz, Llc Microencapsulation for sustained delivery of carbon dioxide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAGAVARMA B. V. N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. Jayaraj Ravindran, Hareesh B Nair,1 Bokyung Sung, Sahdeo Prasad, Rajeshwar R. Tekmal,1 and Bharat B. AggarwaThymoquinone Poly(lactide-co-glycolide) Nanoparticles Exhibit Enhanced Anti-proliferative, Anti-inflammatory, and Chemosensitization Potential. Biochem Pharmacol. 2010 Jun 1; 79(11): 1640-;1647. *
NAGAVARMA B. V. N. "Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. Jayaraj Ravindran, Hareesh B Nair,1 Bokyung Sung, Sahdeo Prasad, Rajeshwar R. Tekmal,1 and Bharat B. AggarwaThymoquinone Poly(lactide-co-glycolide) Nanoparticles Exhibit Enhanced Anti-proliferative, Anti-inflammatory, and Chemosensitization Potential. Biochem Pharmacol. 2010 Jun 1; 79(11): 1640-;1647. Parris N, Cooke PH, Hicks KB, Encapsulation of essential oils in zein nanospherical particles / J. Agric. Food Chem., 2005. 53: p. 4788-4792. *
Parris N, Cooke PH, Hicks KB, Encapsulation of essential oils in zein nanospherical particles / J. Agric. Food Chem., 2005. 53: p. 4788-4792. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638309C1 (ru) * 2017-07-14 2017-12-13 Александр Александрович Кролевец Способ получения мармелада, содержащего наноструктурированный экстракт шпината
RU2659399C1 (ru) * 2017-07-14 2018-07-02 Александр Александрович Кролевец Способ получения шоколадного мороженого с наноструктурированным сухим экстрактом шпината
RU2671192C1 (ru) * 2017-11-10 2018-10-30 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта левзеи
RU2691400C1 (ru) * 2018-07-30 2019-06-13 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта красной щетки
RU2679601C1 (ru) * 2018-08-29 2019-02-12 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта красной щетки
RU2686064C1 (ru) * 2018-09-24 2019-04-24 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта копеечника
RU2713283C1 (ru) * 2019-03-26 2020-02-04 Александр Александрович Кролевец Способ производства хлеба, содержащего наноструктурированный сухой экстракт шпината
RU2798114C2 (ru) * 2021-06-03 2023-06-15 Автономная некоммерческая организация высшего образования «Белгородский университет кооперации, экономики и права» Способ получения микрокапсул антисептика-стимулятора дорогова (асд) 2 фракция в каппа-каррагинане

Similar Documents

Publication Publication Date Title
RU2606854C1 (ru) Способ получения нанокапсул сухого экстракта шпината
RU2590693C1 (ru) Способ получения нанокапсул адаптогенов в пектине
RU2561586C1 (ru) Способ получения микрокапсул биопага-д в пектине
RU2550950C1 (ru) Способ получения нанокапсул биопага-д
RU2555824C1 (ru) Способ получения микрокапсул сухого экстракта топинамбура в пектине
RU2500404C2 (ru) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне
RU2563618C2 (ru) Способ получения микрокапсул биопага-д в пектине
RU2640130C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2605614C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2619331C2 (ru) Способ получения нанокапсул умифеновира (Арбидола) в альгинате натрия
RU2632428C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура в ксантановой камеди
RU2640127C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2640490C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура в геллановой камеди
RU2634256C2 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2654229C1 (ru) Способ получения нанокапсул витаминов в пектине
RU2595825C1 (ru) Способ получения нанокапсул иодида калия в пектине
RU2622752C1 (ru) Способ получения нанокапсул сухого экстракта шпината
RU2578403C2 (ru) Способ получения нанокапсул цитокининов
RU2555472C2 (ru) Способ получения микрокапсул антиоксидантов в пектине
RU2626821C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура
RU2599007C1 (ru) Способ получения нанокапсул ципрофлоксацина гидрохлорида в альгинате натрия
RU2564898C1 (ru) Способ получения нанокапсул антибиотиков
RU2580613C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2573979C1 (ru) Способ получения нанокапсул антибиотиков в агар-агаре
RU2641190C1 (ru) Способ получения нанокапсул сухого экстракта топинамбура в пектине

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171023