RU2589739C2 - Вч объемный резонатор и ускоритель - Google Patents

Вч объемный резонатор и ускоритель Download PDF

Info

Publication number
RU2589739C2
RU2589739C2 RU2012140481/07A RU2012140481A RU2589739C2 RU 2589739 C2 RU2589739 C2 RU 2589739C2 RU 2012140481/07 A RU2012140481/07 A RU 2012140481/07A RU 2012140481 A RU2012140481 A RU 2012140481A RU 2589739 C2 RU2589739 C2 RU 2589739C2
Authority
RU
Russia
Prior art keywords
intermediate electrode
cavity resonator
resonator
field
cavity
Prior art date
Application number
RU2012140481/07A
Other languages
English (en)
Other versions
RU2012140481A (ru
Inventor
Оливер ХАЙД
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2012140481A publication Critical patent/RU2012140481A/ru
Application granted granted Critical
Publication of RU2589739C2 publication Critical patent/RU2589739C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Изобретение относится к высокочастотному (ВЧ) объемному резонатору для ускорения заряженных частиц (15), причем в ВЧ объемный резонатор (11) может вводиться электромагнитное ВЧ поле, которое в процессе работы воздействует на пучок (15) частиц, который пересекает ВЧ объемный резонатор. Резонатор содержит по меньшей мере один промежуточный электрод (13) для повышения электрической прочности на пробой, размещенный в ВЧ объемном резонаторе (11) вдоль хода пучка (15) частиц, причем промежуточный электрод (13) имеет таким образом ограниченную проводимость, что промежуточный электрод при вводе электромагнитного ВЧ поля на рабочей частоте ВЧ объемного резонатора по меньшей мере частично пронизывается введенным электромагнитным ВЧ полем. Технический результат - повышение прочности резонатора на пробой. 2 н. и 8 з.п. ф-лы, 4 ил.

Description

Изобретение относится к высокочастотному (ВЧ) объемному резонатору, с помощью которого могут ускоряться заряженные частицы в форме пучка частиц, когда они направляются через ВЧ объемный резонатор и когда в ВЧ объемном резонаторе ВЧ поле воздействует на пучок частиц, и к ускорителю с подобным ВЧ объемным резонатором.
ВЧ объемные резонаторы известны в уровне техники. Ускорение, создаваемое с помощью ВЧ объемного резонатора, зависит от напряженности электромагнитного ВЧ поля, создаваемого в ВЧ объемном резонаторе, которое воздействует вдоль траектории частиц на пучок частиц. Так как при увеличивающихся напряженностях ВЧ поля повышается вероятность того, что между электродами возникают искровые разряды, максимально достижимая энергия частиц ограничивается ВЧ объемным резонатором.
Проблема электрического пробоя в ускорителях частиц была исследована У.Д.Килпатриком (W.D.Kilpatrik) в работе “Criterion for Vacuum Sparking Designed to Include Both rf and dc”, Rev. Sci. Instrum. 28, 824-826 (1957). В первом приближении максимально достижимая напряженность поля Е электрического ВЧ поля связана с частотой f ВЧ поля следующим образом: E ~ √f. Это означает, что могут быть достигнуты более высокие электрические напряженности поля, если применяется более высокая частота, прежде чем возникнет электрический пробой (также называемый ВЧ пробоем).
Задачей изобретения является создание ВЧ объемного резонатора с высокой прочностью на пробой.
Эта задача решается в соответствии с независимыми пунктами формулы изобретения. Предпочтительные варианты осуществления характеризуются признаками зависимых пунктов формулы изобретения.
В соответствии с этим предложен ВЧ объемный резонатор для ускорения заряженных частиц, в который может вводиться электромагнитное ВЧ поле, которое при работе воздействует на пучок частиц, который пересекает ВЧ объемный резонатор, причем по меньшей мере один промежуточный электрод для повышения электрической прочности на пробой размещен в ВЧ объемном резонаторе вдоль хода пучка частиц.
Промежуточный электрод при этом выполнен таким образом или имеет таким образом ограниченную проводимость, что промежуточный электрод при вводе электромагнитного ВЧ поля при рабочей частоте ВЧ объемного резонатора по меньшей мере частично пронизывается введенным электромагнитным ВЧ полем.
Известно, что применение критерия Килпатрика вызвало в ускорителях тренд в направлении высоких частот. Это, однако, является проблематичным по ионно-оптическим причинам, как раз для ускорения медленных частиц, то есть частиц с нерелятивистскими скоростями. При больших ускорителях это обуславливает то, что в первых ступенях ускорителя работают с меньшей частотой и соответственно более низкой напряженностью поля Е и что обычно только последующие ступени ускорителя эксплуатируются с более благоприятной повышенной частотой. Ввиду синхронизации частоты находятся в рациональном отношении друг с другом. Однако это приводит, с одной стороны, к более громоздким ускорителям, а с другой стороны, к меньшей гибкости в выборе конструкции ускорителя.
Однако в основе изобретения лежит знание того, что не обязательно частота (согласно критерию Килпатрика) в качестве существенного фактора оказывает влияние на максимально достижимую напряженность поля Е в вакууме, но и также расстояние d между электродами в первом приближении задается посредством соотношения E~1/√d (для электрической прочности u в первом приближении справедливо U~√d). В книге “Lehrbuch der Hochspannungstechnik”, G. Lesch, E. Baumann, Springer-Verlag, Berlin/Göttingen/Heidelberg, 1959 на стр. 155 приведена диаграмма для представления взаимосвязи между электрической прочностью на пробой в высоком вакууме и расстоянием между пластинами. Эта взаимосвязь справедлива, очевидно, универсальным образом в очень большом диапазоне напряжений в равной мере для постоянного и переменного напряжения и для геометрически масштабированных форм электродов. Выбор материала электродов оказывает влияние очевидно только на коэффициенты пропорциональности.
Экспериментальный критерий Килпатрика E~√f не содержит никакого параметра, который явно учитывает расстояние между электродами. Это кажущееся противоречие по отношению к приведенной выше взаимосвязи, которая содержит расстояние между электродами, однако, разрешается, если принимается, что форма резонатора при масштабировании для согласования с частотой остается геометрически подобной, так что расстояние между электродами масштабируется с другими размерами резонатора. Это означает выбор расстояния d между электродами согласно d~1/f и тем самым соответствие между критерием Килпатрика E~√f и установленным выше критерием E~1/√d.
Как следствие этих выводов получается, что высокие частоты лишь кажущимся образом являются полезными. Частотная зависимость согласно критерию Килпатрика может по меньшей мере отчасти подгоняться посредством геометрического масштабирования для резонансной настройки.
Однако является возможным выбирать частоту в увеличенных пределах независимо от желательной максимальной напряженности Е высокочастотного поля, так что становятся возможными компактные ускорители и при низких частотах, например для тяжелых ионов. Это достигается посредством соответствующего изобретению ВЧ объемного резонатора, так как здесь на электрическую прочность на пробой оказывают действие промежуточные электроды. В конечном счете посредством этого достигается высокая электрическая прочность на пробой и связанные с этим высокие напряженности поля Е за счет поддержания критерия E~1/√d. Рабочая частота ВЧ резонатора может выбираться заметно более гибко и в идеальном случае независимо от желательной напряженности поля Е, достижимая электрическая прочность на пробой становится возможной за счет промежуточных электродов, а не за счет выбора рабочей частоты.
При этом изобретение основывается на том соображении, что следует применять меньшие расстояния между электродами, чтобы достичь более высоких напряженностей поля Е. Так как в общем случае расстояния между электродами сначала задаются через форму резонатора, меньшее расстояние между электродами достигается здесь за счет ввода промежуточного(ых) электрода(ов). Расстояние между электродами, следовательно, за счет промежуточного(ых) электрода(ов) подразделяется на меньшие участки. Требование по расстоянию или электрическая прочность на пробой могут выполняться, таким образом, в значительной мере независимо от величины и формы резонатора.
К тому же, изобретение основывается на том, что могут быть получены преимущества, если подобные промежуточные электроды имеют ограниченную проводимость, так что они при рабочей частоте ВЧ объемного резонатора по меньшей мере частично пронизываются существующими в ВЧ объемном резонаторе электромагнитными полями. Промежуточные электроды не имеют тогда никакого свободного от поля внутреннего пространства.
Потери, которые возникают при, таким образом, предусмотренных промежуточных электродах из-за вихревых токов, индуцированных в промежуточном электроде, заметно сокращаются по отношению к промежуточным электродам, у которых внутреннее пространство свободно от поля.
В форме выполнения промежуточный электрод может иметь тонкий слой с ограниченной проводимостью, так что введенное электромагнитное ВЧ поле при рабочей частоте ВЧ объемного резонатора пронизывает промежуточный электрод. Промежуточный электрод может состоять, например, из тонкого металлического диска, который имеет это свойство.
В форме выполнения промежуточный электрод может иметь несущий изолятор с нанесенным металлическим поверхностным слоем. Также за счет такой конструкции может достигаться то, что промежуточный электрод пронизывается, по меньшей мере частично, электромагнитным полем, действующим в объемном резонаторе на пучок частиц.
Промежуточные электроды выполняют, таким образом, задачу повысить электрическую прочность на пробой. Для того чтобы на ВЧ объемный резонатор оказывать по возможности меньшее влияние, что касается его свойств ускорения, промежуточный электрод может быть изолирован от стенок ВЧ объемного резонатора таким образом, что промежуточный электрод во время работы ВЧ объемного резонатора не создает ВЧ поля, действующего ускоряющим образом на пучок частиц. Через изоляцию от стенок на промежуточные электроды не передается никакая ВЧ мощность, которая иначе генерировала бы ВЧ поле, действующее от промежуточных электродов на пучок частиц.
Во время работы тогда никакое ВЧ поле не передается от стенок резонатора на промежуточный электрод либо передается в такой малой степени, что излучаемое от промежуточного электрода ВЧ поле, если оно вообще имеется, не способствует заметным образом, а в лучшем случае вообще не вносит вклада в ускорение или не оказывает влияния на ускорение. В частности, от стенок резонатора на промежуточные электроды не протекают никакие ВЧ токи.
Изоляция от стенок резонатора не обязательно должна быть полной, является достаточным выполнить связь промежуточного электрода со стенками резонатора таким образом, что промежуточный электрод в частотном диапазоне рабочей частоты ВЧ резонатора в значительной степени изолирован. Так промежуточный электрод через проводящее соединение может быть, таким образом, связан со стенкой ВЧ объемного резонатора, что проводящее соединение имеет высокий импеданс на рабочей частоте ВЧ объемного резонатора, за счет чего может быть реализована желательная изоляция по отношению к промежуточному электроду. Промежуточный электрод, следовательно, в значительной степени развязан по ВЧ энергии от ВЧ объемного резонатора. Тем самым ВЧ объемный резонатор лишь в незначительной степени демпфируется посредством промежуточных электродов. Однако проводящее соединение может одновременно выполнять функцию отвода заряда посредством рассеянных частиц. Высокий импеданс проводящего соединения может быть реализован посредством выполненного спиральным участка проводника. Подобная опора может также быть выполнена пружинящей.
Промежуточные электроды размещены, в частности, перпендикулярно к электрическому ВЧ полю, действующему на пучок частиц. Тем самым достигается по возможности незначительное влияние на функциональность ВЧ резонатора со стороны промежуточных электродов.
Промежуточный электрод может, например, иметь форму кольцевого диска с центральным отверстием, через которое направляется пучок частиц. Форма промежуточных электродов может быть согласована с устанавливающимися и без промежуточных электродов потенциальными поверхностями таким образом, что не возникает никакого существенного искажения идеальной характеристики Е-поля в отсутствие промежуточных электродов. При подобном формообразовании возрастание емкости из-за дополнительных структур минимизируется, рассогласование резонатора и локальные превышения поля Е в значительной степени исключаются.
Промежуточный электрод предпочтительным образом установлен в опоре подвижным образом, например с помощью пружинящей опоры или подвески. Пружинящая опора может выполняться в форме шпильки. Тем самым путь скользящего разряда вдоль поверхности оптимизируется или максимизируется, и вероятность возникновения скользящих разрядов минимизируется. Пружинящая опора может включать в себя проводящий спиральный участок, за счет чего может достигаться повышение импеданса пружинящей опоры на рабочей частоте ВЧ объемного резонатора.
В качестве материала промежуточного электрода могут применяться хром, ванадий, титан, молибден, тантал, вольфрам или сплавы, содержащие эти материалы. Эти материалы имеют высокую прочность по полю Е. Пониженная поверхностная проводимость этих материалов является предпочтительной, так как таким способом может легко достигаться то, что они в процессе работы по меньшей мере частично пронизываются электромагнитными ВЧ полями, введенными в ВЧ объемный резонатор.
Предпочтительным образом в ВЧ объемном резонаторе размещено несколько промежуточных электродов в направлении пучка друг за другом. Несколько промежуточных электродов могут быть установлены в опоре подвижным образом, например, по отношению друг к другу через пружинящую подвеску. Тем самым отдельные расстояния между электродами могут самостоятельно равномерно распределяться.
Пружинящие подвески, с помощью которых связаны между собой несколько промежуточных электродов, могут выполняться проводящими и предпочтительно включать в себя спиральные участки и/или выполняться в форме шпильки. Тем самым и между промежуточными электродами обеспечивается возможность отвода заряда посредством рассеянных частиц.
Соответствующий изобретению ускоритель включает в себя по меньшей мере один вышеописанный ВЧ объемный резонатор с промежуточным электродом.
Формы выполнения изобретения с предпочтительными дальнейшими развитиями согласно признакам зависимых пунктов формулы изобретения более подробно поясняются со ссылками на чертежи, однако не ограничиваются ими. На чертежах показано:
Фиг. 1 - схематичное представление конструкции ВЧ объемного резонатора с вставленными промежуточными электродами и
Фиг. 2 - продольное сечение подобного ВЧ объемного резонатора.
Фиг. 3 - представление фрагмента выполненного тонким промежуточного электрода с плотностями тока, индуцированными в промежуточный электрод.
Фиг. 4 - представление участка промежуточного электрода, которое показывает несущий изолятор с нанесенным на него металлическим слоем.
На фиг. 1 показан ВЧ объемный резонатор 11. ВЧ объемный резонатор 11 сам представлен пунктиром, чтобы иметь возможность более четкого представления промежуточных электродов 13, которые находятся внутри ВЧ объемного резонатора.
ВЧ объемный резонатор 11 включает в себя обычно проводящие стенки и возбуждается ВЧ энергией не показанного ВЧ передатчика. Ускоряющее ВЧ поле, воздействующее на пучок 15 частиц в ВЧ объемном резонаторе, обычно формируется размещенным вне ВЧ объемного резонатора 11 ВЧ передатчиком и резонансным образом вводится в ВЧ объемный резонатор 11. В ВЧ объемном резонаторе обычно имеется высокий вакуум.
Промежуточные электроды 13 расположены вдоль хода пучка в ВЧ объемном резонаторе 11. Промежуточные электроды 13 выполнены в кольцевой форме с центральным отверстием, через которое проходит пучок частиц. Между промежуточными электродами существует вакуум.
Промежуточные электроды 13 с помощью пружинящей подвески 17 закреплены по отношению к ВЧ объемному резонатору 11 и по отношению друг к другу.
Посредством пружинящей подвески 17 промежуточные электроды 13 распределяются самостоятельно по длине ВЧ объемного резонатора 11. Дополнительные подвески, которые служат стабилизации промежуточных электродов (здесь не показаны), также могут быть предусмотрены.
На фиг. 2 показано продольное сечение ВЧ объемного резонатора 11, показанного на фиг. 1, причем здесь показаны различные типы подвески промежуточных электродов 13 по отношению друг к другу и по отношению к стенкам резонатора.
В верхней половине 19 фиг. 2 показана пружинящая подвеска промежуточных электродов 13 с проводящими соединениями 23 в форме шпильки. За счет этой шпилькообразной формы снижается вероятность скользящего разряда вдоль подвески.
В нижней половине показанного на фиг. 2 ВЧ объемного резонатора 21 промежуточные электроды 13 с помощью спиралеобразно направленных проводящих пружинящих соединений 25 соединены относительно друг друга и относительно стенок резонатора. Это выполнение имеет то преимущество, что спиралеобразное направление проводящего соединения 25 представляет импеданс, который при соответствующем выполнении формирует желательную изоляцию промежуточных электродов относительно стенок резонатора на рабочей частоте ВЧ объемного резонатора 11. За счет этого предотвращается сильное демпфирование ВЧ объемного резонатора 11 путем вставки промежуточных электродов 13 в ВЧ объемный резонатор 11.
Фиг. 3 показывает две поверхности 26, 27 для фрагмента промежуточного электрода 13. Направление хода пучка проходит перпендикулярно обеим поверхностям (стрелка). Также представлены фрагменты стенки 28 ВЧ объемного резонатора 11. Расстояния и масштабы на фиг. 3, приведенной для пояснения принципа, изображены неточно.
Плотности тока, которые создаются в промежуточном электроде 13 посредством электромагнитных полей 29, которые вводятся в процессе работы в ВЧ объемный резонатор, составляются из двух компонентов I0 и I1. За счет того, что промежуточный электрод 13 имеет ограниченную электрическую проводимость, плотность тока I1, которая формируется электромагнитными полями 29 на верхней поверхности 26 промежуточного электрода 13, не полностью затухает по толщине промежуточного электрода 13. То же самое справедливо для плотности тока I0, которая формируется электромагнитными полями 29 на нижней поверхности 27 промежуточного электрода 13. За счет того, что обе плотности тока I0 и I1 по толщине не полностью затухают и являются противоположно направленными, обе плотности тока I0 и I1 в значительной мере компенсируются (Ieff=I0+I1).
В целом, внутри промежуточного электрода 13 вихревые токи формируются в меньшей степени по сравнению с промежуточными электродами, проводимость которых такова, что при работе ВЧ объемного резонатора в промежуточном электроде существует свободное от поля пространство.
Фиг. 4 показывает конструкцию промежуточного электрода 13' с несущим изолятором 31, на который нанесены металлические слои 33. Также с помощью данной конструкции может достигаться цель, состоящая в том, что промежуточный электрод 13' по меньшей мере частично пронизывается введенными ВЧ полями.
ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ПОЗИЦИЙ
11 - ВЧ объемный резонатор
13, 13' - промежуточный электрод
15 - пучок частиц
17 - подвеска
19 - верхняя часть
21 - нижняя часть
23 - шпилькообразное соединение
25 - спиральное соединение
26 - верхняя поверхность
27 - нижняя поверхность
28 - стенка
29 - ВЧ поле
31 - несущий изолятор
33 - металлический слой

Claims (10)

1. Высокочастотный (ВЧ) объемный резонатор для ускорения заряженных частиц (15), причем в ВЧ объемный резонатор (11) может вводиться электромагнитное ВЧ поле, которое в процессе работы воздействует на пучок (15) частиц, который пересекает ВЧ объемный резонатор (11),
причем по меньшей мере один промежуточный электрод (13) для повышения электрической прочности на пробой размещен внутри ВЧ объемного резонатора (11) вдоль хода пучка (15) частиц,
причем промежуточный электрод (13) имеет, таким образом, ограниченную проводимость, при этом промежуточный электрод (13) при вводе электромагнитного ВЧ поля на рабочей частоте ВЧ объемного резонатора по меньшей мере частично пронизывается введенным электромагнитным ВЧ полем,
причем промежуточный электрод (13) установлен подвижным образом, в частности с помощью пружинящей опоры.
2. ВЧ объемный резонатор по п. 1, причем промежуточный электрод (13) имеет тонкий слой с ограниченной проводимостью, так что введенное электромагнитное ВЧ поле на рабочей частоте ВЧ объемного резонатора пронизывает промежуточный электрод.
3. ВЧ объемный резонатор по п. 1 или 2, причем промежуточный электрод (13) имеет несущий изолятор (31) с нанесенным металлическим поверхностным слоем (33).
4. ВЧ объемный резонатор по п. 1 или 2, причем промежуточный электрод (13) изолирован от стенки ВЧ объемного резонатора (11) таким образом, что промежуточный электрод (13) во время работы ВЧ объемного резонатора (11) не создает ВЧ поля, действующего ускоряющим образом на пучок (15) частиц.
5. ВЧ объемный резонатор по п. 4, причем промежуточный электрод (13) через проводящее соединение (17, 23, 25) таким образом связан со стенкой ВЧ объемного резонатора (11), что проводящее соединение (17, 23, 25) имеет высокий импеданс на рабочей частоте ВЧ объемного резонатора (11), за счет чего промежуточный электрод (13) таким образом изолирован от стенки ВЧ объемного резонатора (11), что промежуточный электрод (13) во время работы ВЧ объемного резонатора (11) не создает ВЧ поля, действующего ускоряющим образом на пучок (15) частиц.
6. ВЧ объемный резонатор по п. 5, причем проводящее соединение включает в себя участок (25) проводника, выполненный спиральным.
7. ВЧ объемный резонатор по п. 1 или 2, причем материал промежуточного электрода (13) включает в себя хром, ванадий, титан, молибден, тантал и/или вольфрам.
8. ВЧ объемный резонатор по п. 1 или 2, причем промежуточный электрод (13) имеет форму кольцевого диска.
9. ВЧ объемный резонатор по п. 1 или 2, причем несколько промежуточных электродов (13) размещены в направлении пучка друг за другом.
10. Ускоритель для ускорения заряженных частиц с ВЧ объемным резонатором (11) по любому из пп. 1-9.
RU2012140481/07A 2010-02-24 2011-02-02 Вч объемный резонатор и ускоритель RU2589739C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010009024.7 2010-02-24
DE102010009024A DE102010009024A1 (de) 2010-02-24 2010-02-24 HF-Resonatorkavität und Beschleuniger
PCT/EP2011/051464 WO2011104079A1 (de) 2010-02-24 2011-02-02 Hf-resonatorkavität und beschleuniger

Publications (2)

Publication Number Publication Date
RU2012140481A RU2012140481A (ru) 2014-03-27
RU2589739C2 true RU2589739C2 (ru) 2016-07-10

Family

ID=43841941

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012140481/07A RU2589739C2 (ru) 2010-02-24 2011-02-02 Вч объемный резонатор и ускоритель

Country Status (9)

Country Link
US (1) US9131594B2 (ru)
EP (1) EP2540146A1 (ru)
CN (1) CN102771196B (ru)
BR (1) BR112012021185A2 (ru)
CA (1) CA2790805C (ru)
DE (1) DE102010009024A1 (ru)
RU (1) RU2589739C2 (ru)
UA (1) UA108874C2 (ru)
WO (1) WO2011104079A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009024A1 (de) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 HF-Resonatorkavität und Beschleuniger
CN104052232B (zh) * 2013-03-12 2016-08-03 青岛大学 电磁加速装置
CN106851959B (zh) * 2017-04-13 2018-11-30 中国原子能科学研究院 非均匀盘荷波导加速结构的调谐方法
CN109462932B (zh) * 2018-12-28 2021-04-06 上海联影医疗科技股份有限公司 一种驻波加速管
RU192845U1 (ru) * 2019-05-07 2019-10-03 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Многоапертурная высокочастотная система для ускорения кластерных ионов
RU2728513C1 (ru) * 2020-02-12 2020-07-30 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Устройство для ионизации кластерных ионов
RU2760276C1 (ru) * 2021-05-25 2021-11-23 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Способ увеличения тока пучка кластерных ионов
RU2764147C1 (ru) * 2021-05-25 2022-01-13 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Инжектор для ускорителя кластерных ионов
RU207660U1 (ru) * 2021-07-01 2021-11-09 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Многоапертурный согласующий канал с радиальной компрессией пучков ионов
RU208650U1 (ru) * 2021-07-01 2021-12-29 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" Многоапертурный ускоритель кластерных ионов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB685654A (en) * 1950-07-25 1953-01-07 Mini Of Supply Improvements in or relating to loaded wave-guides
US5532210A (en) * 1994-06-08 1996-07-02 E. I. Du Pont De Nemours And Company High temperature superconductor dielectric slow wave structures for accelerators and traveling wave tubes
WO1998033228A2 (en) * 1997-01-14 1998-07-30 United States Department Of Energy High-gradient insulator cavity mode filter
US6025681A (en) * 1997-02-05 2000-02-15 Duly Research Inc. Dielectric supported radio-frequency cavities

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL73693C (ru) * 1945-10-08
GB752598A (en) * 1953-07-17 1956-07-11 Bendix Aviat Corp Improvements in or relating to tuned resonant cavities or waveguides
GB835711A (en) * 1957-02-05 1960-05-25 Atomic Energy Authority Uk Improvements in or relating to waveguide structures
GB1312048A (en) * 1969-07-18 1973-04-04 Emi Ltd Electron discharge devices
US3764838A (en) * 1971-08-19 1973-10-09 R Charpentier Insulating ring for particle accelerator tubes and acceleration tube including the same
US4737426A (en) 1985-05-15 1988-04-12 Ciba-Geigy Corporation Cyclic acetals or ketals of beta-keto esters or amides
DE3681841D1 (de) * 1985-07-19 1991-11-14 Mitsubishi Electric Corp Vorrichtung fuer geladene teilchen.
US5014014A (en) * 1989-06-06 1991-05-07 Science Applications International Corporation Plane wave transformer linac structure
DE3919210A1 (de) * 1989-06-13 1990-12-20 Schempp Alwin Hochfrequenzionenbeschleuniger mit variabler energie
US5280252A (en) * 1991-05-21 1994-01-18 Kabushiki Kaisha Kobe Seiko Sho Charged particle accelerator
JPH0832155A (ja) * 1993-12-14 1996-02-02 Herb Joseph John Seguin 複数個チャンネル レーザーの励起装置
US5648980A (en) * 1993-12-14 1997-07-15 Seguin; Herb Joseph John Excitation system for multi-channel lasers
US5477107A (en) * 1993-12-21 1995-12-19 Hughes Aircraft Company Linear-beam cavity circuits with non-resonant RF loss slabs
US5587207A (en) * 1994-11-14 1996-12-24 Gorokhovsky; Vladimir I. Arc assisted CVD coating and sintering method
US5849252A (en) * 1995-03-06 1998-12-15 Mitsubishi Jukogyo Kabushiki Kaisha Charged particle accelerator apparatus and electronic sterilizer apparatus using the same
US6423976B1 (en) * 1999-05-28 2002-07-23 Applied Materials, Inc. Ion implanter and a method of implanting ions
JP2003522398A (ja) * 2000-02-11 2003-07-22 バリアン・セミコンダクター・エクイップメント・アソシエイツ・インコーポレイテッド 高エネルギー加速器を低エネルギーモードで動作する方法および装置
US7112924B2 (en) * 2003-08-22 2006-09-26 Siemens Medical Solutions Usa, Inc. Electronic energy switch for particle accelerator
GB2411517A (en) * 2004-02-27 2005-08-31 E2V Tech Uk Ltd Collector arrangement
ITRM20040408A1 (it) 2004-08-11 2004-11-11 Istituto Naz Di Fisica Nuclea Metodo di progettazione di una cavita' a radiofrequenza, in particoalre da utilizzare in un ciclotrone, cavita' a radiofrequenza realizzata utilizzando tale metodo, e ciclotrone utilizzante tale cavita'.
WO2007069930A1 (fr) * 2005-12-12 2007-06-21 Obschestvo S Ogranichennoi Otvetstvennostyu 'nauka I Tekhnologii' Procede d'acceleration d'electrons dans un accelerateur lineaire et structure acceleratrice permettant sa mise en oeuvre
WO2007130164A2 (en) * 2006-01-19 2007-11-15 Massachusetts Institute Of Technology High-field superconducting synchrocyclotron
JP4576437B2 (ja) * 2008-02-18 2010-11-10 株式会社日立ハイテクノロジーズ 荷電粒子加速装置
DE102009048150A1 (de) * 2009-10-02 2011-04-07 Siemens Aktiengesellschaft Beschleuniger und Verfahren zur Ansteuerung eines Beschleunigers
DE102009048400A1 (de) * 2009-10-06 2011-04-14 Siemens Aktiengesellschaft HF-Resonatorkavität und Beschleuniger
DE102010009024A1 (de) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 HF-Resonatorkavität und Beschleuniger
US8558486B2 (en) * 2010-12-08 2013-10-15 Gtat Corporation D. c. Charged particle accelerator, a method of accelerating charged particles using d. c. voltages and a high voltage power supply apparatus for use therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB685654A (en) * 1950-07-25 1953-01-07 Mini Of Supply Improvements in or relating to loaded wave-guides
US5532210A (en) * 1994-06-08 1996-07-02 E. I. Du Pont De Nemours And Company High temperature superconductor dielectric slow wave structures for accelerators and traveling wave tubes
WO1998033228A2 (en) * 1997-01-14 1998-07-30 United States Department Of Energy High-gradient insulator cavity mode filter
US6025681A (en) * 1997-02-05 2000-02-15 Duly Research Inc. Dielectric supported radio-frequency cavities

Also Published As

Publication number Publication date
CN102771196B (zh) 2016-10-05
US9131594B2 (en) 2015-09-08
CA2790805C (en) 2018-06-05
WO2011104079A1 (de) 2011-09-01
RU2012140481A (ru) 2014-03-27
CA2790805A1 (en) 2011-09-01
EP2540146A1 (de) 2013-01-02
US20120319580A1 (en) 2012-12-20
BR112012021185A2 (pt) 2016-05-17
UA108874C2 (xx) 2015-06-25
CN102771196A (zh) 2012-11-07
DE102010009024A1 (de) 2011-08-25

Similar Documents

Publication Publication Date Title
RU2589739C2 (ru) Вч объемный резонатор и ускоритель
JP5895034B2 (ja) イオントラップのエンドキャップ電圧制御
US20120194104A1 (en) Hf resonator cavity and accelerator
Sayapin et al. $ S $-Band Relativistic Magnetron Operation With Multichannel Radial Outputs of the Microwave Power
JPH0558240B2 (ru)
JP4038883B2 (ja) 高周波型加速管
Tsygankov et al. Oxide-coated al cathode for decreasing electron leakage and increasing electrical strength of vacuum insulation in the nanosecond pulse range
Pizarro et al. Evaluation of microplasma discharges as active components for reconfigurable antennas
US20130328483A1 (en) Microwave icp resonator
RU2808774C1 (ru) Способ получения заряженных частиц
RU2474914C1 (ru) Мощный свч-генератор монотронного типа
CN117669187B (zh) 一种基于击穿电流的燃油系统射频放电特性分析方法
RU2352015C1 (ru) Свч-прибор
Chekh et al. Static and dynamic characteristics of plasma lens with modified magnetic field geometry
JPH02106900A (ja) インダクタンス可変式四重極粒子加速器及びこれに使用する高周波共振器
SU1530071A1 (ru) Ускор ющий полуцилиндрический резонатор
Belyaev et al. Distinctions of RF parameters tuning for acceleration period of structure with spatially periodic RFQ focusing
Watanabe et al. Ion Beam Extraction from Large Bore 11 to 13 GHz ECR Ion Source with a Pair of Cylindrically Comb‐Shaped Magnetic Fields
JPH07111198A (ja) Rfq線形加速器
Plastun Resonance structure with magnetic coupling windows for low and intermediate energy linear ion accelerators
Prochazka The Design of the RF System for the TRIUMF Cyclotron
Alexandrov et al. The inductive channel effect on the parameters of the space-charge electrode sheaths in a hybrid RF discharge
Porteanu et al. Microwave Plasma Simulation Applied to a Double ICP Jet Reactor
Odera et al. Field characteristics of an alvarez-type linac structure having chain-like electrode array
Istenic et al. Magnetic insulation of MV pulse transformers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200203