RU2587537C1 - Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов - Google Patents

Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов Download PDF

Info

Publication number
RU2587537C1
RU2587537C1 RU2015113414/28A RU2015113414A RU2587537C1 RU 2587537 C1 RU2587537 C1 RU 2587537C1 RU 2015113414/28 A RU2015113414/28 A RU 2015113414/28A RU 2015113414 A RU2015113414 A RU 2015113414A RU 2587537 C1 RU2587537 C1 RU 2587537C1
Authority
RU
Russia
Prior art keywords
deposition
substrate
nanoparticles
solution
semiconductor
Prior art date
Application number
RU2015113414/28A
Other languages
English (en)
Inventor
Александр Анатольевич Антипов
Стелла Владимировна Кутровская
Алексей Олегович Кучерик
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ)
Priority to RU2015113414/28A priority Critical patent/RU2587537C1/ru
Application granted granted Critical
Publication of RU2587537C1 publication Critical patent/RU2587537C1/ru

Links

Images

Classifications

    • H01L21/203
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к области технологий осаждения полупроводниковых наночастиц халькогенидов свинца на прозрачные диэлектрические поверхности и может быть использовано при получении новых устройств на основе наносистем для микро- и оптоэлектроники, солнечных батарей, светодиодных ламп и других областей полупроводниковой техники. Техническим результатом является получение наноструктурированных тонких покрытий полупроводников структур из растворов на поверхности твердых тел с контролируемой морфологией осажденного слоя. Технический результат достигается тем, что в данном способе осаждение полупроводниковых наночастиц халькогенидов свинца из коллоидного раствора осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл. 8 ил.

Description

Изобретение относится к области технологий осаждения металлических и полупроводниковых наночастиц халькогенидов свинца на прозрачные диэлектрические поверхности (стекло, кварц и т.д.) и может быть использовано при получении новых устройств на основе наносистем для микро- и оптоэлектроники, солнечных батарей, светодиодных ламп и других областей полупроводниковой техники.
Известен способ получения наночастиц серебра (Патент №2385293, МПК C01G 5/00, B82B 3/00). Способ реализуется посредством химического осаждения наночастиц серебра в порах и на поверхности гелевого сильнокислотного стиролдивинилбензольного сульфокатионообменника за счет последовательного введения восстановителя и ионов серебра. С использованием восстановителей в виде нейтральных молекул (например, гидразин) можно добиться объемного распределения частиц серебра по матрице. Восстановление необходимо вести в мягких условиях, чтобы быстрое накопление твердых или газообразных продуктов синтеза не привело к механической деформации матрицы. Объемное распределение металла достигается и с восстановителями катионного типа (например, хлорид олова (II)), ионы которых легко проникают в ионообменную матрицу и фиксируются возле ионогенных центров как противоионы, а также сорбируются на гидрофобных поверхностях полимера. При пропускании раствора соли серебра (раствор насыщения) ионы металла взаимодействуют с катионами восстановителя и образуются наночастицы серебра.
Недостатком является то, что необходимо, использовать ионообменную матрицу, а также последовательно вводить восстановитель и ионы серебра. Такой подход приводит усложнению цикла производства.
Известен способ получения наночастиц (Патент №2242532, МПК С23С 4/00, B01J 2/02), включающий диспергирование расплавленного материала, подачу полученных жидких капель этого материала в плазму, образованную в инертном газе при давлении 10-1-10-4 Па, охлаждение в инертном газе образовавшихся в плазме жидких наночастиц до затвердевания и нанесение полученных твердых наночастиц на носитель, при этом параметры плазмы удовлетворяют определенным соотношениям. Диспергирование расплавленного материала и подачу полученных жидких капель в плазму осуществляют лазерной абляцией мишени или приложением электрического поля к острийному катоду из проводящего материала. Радиус кривизны острия выбирается не более 10 мкм, а напряженность электрического поля на вершине острия не менее 107 В/см.
Недостатком является то, что необходимо использовать дорогостоящее, сложное оборудование. Тем самым характеризуется высокая стоимость конечной продукции.
Известен способ приготовления водных дисперсий TiO2 в форме наночастиц и дисперсии, которые могут быть получены этим способом (Патент №2431604, МПК C01G 23/053, В82В 1/00). Для получения дисперсий TiO2 алкоксид титана при нагреве вводят в реакцию с водой в присутствии минеральной кислоты и неионного поверхностно-активного вещества. Алкоксид титана выбирают из группы, состоящей из метоксида, этоксида, н-пропоксида, изопропоксида, н-бутоксида и изобутоксида титана. Минеральной кислотой является галогеновая кислота. Поверхностно-активные вещества обладают полярной функциональной группой типа простого или сложного эфира. Мольное отношение алкоксид титана/галогеновая кислота составляет от 0,005 до 15. В альтернативном варианте способа к раствору, содержащему алкоксид титана, минеральную кислоту и поверхностно-активное вещество, добавляют соль переходного металла, например Ag, или Cu, или Се, и получают дисперсии наночастиц TiO2 в воде, в которых Ti допирован указанным металлом. Полученные указанным способом дисперсии наночастиц TiO2 применяют для получения фотокаталитических покрытий на поверхности, которая требует такой обработки, а также для фотокаталитической очистки газов и жидкостей от загрязнителей. Способ позволяет получить дисперсии наночастиц TiO2, которые не обнаруживают слипания, коагуляции и осаждения твердого материала даже после продолжительного хранения дисперсионного продукта, а также являются однородными, проявляют фотокаталитическую активность и являются прозрачными
Недостатком является то, что необходимо использовать галогенные кислоты, требующие дальнейшей утилизации и переработки.
Известен способ формирования многослойных нанокристаллических пленок с гетерогенной границей раздела и устройство для формирования многослойных нанокристаллических пленок с гетерогенной границей раздела (Патент №2436876, МПК С30В 25/22, В82В 3/00). Способ заключается в приготовлении раствора смеси солей металлов, аэрозольном нанесении упомянутого раствора на поверхность подложки в потоке газа-носителя, удаления растворителя из раствора смеси солей металлов и формировании на поверхности подложки многослойных нанокристаллических пленок металлов в результате термического разложения солей металлов, при этом поверхность подложки предварительно нагревают, из раствора смеси солей металлов формируют аэрозольный туман, который переносят и осаждают на поверхность подложки потоком кислородсодержащего газа-носителя, давление газа-носителя поддерживают выше атмосферного, формируют гетерогенную границу раздела путем нанесения на сформированный нанокристаллический слой нанокристаллического слоя другого химического состава, отличающегося от предыдущего.
Недостатком является то, что необходимо приготовить раствор, нанести его на поверхность подложки аэрозольным методом. И используя специальное оборудование для нагрева подложки, которое находится в камере высокого давления, испарить раствор на поверхность подложки, где формируется нанокристаллическая пленка. Цикл является трудоемким и дорогостоящим.
Известен способ получения композиционного NiO/C материала (Патент №2449426, МПК Н01М 4/5, C01G 53/04, B05D 5/12, В82В 3/00). Способ получения композиционного NiO/C материала, содержащего 15-60% NiO и представляющего собой равномерно распределенные по поверхности углеродного носителя кристаллиты β-NiO со средним размером 2-5 нм, основан на получении наночастиц NiO в результате электрохимического окисления и разрушения двух никелевых электродов в растворах гидроксидов щелочных металлов концентрацией 2 моль/л под действием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,3-1,5 А/см2, с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующем фильтровании полученной суспензии, промывке композита дистиллированной водой с его сушкой при 80°C в течение 1 часа.
Недостатком является то, что наночастицы NiO получают в растворах щелочных металлом. Полученный раствор необходимо промывать в дистиллированной воде и высушивать в течение 1 часа при температуре 80°C.
В качестве прототипа выбран способ нанесения покрытия ультратонким слоем на металлические изделия (Патент №2353702, МПК С23С 2/26, С23С 24/08, В82В 1/00). Способ включает осаждение ультратонкого слоя наночастиц оксида из раствора, содержащего наночастицы оксидов, в условиях регулируемого рН при температуре субстрата выше 120°C и суммарной продолжительности менее 5 секунд, предпочтительно менее 1 секунды, при этом в раствор вводят, по меньшей мере, одну химическую добавку, обладающую эффектом ограничения толщины наносимого слоя наночастиц оксида. Установка для нанесения покрытия содержит устройство для получения второго покрывающего слоя на первом покрывающем слое, полученном путем горячего погружения или путем распыления форсунками посредством применения указанного способа. Установка расположена после элементов, обеспечивающих операции формования и отвердевания первого покрывающего слоя, где указанный второй покрывающий слой наносят при температуре, по меньшей мере, на 100°C ниже температуры отвердевания первого покрывающего слоя. Способ позволяет наносить ультратонкий слой наночастиц оксида при более широком диапазоне температур полосы на входе в ванну и воспроизвести толщины покрытия при различной массе слоя.
Недостатками данного изобретения является то, что нанесение последующих слоев оксидов металлов происходит не напылением, а погружением подложки в горячий субстрат. Такой подход приводит к усложнению цикла производства ультратонких покрытий. Необходимо вводить в раствор, по меньшей мере, одну химическую добавку для ограничения толщины. Контролировать чистоту, однокомпонентность осажденного слоя практически невозможно.
Техническим результатом является получение наноструктурированных тонких полупроводниковых структур (покрытий) из растворов на поверхности твердых тел с контролируемой морфологией осажденного слоя.
Технический результат достигается тем, что в данном способе осаждение полупроводниковых наночастиц халькогенидов свинца из коллоидного раствора осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл.
Для получения коллоидного раствора используют метод лазерной абляции вещества (например, полупроводник PbTe) в жидкости (спирты, дистиллированная вода и т.д.) согласно полученному патенту РФ №2517781. Для получения однородной консистенции используют ультразвуковое воздействие и встряхиватель (например, Ротамикс). Возможно изготовление многокомпонентных коллоидных растворов. Полученный раствор наносят на подложку, разогретую от 20°C до 200°C в зависимости от состава коллоида, капилляром различного объема и диаметра. В результате с поверхности подложки происходит испарение жидкой фазы (спирты, дистиллированная вода и т.д.) с образованием наноструктурированного слоя из полупроводниковых наночастиц, которые образуют агрегаты различного профиля в зависимости от температуры подложки: 20°C (фиг. 4), 40°C (фиг. 5), 80°C (фиг. 6), 100°C (фиг. 7), 130°C (фиг. 8). Для получения наноструктурированного осажденного слоя в виде кольца коллоидный раствор наносится из капилляра 100 мкм на диэлектрическую подложку, разогретую до температуры 20°C. В процессе испарения жидкой фазы на поверхности диэлектрической подложке формируется осажденный слой в виде кольца (фиг. 2).
Изобретение поясняется представленными фигурами: фиг. 1 - принципиальная схема осаждения наночастиц из коллоидного раствора: d - диаметр капилляра, h - высота капилляра над подложкой, g - ускорение свободного падения; фиг. 2 - сформированный слой на поверхности подложки, разогретой до 20°C; фиг. 3 - сформированный слой на поверхности подложки, разогретой до 100°C; фиг. 4 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 20°C; фиг. 5 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 40°C; фиг. 6 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 80°C; фиг. 7 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 100°C; фиг. 8 - структура осажденного наноструктурированного слоя на поверхности подложки, разогретой до 130°C;
Заявляемый способ основан на проведенных исследованиях физико-химических процессов осаждения наночастиц из коллоидных растворов на подложки с различной температурой. В настоящем способе изготовление коллоидного раствора происходит методом лазерной абляции в жидкости согласно патенту РФ №2517781.
Особенность способа заключается в том, что осаждать можно полупроводниковые наночастицы халькогенидов свинца, которые способны разрушаться при интенсивном внешнем воздействии (например, лазерным излучением). Энергию, необходимую для активации процесса осаждения наночастиц, можно контролировать потенциальной энергией капли раствора в капилляре, изменяя расстояние от капилляра до поверхности подложки. Такой подход позволяет отказаться от применения химических реакций разложения, а также специального оборудования для промывки полученных наночастиц. К тому же, варьируя температурой подложки, на которую происходит осаждение, можно получать контролируемый профиль наноструктурированного слоя. Такое решение приводит к формированию наноструктурированного слоя различной модификации на поверхности подложки, не требуется специального оборудования.

Claims (1)

  1. Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов, отличающийся тем, что осаждение наночастиц осуществляется из капли раствора, которую наносят на поверхность, разогретую от 20°C до 200°C, с помощью капилляра от 0.1 до 1 мкм объемом до 200 мкл.
RU2015113414/28A 2015-04-10 2015-04-10 Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов RU2587537C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015113414/28A RU2587537C1 (ru) 2015-04-10 2015-04-10 Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015113414/28A RU2587537C1 (ru) 2015-04-10 2015-04-10 Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов

Publications (1)

Publication Number Publication Date
RU2587537C1 true RU2587537C1 (ru) 2016-06-20

Family

ID=56132226

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015113414/28A RU2587537C1 (ru) 2015-04-10 2015-04-10 Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов

Country Status (1)

Country Link
RU (1) RU2587537C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118627B2 (en) * 2003-12-04 2006-10-10 Hines Margaret A Synthesis of colloidal PbS nanocrystals with size tunable NIR emission
RU2353702C2 (ru) * 2003-12-17 2009-04-27 Сентр Де Решерш Металлюржик Асбл-Сентрум Воор Ресёч Ин Де Металлюржи Взв Способ нанесения покрытия ультратонким слоем на металлические изделия
RU2417863C1 (ru) * 2010-02-24 2011-05-10 Учреждение Российской академии наук Иркутский институт химии им. А.Е. Фаворского Сибирского отделения РАН Способ получения наночастиц халькогенидов металлов
RU2433948C1 (ru) * 2010-07-28 2011-11-20 Государственное образовательное учреждение высшего профессионального образования "Владимирский государственный университет" Способ лазерного осаждения наночастиц из растворов
RU2517781C2 (ru) * 2012-06-13 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Способ получения полупроводниковых наночастиц

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118627B2 (en) * 2003-12-04 2006-10-10 Hines Margaret A Synthesis of colloidal PbS nanocrystals with size tunable NIR emission
RU2353702C2 (ru) * 2003-12-17 2009-04-27 Сентр Де Решерш Металлюржик Асбл-Сентрум Воор Ресёч Ин Де Металлюржи Взв Способ нанесения покрытия ультратонким слоем на металлические изделия
RU2417863C1 (ru) * 2010-02-24 2011-05-10 Учреждение Российской академии наук Иркутский институт химии им. А.Е. Фаворского Сибирского отделения РАН Способ получения наночастиц халькогенидов металлов
RU2433948C1 (ru) * 2010-07-28 2011-11-20 Государственное образовательное учреждение высшего профессионального образования "Владимирский государственный университет" Способ лазерного осаждения наночастиц из растворов
RU2517781C2 (ru) * 2012-06-13 2014-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Способ получения полупроводниковых наночастиц

Similar Documents

Publication Publication Date Title
Zhu et al. Superlyophilic interfaces and their applications
US6344277B1 (en) Coating method of amorphous type titanium peroxide
Lopez et al. Preparation of large scale photocatalytic TiO2 films by the sol–gel process
Wang et al. Multifunctional roles of TiO2 nanoparticles for architecture of complex core− shells and hollow spheres of SiO2− TiO2− polyaniline system
WO2015033989A1 (ja) 電解用電極の製造方法
US11724940B2 (en) Method for forming graphene film through horizontally tiling and self-assembling graphene
Ma et al. Layer-by-layer self-assembly under high gravity field
JP2007077435A (ja) 成膜装置
JPH07507000A (ja) 微細な固体粒子で表面をコーティングする方法
KR100856873B1 (ko) 무전해도금용 촉매활성 방법
Fu et al. Simple reactor for ultrasonic spray synthesis of nanostructured materials
KR101782927B1 (ko) 전기전도성 메조구조 코팅의 저온 제조 방법
RU2587537C1 (ru) Способ осаждения полупроводниковых наночастиц халькогенидов свинца из коллоидных растворов
US20100193363A1 (en) Electrochemical methods of making nanostructures
JP2012007238A (ja) 塩素の電解合成用電極
Kim et al. Tuning Hydrophobicity with Honeycomb Surface Structure and Hydrophilicity with CF 4 Plasma Etching for Aerosol‐Deposited Titania Films
JP6660691B2 (ja) 光触媒複合粒子およびその製造方法
CN108453021A (zh) 一种金属制品的搪瓷工艺方法
US11000842B2 (en) Method for applying photocatalytic coatings without using binders, and use of a coating
CN105148745B (zh) 一种通过3D打印生产TiO2多功能膜的制备方法
WO2017176163A1 (ru) Модифицированная анионообменная мембрана и способ ее изготовления
TWI496615B (zh) 一種製備銀顆粒的方法及核殼結構銀顆粒
JP6605304B2 (ja) 微小酸化マグネシウム中空粒子の製造法
Kwon et al. Uniform anti-reflective films fabricated by layer-by-layer ultrasonic spray method
Mushtaq et al. Review on the synthesis methods of nano-tungsten oxide dihydrate colloid

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170411